

Pós Graduação

Comparações Tecnologias

Aula 1

Prof. Abel Guilhermino

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda

S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Agenda

- Sistemas Embarcados
- Motivação
- Abordagens
 - ASICs
 - FPGAs
 - Microcontroladores
 - ADLs
- Aplicações
- Direções

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda

S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Sistemas Embarcados

- Um Sistema Embarcado é um sistema computacional embutido em um sistema maior, e programado para realizar uma tarefa específica.
- É também chamado de Sistema Embutido, ou do inglês "Embedded System".

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda

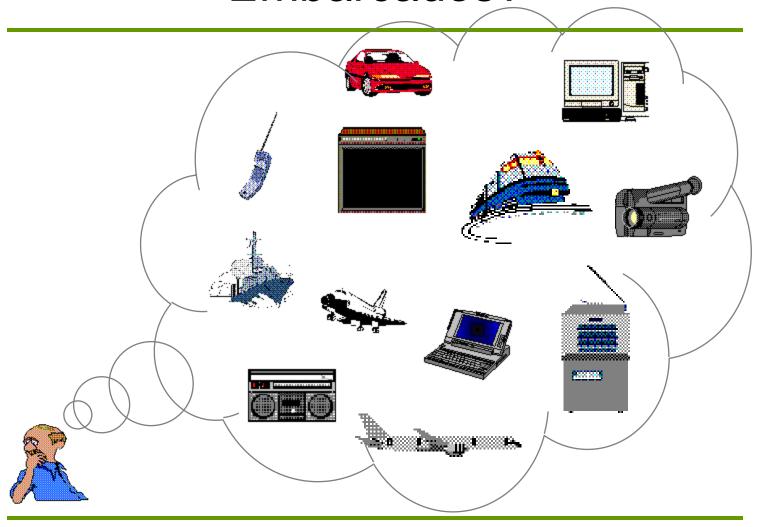
S. Embarcados

Motivação

Abordagens

ASICs

FPGAs


Microcontrolador

ADLs

Aplicações

Direções

Onde estão os Sistemas Embarcados?

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

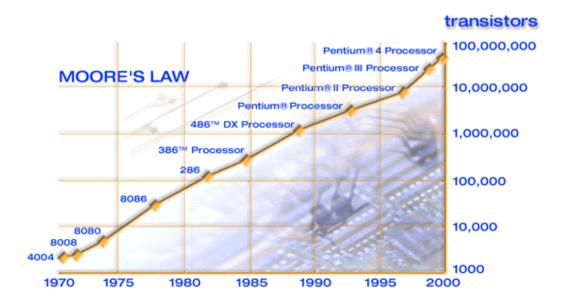
Motivação

Abordagens

ASICs

FPGAs

Microcontrolador


ADLs

Aplicações

Direções

Motivação

- Aumento da Complexidade dos CIs
- Densidade dos transistores dobrando a cada 18 meses (Moore)
- Propicia aplicações digitais agregar cada vez mais funcionalidade em equipamentos de menor volume

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

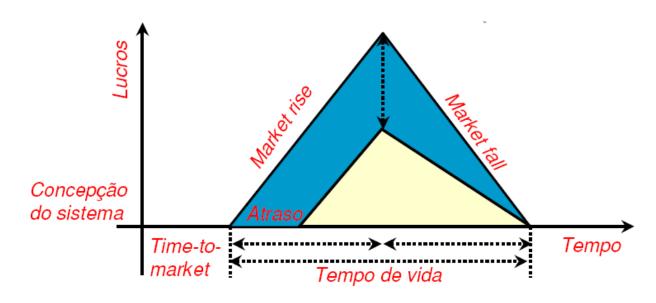
Motivação

Abordagens

ASICs

FPGAs

Microcontrolador


ADLs

Aplicações

Direções

Motivação

- A Complexidade das aplicações atuais tem aumentado
- Aumento no tempo de desenvolvimento de projetos.
- Aquecimento no mercado de sistemas embarcados, incentivado a alta competitividade entre os produtores
- Incentivado a geração de novas ferramentas CAD

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Motivação

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda

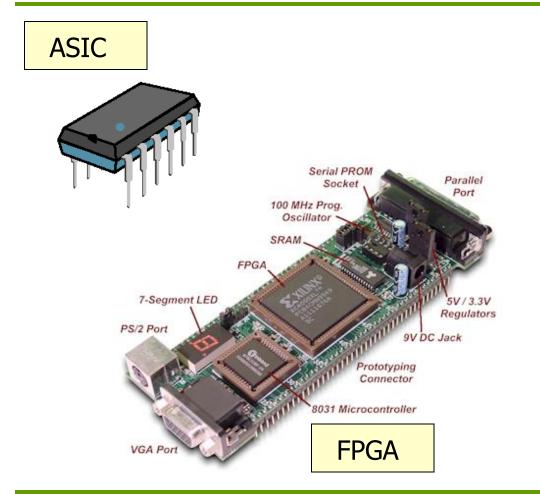
S. Embarcados

Motivação

Abordagens

ASICs

FPGAs


Microcontrolador

ADLs

Aplicações

Direções

Abordagens

Microcontroladores

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

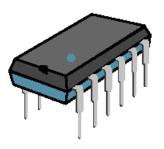
Agenda

S. Embarcados

Motivação

Abordagens

ASICs


FPGAs

Microcontrolador

ADLs

Aplicações

Direções

ASICs

Application-Specific Integrated Circuit

Cin

UFPE

ASICs (Application-Specific Integrated Circuit)

Abel Guilhermino agsf@cin.ufpe.br

Agenda

S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Vantagens

- Hardware mais rápido
- Mais gates por chip
- Low power
- Baixo custo por venda chip (demanda)

Desvantagens

- Difícil mudança de processos
- Layout e projeto físico
- Correção lenta de falhas: semanas
- Hardware permanente, mudanças requer novo projeto
- Elevado custo de fabricação

Cin

UFPE

Processo Fabricação Chip

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações Direções Projeto do Chip

- Como o chip irá funcionar
- Fabricação do Wafer
 - Principal processo
- Preparação do Núcleo
 - Cortar os chips do Wafer
- Encapsulamento
 - Terminais e envólucro são adicionados ao chip
- Teste
 - O chip é testado e então vendido

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Processo Fabricação Chip

Wafer Polido

- Lingote feito de silício puro (300mm)
- Lingote fatiado em wafers
- Wafers são polidos
- Chips fabricados sobre o wafer

Cin

UFPE

Processo Fabricação Chip

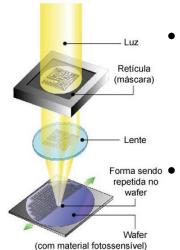
Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens

ASICs

FPGAs

Microcontrolador


ADLs

Aplicações

Direções

Criando formas no silício.

- Colocamos uma camada
 Em cima da outra.
 - Com um isolante entre elas.
- Usamos máscaras para criarmos as formas

- Chips fabricados no wafer p/ fotolitografia
- Wafer é coberto por uma substância fotossensível, que é solúvel quando exposta a luz ultravioleta.
 - A máscara é aplicada e o wafer exposto a luz ultravioleta.
- Processo finaliza quando todas as máscaras forem aplicadas

Cin

UFPE

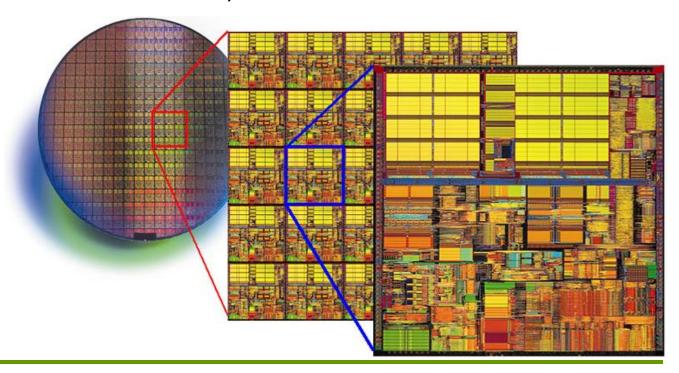
Processo Fabricação Chip

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens

ASICs

FPGAs


Microcontrolador

ADLs

Aplicações

Direções

 Wafer com processadores Pentium 4 após o processo de fabricação (26 máscaras e 7 camadas de metal)

Cin

UFPE

Sala Limpa

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

 Todos os processos descritos ocorrem dentro de uma sala limpa com uso de "bunny suits"

UFPE

Porque Tão Limpa!

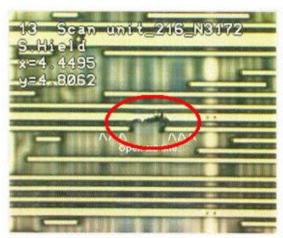
Abel Guilhermino agsf@cin.ufpe.br

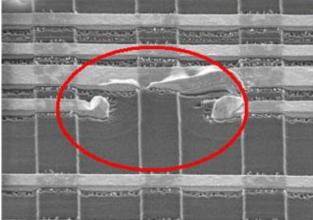
Agenda
S. Embarcados
Motivação
Abordagens

ASICs

FPGAs

Microcontrolador


ADLs


Aplicações

Direções

Qualquer partícula (até poeira)
 pode destruír o silício...

UFPE

Resumo ASICs

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

- Hardware mais rápido
- Baixo consumo de energia
- Mudanças requer novo projeto
- Necessidade de Layout do projeto
- Correção lenta de falhas
- Elevado custo de fabricação
- Custo baixo quando vendido em larga escala

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

FPGA

Field Programmable Gate Array

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

- São circuitos programáveis compostos por um conjunto de blocos lógicos alocados em forma de uma matriz.
- Cada fabricante nomeia seu bloco lógico:
 - Xilinx → CLB (Configurable Logic Block)
 - Actel → LM (Logic Module)
 - Altera → LE (Logic Element)

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados

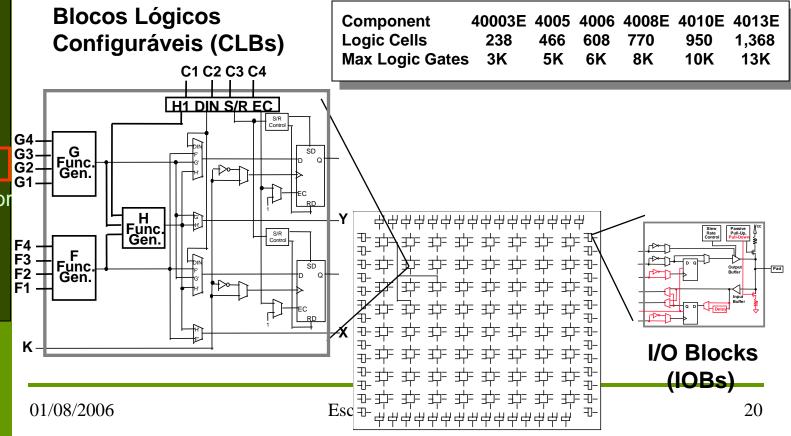
Motivação

Abordagens

ASICs

FPGAs

Microcontrolador


ADLs

Aplicações

Direções

FPGA da Xilinx

XC4000 XILINX Architecture

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs

FPGAs

Microcontrolador

ADLs

Aplicações Direções

FPGAs

Reconfiguração

- Total
 - Dispositivo reconfigurável é totalmente alterado
- Parcial
 - Uma parte do FPGA é reconfigurado
 - Tipo:
 - Não-disruptiva
 - Disruptiva
- Dinâmica
 - Não há necessidade de reiniciar o circuito ou remover elementos reconfiguráveis para programação

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs

FPGAs

Microcontrolador

ADLs

Aplicações Direções

- Linguagem de Descrição de Hardware (HDL)
 - É própria para modelar a estrutura e/ou comportamento de um hardware
 - Exemplos: VHDL, VERILOG, AHDL (desenvolvida para Altera), Handel-C, SDL, ISP, ABEL, etc...
 - Foco : VHDL
 - VHDL (Very High Speed Integrated Circuit)
 Hardware Description Language

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs

FPGAs

Microcontrolador ADLs

Aplicações

Direções

- Formas de descrição de circuitos digitais em VHDL
 - Algorítmica
 - Conjunto de passos que descreve de forma comportamental o circuito digital projetado
 - Fluxo de Dados
 - Pode ser visualizada como a transferência entre registradores possibilitando o paralelismo de instruções.
 - Estrutural
 - Indica os diferentes componentes que constituem o circuito e suas respectivas interconexões.
 - Desta maneira pode-se especificar um circuito e saber como é seu funcionamento

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens

FPGAs

Direções

ASICs

Microcontrolador ADLs Aplicações

- Elementos Sintáticos do VHDL
 - A Linguagem VHDL oferece suporte a descrição de trechos concorrentes.
- Execução Seqüencial
 - If else, for, while,
 - Processos
- Execução Concorrente
 - When else, With Select When

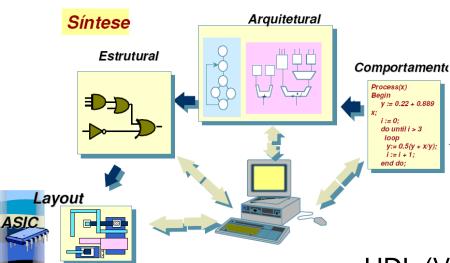
Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs

FPGAs


Microcontrolador

ADLs

Aplicações

Direções

Ferramentas FPGA

- HDL (VHDL, Verilog)
- Plataformas (Prototipar)
 - Xilinx x Altera x Synopsys
- CAD
 - ISE, Excalibur
- Testes

Cin

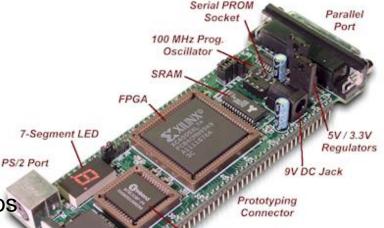
UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs

FPGAs

Microcontrolador


ADLs

Aplicações

Direções

FPGA

- Desvantagens
 - Hardware mais lento (Comparado ao ASIC)
 - Menos gates por chip
 - Mais consumo de potência
 - Alto custo por gate
- Vantagens
 - Processamento Rápido
 - Fácil mudança de processos
 - Sem layout e projeto físico
 - Rapidez na correção de falhas: minutos
 - Pode adicionar novas funções facilmente
 - Customização no campo
 - Explora Paralelismo

8031 Microcontroller

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolado

ADLs

Aplicações

Direções

Microcontroladores

Cin

UFPE

Arquitetura do 8051

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados Motivação Abordagens ASICs

Microcontrolado

ADLs Aplicações Direções

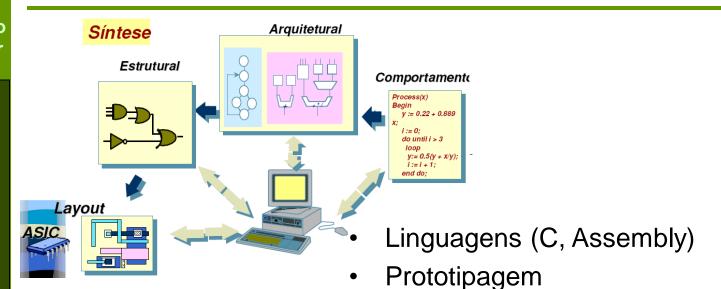
- Características
- Tipos de memória
- Registradores básicos
- Registradores de Funções especiais
- Timers
- Comunicação Serial
- Interrupções
- Pinagem 8051

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs


Microcontrolado

ADLs

Aplicações

Direções

Ferramentas Microcontrolador

- CAD
 - · Keil, CircuitMaker, Eagle

Protoboards

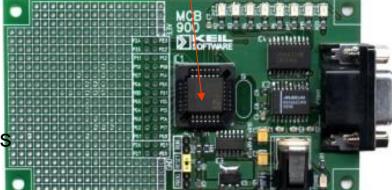
- Confecção de Placa (opcional)
- Testes

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs


Microcontrolado

ADLs Aplicações Direções

Microcontroladores

- Desvantagens
 - Hardware mais lento (Comparado ao FPGA)
 - Menos consumo comparado ao FPGA

- Vantagens
 - Solução mais barata
 - Fácil mudança de processos
 - Sem layout e projeto físico
 - Rapidez na correção de falhas: minutos
 - Pode adicionar novas funções facilmente
 - Customização no campo

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Linguagens de Descrição de Arquitetura

Cin

UFPE

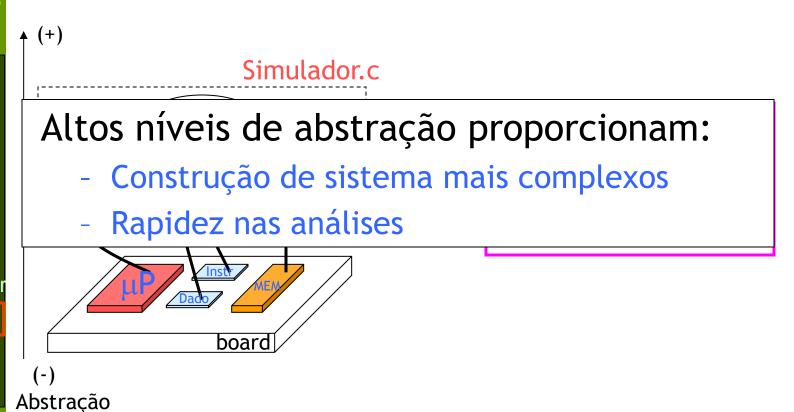
Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

Motivação

Abordagens

ASICs


FPGAs

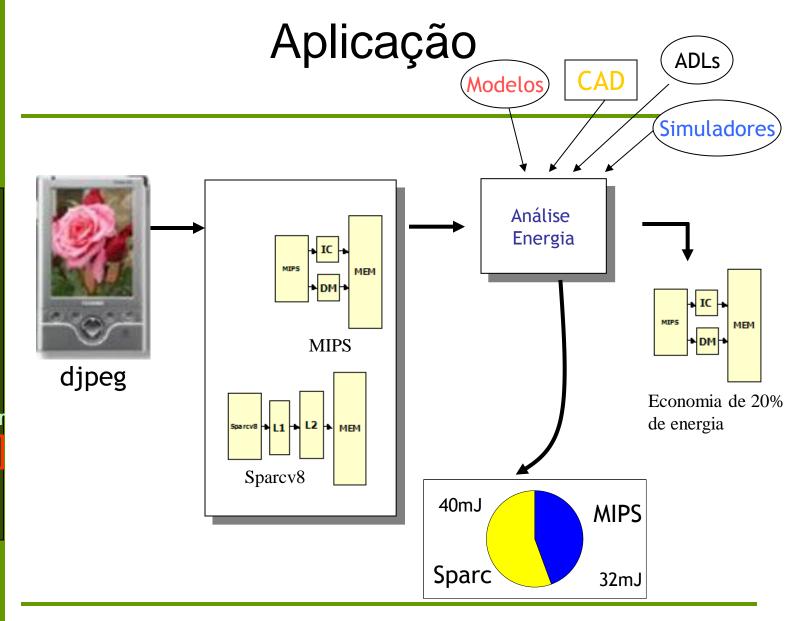
Microcontrolador

ADLs

Aplicações Direções

Nível de Abstração

Cin


UFPE

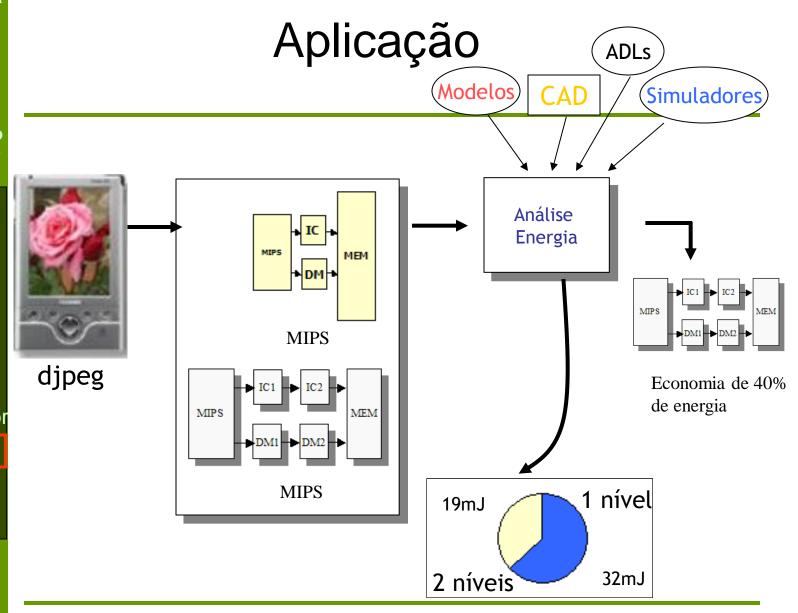
Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs
Microcontrolador

ADLs

Aplicações Direções

UFPE


Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolador

ADLs

Aplicações Direções

Cin

UFPE

Simuladores de Arquitetura

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações Direções

Propriedade	Platune	Warts	Simple Scalar	Wattch	Avalanche	Simple Power	PowerMill	SPICE
Processador	MIPS (R3000)	MIPS SPARC	MIPS	MIPS R10000 Pentium Pro Alpha 21264	Sparc Lite	MIPS (subset)	IP-core	Qualquer
Cache	Sim	Sim	Sim	Sim	Sim	Sim	IP-Core	Qualquer
Consumo CPU	Sim	Não	Não	Sim	Sim	Sim	Sim	Sim
Consumo Cache	Sim	Não	Não	Sim	Sim	Sim	Sim	Sim
SoC	Sim	Não	Não	Não	Não	Sim	Sim	Não
Abstração	Sistema	Sistema	Arquitet.	Arquitet.	Sistema	RTL	Gates	Transistor
Tecnologia	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS JFETS BJTs
Performance	Sim	Sim	Sim	Sim	Sim	Sim	Sim	Sim
Benchmarks	PowerStone	SPEC92	SPEC95	SPEC95	SPEC95	SPEC95	Circuitos	Circuitos
Compilador	Platune	gcc	gcc	8 G	gcc	gcc	Synopsys	SPICE
Cycle Accurate	Não	Não	Não	Sim	Não	Sim	Sim	Linear / não linear

Cin

UFPE

Trabalhos Relacionados (ADLs)

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações Direções

Atributos	ArchC	Expression	LISA	nML	MIMOLA
Cycle-accuracy	Sim	Sim	Sim	Não	Não
Suporta Multi-ciclo	Sim	Sim	Sim	Não	Sim
Suporta Pipeline	Sim	Sim	Sim	Não	Sim
Info. Conj. Instruções	Sim	Sim	Sim	Sim	Não
Sup. Compilador	Sim	Sim	Sim	Sim	Sim
Sup. Assemblador	Não	Sim	Sim	Sim	Não
Sup. Hierarquia Memória	Sim	Sim	Sim	Sim	Sim
Co-Verificação	Sim	Não	Não	Não	Não
Format. Comportamento	Sim	Não	Não	Não	Não
Consumo de Energia	Não	Sim	Não	Não	Não
			·	·	·

Baseada em SystemC
 Cooperação com a UNICAMP
 www.archc.org

Cin

UFPE

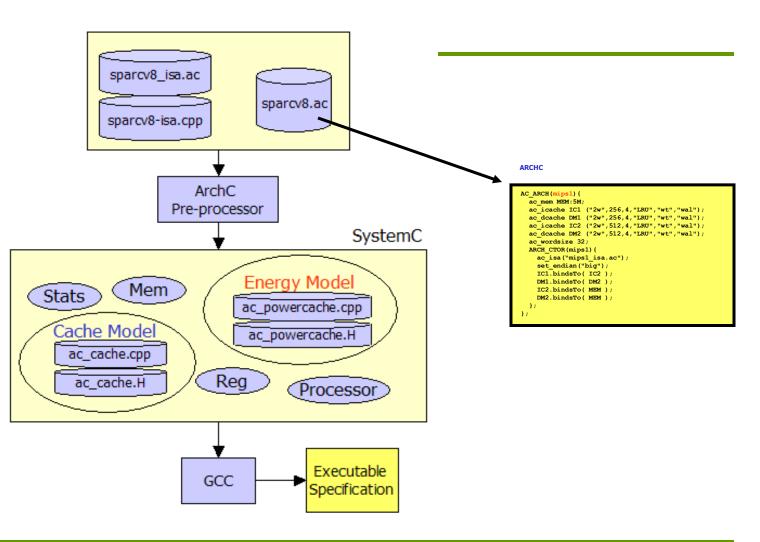
Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

Motivação

Abordagens

ASICs


FPGAs

Microcontrolador

ADLs

Aplicações Direções

Simulador Executável

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolador

ADLs

Aplicações Direções

Especificação

ARCHC

```
AC_ARCH(mips1) {
    ac_mem MEM:5M;
    ac_icache IC1 ("2w",256,4,"LRU","wt","wal");
    ac_dcache DM1 ("2w",256,4,"LRU","wt","wal");
    ac_icache IC2 ("2w",512,4,"LRU","wt","wal");
    ac_dcache DM2 ("2w",512,4,"LRU","wt","wal");
    ac_wordsize 32;
    ARCH_CTOR(mips1) {
        ac_isa("mips1_isa.ac");
        set_endian("big");
        IC1.bindsTo( IC2 );
        DM1.bindsTo( DM2 );
        IC2.bindsTo( MEM );
        DM2.bindsTo( MEM );
    };
};
```

```
MIPS IC1 IC2 MEM

DM1 DM2
```

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda

S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Aplicações

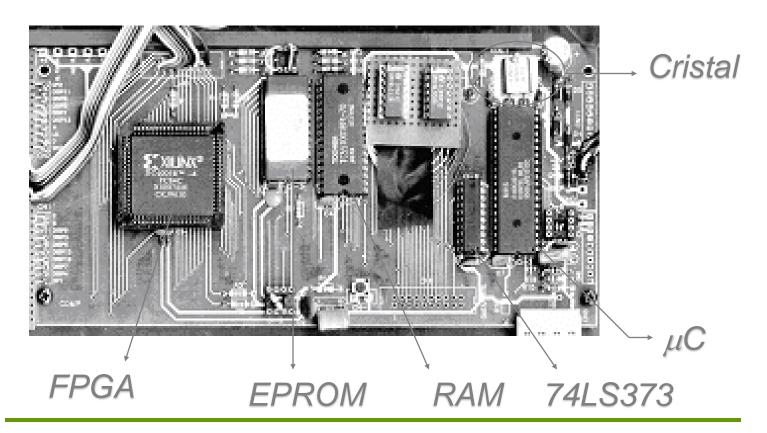
Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolador


ADLs

Aplicações

Direções

Aplicação

Sistema Biossensor

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Aplicação

Sistema Automotivo

BMW Williams FPGA (Virtex Pro)

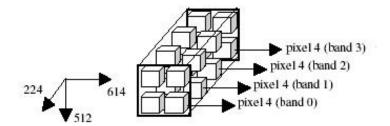
Cin

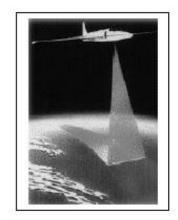
UFPE

Abel Guilhermino agsf@cin.ufpe.br

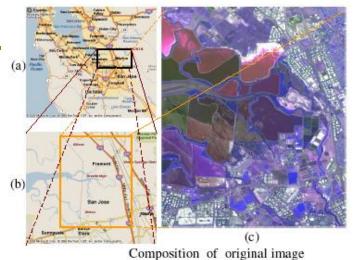
Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolador


ADLs


Aplicações

Direções


Aplicação

Processamento de Imagem

(AVIRIS - "Whisk Broom" mode)

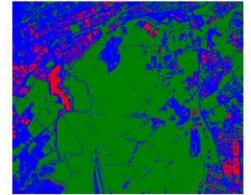


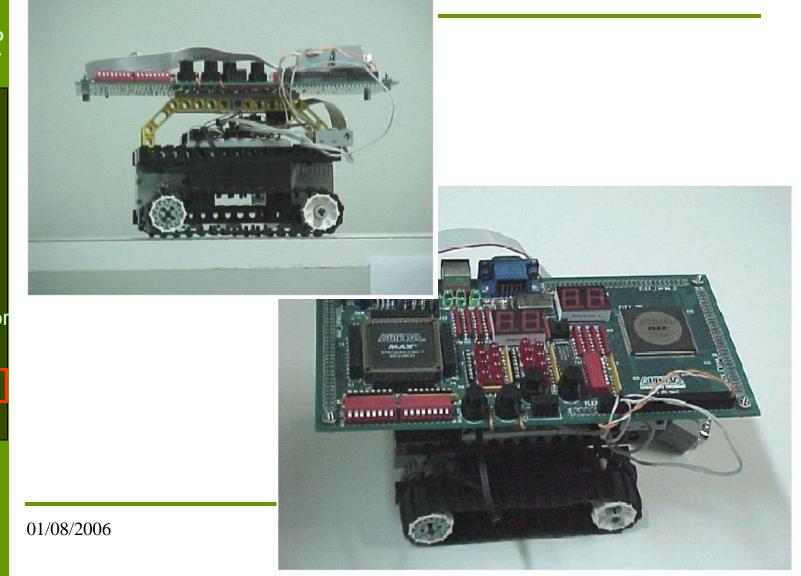
Figura 8. Thematic map of the AVIRIS image f970620t01p02 r03 sc02.c.rfl

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs


Microcontrolador

ADLs

Aplicações

Direções

Aplicação

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Tendências (Aplicações)

- Desenvolvimento de aplicações dentro de um único chip (System On Chip)
 - Desenvolvimento de drivers para diversos periféricos
 - Adicionar Complexidade (Inteligência)
- Busca de aplicações para uso de dispositivos reconfigúráveis
 - Processamento Digital de Imagens
- TeleHomeCare
 - Monitoração de Sinais vitais de Pacientes
 - Diagnósticos

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda S. Embarcados

Motivação

Abordagens

ASICs

FPGAs

Microcontrolador

ADLs

Aplicações

Direções

Cronograma

Prof. Abel Guilhermino

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs
Microcontrolador

ADLs

Aplicações

Direções

Cronograma 2006.2

Data	Descrição	
02/08/2006	Apresentação à Disciplina	
05/09/2006	Projetos de Sistemas Embarcados	(Lista 1)
06/09/2006	Linguagens de Descrição de Hardware	
19/09/2006	Linguagens de Descrição de Hardware	
20/09/2006	FPGA	(Lista 2)
26/09/2006	Linguagem de Descrição de Arquitetura (ADL)	
27/10/2006	Linguagem de Descrição de Arquitetura (ADL)	
03/11/2006	Linguagem de Descrição de Arquitetura (ADL)	(Lista 3)
04/11/2006	Microcontroladores	
10/11/2006	Microcontroladores	
10/11/2006 quarta CD	Sexta (Microcontroladores)	(Lista 4)
15/10 a 21/10	(Congresso SBAC-PAD 2006 - Abel) – Carmelo	
24/10/2006	Revisão Prova	
25/10/2006	Segundo Exercício Escolar	
31/10, 01/11, 07/11	Acompanhamento de Projetos (Abel / Carmelo)	
08/11, 14/11, 15/11	Projetos (Abel / Carmelo)	

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs
Microcontrolador

Microcontro ADLs Aplicações

Direções

Cronograma 2007.2

Data	Descrição	
02/08/2007	Apresentação à Disciplina	
11/09/2007 (12a aula)	Projetos de Sistemas Embarcados	
13/09/2007	Projetos de Sistemas Embarcados	(Lista 1)
18/09/2007	Linguagens de Descrição de Hardware	
20/09/2007	Linguagens de Descrição de Hardware	
25/09/2007	Linguagens de Descrição de Hardware	(Lista 2)
27/09/2007	Linguagem de Descrição de Arquitetura (ADL)	
02/10/2007	Linguagem de Descrição de Arquitetura (ADL)	
04/10/2007	Linguagem de Descrição de Arquitetura (ADL)	(Lista 3)
09/10/2007	Microcontroladores	
11/10/2007	Microcontroladores	
16/10/2007	Microcontroladores	(Lista 4)
18/10/2007	Definição de Projetos	
23/10, 25/10	(Congresso SBAC-PAD 2007 - Abel) – Carmelo	
	Acompanhamento de Projetos (Carmelo)	
30/10, 01/11	Acompanhamento de Projetos (Abel / Carmelo)	
06/11, 08/11	Acompanhamento de Projetos (Abel / Carmelo)	
13/11, 20/11	Projetos (Abel / Carmelo)	

Cin

UFPE

Abel Guilhermino agsf@cin.ufpe.br

Agenda
S. Embarcados
Motivação
Abordagens
ASICs
FPGAs

Microcontrolador ADLs Aplicações Direções

Bibliografia

- Embedded System Design A Unified Hardware/Software Introduction - Frank Vahid / Tony Givargis, (John Wiley & Sons, Inc.), 2002.
- VHDL Descrição e Síntese de Circuitos Digitais, Roberto d'Amore, LTC, 2005.
- www.archc.org, www.pdesigner.org
- Microcontrolador 8051 Detalhado, Denys E. C. Nicolosi, 5a Edição, 2004.