
Integrating Code Generation and Refactoring

Marcelo d'Amorim1, Cl�ovis Nogueira1, Gustavo Santos1, Adeline Souza1,

and Paulo Borba1;2

1 Qualiti Software Processes. Avenida Marquês de Olinda, 126, 4o. andar. Bairro

do Recife, Recife-PE, Brazil. 50030-901
2 Federal University of Pernambuco, Informatics Center. POBOX 7851,

Recife-PE, Brazil. 50640-970

Abstract. Coder is a tool for generation and maintenance of Java programs. It is

capable of not only producing class structures but also their implementation. It also

allows one to safely modify the new code by applying refactorings. In this way the

system evolves with reduced defects, and the productivity of the development team

increases since the tool seamlessly supports coding. This position paper describes

the Coder architecture, and presents an example of its practical use on projects

based on Java technology.

1 Introduction

In this paper we describe a tool named Coder that integrates code generation

and refefactoring in a uniform and highly
exible way. This tool can then be

used for generation and maintenance of Java programs. It helps to evolve

systems with a reduced number of defects at the same time that increases

the productivity of the development team by seamlessly supporting di�erent

coding activities.

Our approach is to consider program transformation as a unifying concept

for code generation and refactoring. A refactoring comprises several behavior

preserving changes on the program, but does not add new functionalities [6].

A generator, on the other hand, introduces new functionalities. Such unifying

view of transformation may create new types and modify old ones as long

as it preserves the semantics of the original program. Hence, the uni�cation

integrates two essential elements to enable systematic software evolution:

modi�cation and generation of programs.

The user instruments the stated transformations and so we consider them

an abstraction to generative programming. However they are not visible to

the programmer using the tool for supporting coding activities. By using

the tool the programmer manipulates only wizards, which encapsulate trans-

formations and the associated graphical interfaces used to con�gure these

transformations.

Coder wizards are de�ned by assembling transformations and graphical

components reused or constructed by a tool customizer, which is also respon-

sible for de�ning the wizards. The components are Java Beans that comply to

a speci�c interface. Transformations are written in a language that extends

2 d'Amorim, M., Santos, G., Nogueira, C., Souza, A., Borba, P.

Java with metaprogramming constructs [1]. Such extension allows the tool

customizer to program generic templates, and by using them he speci�es how

Java code should be generated or modi�ed. For example, the customizer can

specify that new methods should be added to an existent type, and that the

protected modi�ers should be replaced by private ones.

The
exibility for creating and composing wizards based on an open archi-

tecture contrasts with typical refactoring tools, which support only a �xed set

of built-in refactorings. Moreover, these tools typically focus on the abstrac-

tions of a given language, organizing refactorings into method, attribute, and

type categories. They do very well for generic problems like changing class

packages or the name of a public method. However they do not embody ap-

plication domain to deal with larger and more speci�c tasks. They are not

able, for example, to generate or modify a set of classes according to a layered

architecture. Coder wizards enable users to specify and reproduce families of

components closely related to the architecture in place.

This work is outlined in the following manner: the next section describes

the tool architecture. Section 3 shows its application to support Enterprise

Java Beans within a layered architecture. This speci�c customization of the

tool does not generate EJB classes and their deployment descriptors. We

assume programmers can do it well by means of any EJB tool available

in the market. We demonstrate how these standardized EJB types can be

introduced into the system with minimal impact. Finally, section 4 presents

limitations, future improvements, and concludes the paper.

2 Architecture

The design of Coder follows the layered architectural pattern [2]. Three layers

are used. The �rst houses graphical components. The second one acts on the

communication and mediation between graphical components and those of

the bottom layer, which focus on program transformation.

In addition to the vertical partitioning, the presentation and mediation

layers are also partitioned horizontally since their components are in charg of

conceptually distinct tasks. Figure 1 depicts the dependencies between each

architecture module.

The numbers on the diagram expose dependencies and also the sequence

of execution of a wizard. The �rst dependency reveals the use of an object

of type Session during execution. A generator quite often requires parame-

terization and this data can be provided through the wizard user interface.

These graphical components use the session to retrieve and update wizard

parameters that correspond to their �elds. The session acts as a shared stor-

age associating values to parameters that will ultimately be used to con�gure

transformations, as sketched in the dependency 4 arrow. For instance, sup-

pose we have a transformation that refactors some class. We need to inform

Integrating Code Generation and Refactoring 3

Wizard GUIs IDE Adapter

Session

Transformation Engine

1 2

34

5

Controller

Fig. 1. Architecture layers

the name of this class to the wizard so that it can be modi�ed later. The

wizards user interfaces capture this kind of information.

As stated before wizards are de�ned by assembling transformations and

graphical components. Actually, we can associate many graphical compo-

nents to a single transformation and many transformations to a wizard. This

arrangement enables modular composition of wizards from already built and

tested transformations. Transformations are con�gured and guided by their

user interfaces through the command of a programmer. During the transition

between the GUIs of two transformations, the controller is noti�ed, by means

of an event, about which transformation needs to be applied|dependency

2. The controller then calls the transformation engine. The result is a set of

types, created or modi�ed, which are based on informed types.

After the last GUI transition of a wizard, the controller has also to up-

date the IDE with all generated and modi�ed types|dependency 5. The

programmer, therefore, only perceives the results after successfully �nishing

all transformation steps. This decision allows him to cancel the execution

without leaving the workspace inconsistent. It also aims at maintaining the

IDE consistent even at the presence of unexpected situations. For example,

during transformations, the power could be turned o� or some con�guration

�le could be casually removed.

For updating the programmer's IDE project, the controller uses an adapter

that provides a common interface to manage programming elements of a given

IDE. For each IDE the Coder integrates, there is an adapter which uses the

API of that environment.

2.1 The Transformation Engine

Some wizards just generate code; others only refactor code. There are also

some that require both capabilities. To support them in a uniform manner,

the transformation engine realizes two operations:

4 d'Amorim, M., Santos, G., Nogueira, C., Souza, A., Borba, P.

� Pattern Matching: To make room for refactoring the tool has to ma-

nipulate types already created. This is also useful for code generation that

depends on information speci�ed by existing types. We need to represent

these types even before they exist. This is accomplished by describing

these types as templates. During the wizard application a template is

matched with one user-informed type1. It is so regarded as a source tem-

plate. The transformation engine knows and manipulates templates, not

the speci�ed types.

� Code Generation and Update: Similarly to C++ which allows para-

metric polymorphism2 as a means to extend the de�nition and use of

language abstractions, it is possible to de�ne templates for types that

will be generated or modi�ed. These templates should safely generate

code to the target language. We regard these as target templates because

they actually modify code. A target template is allowed to manipulate

source templates as if they were actual types, in which it depends on.

There is not an one-to-one relation between source and target templates.

We can de�ne a source template specifying type T without a target. The

inverse is also possible, and it is also possible to have both kinds of templates

for the same type. In the �rst case the actual type represented by T is only

analysed. In the second case, a new type is generated, and in the last situation

the matched type is modi�ed. This is the case of refactoring. Figure 2 sketches

this situation. ST stands for source template and TT for target template.

ST#A

ST#C

ST#B #BTT

A.java

B.java

C.java

file B.java

Modified source

Fig. 2. A set of templates for refactoring

Suppose we want to modify the code of an user-de�ned class B, and such

modi�cation depends on the information provided by two other types, say

interfaces A and C. The result of the update, for example, provides B with

an empty implementation for the methods in A and C. This is actually the

1 This user-directed matching di�ers from dynamic pattern matching which is very

useful in dependency analysis of code. This subject is further discussed on the

Conclusions.
2 C++ is an example of language that supports the de�nition of generic classes

and functions. The work of Myers et. al [5] proposes the introduction of these

concepts to Java.

Integrating Code Generation and Refactoring 5

Inherit[Base, Derived] refactoring as described in [7]. This kind of trans-

formation is done quite directly by the engine. The target template TT#B
uses metaprogramming operators to instrument the informed interfaces and

then include empty implementations for their methods. In fact, target tem-

plates are written in the JaTS language, an extension of Java with some

metaprogramming operators. The templates mentioned on Figure 2 rely on

these operators. Concrete examples are provided on the Applications section.

Transformations are made on the syntax tree of the original parsed programs.

This assures that the resulting programs are syntactically valid if the trans-

formations are valid.

2.2 Wizards

Wizards are units of code transformation manipulated by programmers. A

wizard is composed of a set of transformations applied in sequence, and a set

of GUIs presented prior to each transformation. Graphical interfaces serve

to con�gure the transformations. However, there might be transformations

without associated GUIs. A parameterless code generator is an example. Con-

sidering the symbol g represents a GUI and t a transformation, the following

sequence describes a wizard with four transformation steps:

g1 g2 g3 t1 g4 g5 g6 t2 g7 g8 g9 t3 t4

Each transformation is applied immediately after the programmer informs the

con�guration data for that transformation. For example, the transformation

t1 is applied during the transition from g3 to g4. On the other hand, results

are only presented to the programmer at the end of the wizard execution.

The following grammar provides a syntactic representation for wizards:

W ! GTL

GTL! GT j GT;GTL

GT ! (GL; T)

GL! � j g;GL

T ! (st?; tt+)

where GTL is a non-empty list of pairs. The �rst element of the pair is a list

of GUIs (GL), and the second a transformation (T), which can include many

source templates (st), but at least one target template (tt). The pair GT is a

unit of transformation that can be used to de�ne other wizards in a modular

way.

This grammar is de�ned as an XML-Schema. It is used to validate any

XML document describing an wizard (the wizard descriptor). This document

is in strict accordance to the grammar described above, thus it lists templates

and GUIs used on transformations. A compressed �le includes, in addition to

the wizard descriptor and its associated grammar, graphical interfaces and

templates the wizard requires. This �le bundles the wizard in a single easily

deployable unit.

6 d'Amorim, M., Santos, G., Nogueira, C., Souza, A., Borba, P.

2.3 GUI Coordination

The programmer should be capable of navigating through the GUIs of a wiz-

ard, including returning to an edited screen and correcting the value of some

�eld. The programmer, user of the tool, does not manipulate transformations

directly. Hence, the sequence of GUIs followed by transformation does not

re
ect his vision. The user observes only a sequence of GUIs, which can be

navigated at any direction.

Rather than including transformations into the wizard's sequence of ex-

ecution, like presented before, we include event interceptors. This allows to

asynchronously communicate an event in a special transition between two

screens and thus to reduce coupling between the controller and graphical

components. The controller does not need to manage the sequence of screens

to be shown, this is done in a distributed manner by the graphical com-

ponents. The following sequence is an operational equivalent version of the

sequence (1). The symbol i represents an interceptor:

g1 g2 g3 i4 g5 g6 g7 i8 g9 g10 g11 i12 i13

Each element of the sequence is identi�ed by an index. At the beginning of

the wizard execution, an one-valued token is created. As the wizard screen

sequence proceeds or recedes, the value is updated and a parameterized event

with that value is thrown. Only the element with index equal to the token

value should catch and process the event. When the element is an event

interceptor, it should notify the controller to apply the proper transformation

and increment the token in the following.

This is a variation of the Phased Process pattern [8], requiring no dis-

patcher component to guide the execution process.

3 Applications

Within the object-oriented layered architectural pattern, persistency is an

aspect implemented by the data layer. Data collections are types that deal

with this aspect [4]. These components implement an interface known as

business-data interface, which regulates the interaction between data and

business elements. The structure of a data collection can vary considerably

according to the persistent mechanism and technology being used.

The data collection gathers access and maintenance methods for a given

entity type of the system. On the other hand, the EJB speci�cation spreads

these operations over distinct interfaces: the Remote interface of an Entity

Bean is responsible for updating the entity data, and the Home interface is

responsible for locating and removing the entity.

The Adapter design pattern can resolve these di�erences. We can use

an adapter to implement the business-data interface by means of the two

EJB interfaces. These interfaces are not accessible to the application business

Integrating Code Generation and Refactoring 7

objects, but only to the adapter. Hence, the decision about which technology

to use in this layer does not a�ect business rules. Such structure is detached

in the diagram of Figure 3.

Fig. 3. EJB Data Collection

For a given entity (business basic type), the EJB Data Collection

wizard generates code according to the mentioned architectural pattern. As

stated in [9] we believe that refactorings have a strong connection with pat-

terns:

Many refactorings are about introducing patterns into a system. There

is a natural relation between patterns and refactorings. Patterns are

where you want to be; refactorings are ways to get there from some-

where else.

Refactoring can be used as a technique to automate pattern implementation,

and so does code generation. The illustrated wizard uses only code generation,

but a similar one could do some refactoring too.

The EJB Data Collection wizard can be used as many times as the number

of persistent entities in the system. While applying this wizard, it is possible

to disregard multiplicity and the direction of associations among business

entities. As a consequence, there is no order to apply the wizard. Figure 4

illustrates the mentioned wizard under JBuilder, where one can see a window

for collecting information necessary for generating code.
Another wizard complements this one in order to support the stated ar-

chitectural pattern generation. It includes multiplicities into data collections,
by refactoring the code generated by the previous wizard. A refactoring of
this type a�ects both the business basic type (entity) and its data collec-
tion. We call this refactoring Dependency Inclusion. In the following we

8 d'Amorim, M., Santos, G., Nogueira, C., Souza, A., Borba, P.

Fig. 4. Coder under JBuilder6.0

present a code fragment of the Customer data collection after including a 1{1
dependency between Customer and Account:

1: public Customer findByPK(String customerID) ... {

2:

3: CustomerRemote customer_remote = null;

4: Customer customer = null;

5: try {

6: customer_remote = home.findByPrimaryKey(customerID);

7: customer = customer_remote.getValueObject();

8: // ******* built on refactoring

9: String accountID = null;

10: Account account = null;

11: AccountRemote account_remote = null;

12: accountID = customer_remote.getAccountID();

13: account_remote = account_home.findByPrimaryKey(accountID);

14: account = account_remote.getValueObject();

15: customer.setAccount(account);

16: }

17: catch (...) {...}

18: return customer;

19: }

At line 6, the method findByPrimaryKey returns a reference to the Entity

Bean remote interface, which is then used to retrieve a remote version of

Integrating Code Generation and Refactoring 9

the object. The remote reference is stored into the customer variable. The

commands between lines 9 and 15 are the result of the refactoring which

includes a dependency to an object of type Account. In line 12, the customer

account identi�cation is retrieved. The Home and Remote interfaces are then

accessed to retrieve an Account object. This object is �nally linked to the

Customer at line 15.

Source and target templates have been de�ned to accomplish these mod-

i�cations. The modi�cation on the findByPK method was guided by a target

template on the data collection. Unfortunately it is a lengthy template to

show here. However, some modi�cation is also required on the entity type,

so there are templates on those types too. Here we show a short example of

such templates, which were used to refactor the Customer class within this

wizard. They include the entity class an attribute to the dependent type.
We have to provide a source template in order to match the informed

type so that it can be further instrumented:

<< #PD:PackageDeclaration; >>

#IDS:ImportDeclarationSet;

#M:ModifierList class #BASIC_TYPE <<extends #BC_BASIC_TYPE >>

<<implements #IFS_BASIC_TYPE>>{

#ATTRS:FieldDeclarationSet;

#MTDS:MethodDeclarationSet;

}

#BASIC TYPE is an identi�er representing the name of the type to be matched.

Using the tool the programmer indicates that Customer is the type to be

matched with this template. After a successful matching the identi�ers store

valuable information which can be used to instrument transformations. The

engine matches these identi�ers automatically.
The following target template is based on the same type of the source

template. Note that #BASIC TYPE appears as the name of the class in both
templates. When the target template is processed the actual type to which
#BASIC TYPE maps was already matched, and this type name will be used as
the name of the resulting class.

<< #PD:PackageDeclaration; >>

#IDS:ImportDeclarationSet;

#M:ModifierList class #BASIC_TYPE <<extends #BC_BASIC_TYPE >>

<<implements #IFS_BASIC_TYPE>>{

#ATTRS:FieldDeclarationSet;

#DEPENDENCY #DEPENDENCY_NAME;

#MTDS:MethodDeclarationSet;

public void [[#X.addPrefix("set")]] (

#DEPENDENCY obj) {

#DEPENDENCY_NAME = obj;

10 d'Amorim, M., Santos, G., Nogueira, C., Souza, A., Borba, P.

}

}

Note that some identi�ers were not declared in the source template. For ex-

ample, the #DEPENDENCY identi�er was matched through the source template

of the dependent type. This means that there is a similar source template (not

shown) for the dependent type and the programmer informed the tool which

type should be matched with it. The #DEPENDENCY NAME identi�er, however,

is not automatically matched like the others. It is directly informed via the

wizard GUI along with the Customer and Account types.

In order to realize algorithmic transformations on Abstract Syntax Trees

we use executable expressions on target templates. They are represented with

double brackets and are processed after the programmer has provided all

information to the wizard. There is a set of operations allowed for each kind

of node. In the example above, we use the Java addPrefixmethod on a Type

node in order to de�ne a method name. The expression gives setAccount as

result.

4 Conclusions

We described in this paper the architecture of a tool to support code trans-

formation in a very con�gurable way. We have also illustrated applications

of this tool for both code generation and refactoring, showing how it can be

customized to deal with an speci�c EJB pattern.

A previous version of Coder is currently in professional use. This version

is very specialized on the generation of code according to an architectural lay-

ered pattern. It allows modi�cation of templates but do not provide facilities

to easily include new generators without changing the tool. The transforma-

tion engine is also very limited in the �rst version. There are neither pattern

matching nor metaprogramming operators.

The next release of Coder is being delivered in June 2002 to a software

department that uses EJB technology to develop Web applications. The tool

will be con�gured with 2 wizards: EJB Data Collection and Dependency

Inclusion, which have been mentioned in this paper.

We argue that the major aim of the tool is the facility to build new

wizards. Templates are written in a language that extends Java with met-

programming constructs. Thus we believe Java programmers will probably

have a reduced learning curve. In addition, wizards GUIs can be developed

with higher degree of freedom. They barely communicate with the frame-

work. They just use a shared storage to provide and retrieve parameters. All

these pieces are tied together in a declarative manner by a wizard descriptor

�le, and bundled together into a single and easy-to-deploy jar �le.

We believe that other forms of matching are an interesting matter to

investigate. There are refactorings which modify a variable number of classes.

This is quite usual and the Coder still does not support it. The modi�cation

Integrating Code Generation and Refactoring 11

of a public method name is a known example. Rather than asking the user

to inform the class that will match a template the tool should discover by

analyzing dependencies which class match that template. A source template

could then match a set of dependent classes and a target template in turn

modi�es the matched set by means of metaprogramming operators.

As another limitation, Coder still does not support close integration with

other languages. We need, for example, to generate HTML and Java Server

Pages based on some public operation. These pages serve to the input or

presentation of object's data. If we need to store a Customer through the

Web we have to provide HTML �elds to input the Customer and Account

�elds.

References

1. Fernando Castor and Paulo Borba. A language for specifying Java transforma-

tions. In V Brazilian Symposium on Programming Languages, pages 236-251,

Curitiba, Brazil, 23rd-25th May 2001.

2. Felix Bachmann et al. Software Architecture Documentation in Practice: Docu-

menting Architectural Layers, CMU Technical Report CMU/SEI-2000-SR-004,

March 2000.

3. Krzysztof Czarnecki, Ulrich W. Eisenecker. Generative Programming - Methods,

Tools, and Applications. Addison-Wesley, June 2000.

4. Tiago Massoni, Vander Alves, S�ergio Soares, and Paulo Borba. PDC: The per-

sistent data collections pattern. In First Latin American Conference on Pattern

Languages of Programming, Rio de Janeiro, Brazil, 3th-5th October 2001.

5. A. C. Meyers, J. A. Bank, and B. Liskov. Parameterized types for Java. In

Symposium on Principles of Programming Languages, pages 132{145. ACM,

1997.

6. William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis.

Urbana-Champaign, IL, USA, 1992.

7. Lance Tokuda and Don Batory. Automating Three Modes of Evolution for

Object-Oriented Software Architecture. Proceedings 5th USENIX COOTS'99.

San Diego, California, USA. 3th{7th May, 1999.

8. Jon Benton. Evolve your apps with the Phased Process pattern. Java World,

http://www.javaworld.com. April 5, 2002.

9. Martin Fowler et al. Refactoring: Improving the Design of Existing Code. Addi-

son Wesley. November 1999.

