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Abstract. We present a technique for generating efficient monitors for
w-regular-languages. We show how Biichi automata can be reduced in
size and transformed into special, statistically optimal nondeterministic
finite state machines, called binary transition tree finite state machines
(BTT-FSMs), which recognize precisely the minimal bad prefixes of the
original w-regular-language. The presented technique is implemented as
part of a larger monitoring framework and is available for download.

1 Introduction

There is increasing recent interest in the area of runtime verification [17,31], an
area which aims at bridging testing and formal verification. In runtime verifica-
tion, monitors are generated from system requirements. These monitors observe
online executions of programs and check them against requirements. The checks
can be either precise, with the purpose of detecting existing errors in the ob-
served execution trace, or predictive, with the purpose of detecting errors that
have not occurred in the observed execution but were “close to happen” and
could possibly occur in other executions of the (typically concurrent) system.
Runtime verification can be used either during testing, to catch errors, or during
operation, to detect and recover from errors. Since monitoring unavoidably adds
runtime overhead to a monitored program, an important technical challenge in
runtime verification is that of synthesizing efficient monitors from specifications.

Requirements of systems can be expressed in a variety of formalisms, not all
of them necessarily easily monitorable. As perhaps best shown by the immense
success of programming languages like Perl and Python, regular patterns can
be easily devised and understood by ordinary software developers. w-regular-
languages [5, 33] add infinite repetitions to regular languages, thus allowing one
to specify properties of reactive systems [23]. The usual acceptance condition in
finite state machines (FSM) needs to be modified in order to recognize infinite
words, thus leading to Biichi automata [8]. Logics like linear temporal logics
(LTL) [23] often provide a more intuitive and compact means to specify system
requirements than w-regular patterns. It is therefore not surprising that a large
amount of work has been dedicated to generating (small) Biichi automata from,
and verifying programs against, LTL formulae [15,33,11,13].

Based on the belief that w-languages represent a powerful and convenient
formalism to express requirements of systems, we address the problem of gen-
erating efficient monitors from w-languages expressed as Biichi automata. More
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precisely, we generate monitors that recognize the minimal bad prefizes [22] of
such languages. A bad prefix is a finite sequence of events which cannot be the
prefix of any accepting trace. A bad prefix is minimal if it does not contain any
other bad prefix. Therefore, our goal is to develop efficient techniques that read
events of the monitored program incrementally and precisely detect when a bad
prefix has occurred. Dual to the notion of bad prefix is that of a good prefix,
meaning that the trace will be accepted for any infinite extension of the prefix.

We present a technique that transforms a Biichi automaton into a special
(nondeterministic) finite state machine, called a binary transition tree finite state
machine (BTT-FSM), that can be used as a monitor: by maintaining a set of
possible states which is updated as events are available. A sequence of events is
a bad prefix iff the set of states in the monitor becomes empty. One interesting
aspect of the generated monitors is that they may contain a special state, called
never Violate, which, once reached, indicates that the property is not monitorable
from that moment on. That can mean either that the specification has been
fulfilled (e.g., a specification o(x > 0) becomes fulfilled when z is first seen
larger than 0), or that from that moment on there will always be some possible
continuation of the execution trace. For example, the monitor generated for
O(a — ©ob) will have exactly one state, neverViolate, reflecting the intuition that
liveness properties cannot be monitored.

As usual, a program state is abstracted as a set of relevant atomic predicates
that hold in that state. However, in the context of monitoring, the evaluation of
these atomic predicates can be the most expensive part of the entire monitoring
process. One predicate, for example, can say whether the vector v[1...1000] is
sorted. Assuming that each atomic predicate has a given evaluation cost and a
given probability to hold, which can be estimated apriori either by static or by
dynamic analysis, the BTT-FSM generated from a Biichi automaton executes a
“conditional program”, called a binary transition tree (BTT), evaluating atomic
predicates by need in each state in order to statistically optimize the decision to
which states to transit. One such BTT is shown in Fig. 2.

The work presented in this paper is part of a larger project focusing on
monitoring-oriented programming (MOP) [6,7] which is a tool-supported soft-
ware development framework in which monitoring plays a foundational role.
MOP aims at reducing the gap between specification and implementation by
integrating the two through monitoring: specifications are checked against im-
plementations at runtime, and recovery code is provided to be executed when
specifications are violated. MOP is specification-formalism-independent: one can
add one’s favorite or domain-specific requirements formalism via a generic notion
of logic plug-in, which encapsulates a formal logical syntax plus a corresponding
monitor synthesis algorithm. The work presented in this paper is implemented
and provided as part of the LTL logic plugin in our MOP framework. It is also
available for online evaluation and download on the MOP website [1].

Some Background and Related Work. Automata theoretic model-checking
is a major application of Biichi automata. Many model-checkers, including most
notably SPIN [19], use this technique. A significant effort has been put into the



construction of small Biichi automata from LTL formulae. Gerth et al. [15] show
a tableaux procedure to generate on-the-fly Biichi automata of size 2€U¢D) from
LTL formulae ¢. Kesten et al. [20] describe a backtracking algorithm, also based
on tableaux, to generate Biichi automata from formulae involving both past and
future modalities (PTL), but no complexity results are shown. It is known that
LTL model-checking is PSPACE-complete [30] and PTL is as expressive and
as hard as LTL [24], though exponentially more succinct [24]. Recently, Gastin
and Oddoux [13] showed a procedure to generate standard Biichi automata of
size 20U¢D from PTL via alternating automata. Several works [11,15] describe
simplifications to reduce the size of Biichi automata. Algebraic simplifications
can also be applied apriori on the LTL formula. For instance, a U bAcU b =
(a Ae) U bis a valid LTL congruence that will reduce the size of the generated
Biichi automaton. All these techniques producing small automata are very useful
in our monitoring context because the smaller the original Biichi automaton for
the w-language, the smaller the BTT-FSM. Simplifications of the automaton
with respect to monitoring are the central subject of this paper.

Kupferman et al. [22] classify safety according to the notion of informative-
ness. Informative prefixes are those that “tell the whole story”: they witness the
violation (or validation) of a specification. Unfortunately, not all bad prefixes are
informative; e.g., the language denoted by O(a V o(Oc)) A O(b V o(0O-¢)) does
not include any word whose prefix is {a, b}, {a},{—c}. This is a (minimal) bad
but not informative prefix, since it does not witness the violation taking place
in the next state. One can use the construction described in [22] to build an
automaton of size O(QQM) which recognizes all bad prefixes but, unfortunately,
this automaton may be too large to be stored. Our fundamental construction
is similar in spirit to theirs but we do not need to apply a subset construction
on the input Biichi since we already maintain the set of possible states that
the running program can be in. Geilen [14] shows how Biichi automata can be
turned into monitors. The construction in [14] builds a tableaux similar to [15]
in order to produce an FSM of size O(2/#!) for recognizing informative prefixes.
Here we detect all the minimal bad prefixes, rather than just the informative
ones. Unlike in model-checking where a user hopes to see a counter-example that
witnesses the violation, in monitoring critical applications one wants to detect a
violation as soon as it occurs.

RCTL [4] is an interesting language for safety properties combining regular
expressions and CTL. One can easily generate efficient monitors for RCTL. How-
ever, [4] focused on on-the-fly model-checking of RCTL properties, while here
we focus on online monitoring of properties expressed as w-languages.

Temporal logics have different interpretations on finite and infinite traces
as shown in [27]. For instance, the formula O(ca A ¢—a) is satisfiable in infinite
trace LTL but unsatisfiable in its finite trace version [27]. Ruf et al. [28] present
a finite-trace fragment of MTL [32] with just the “metric” operators always
(Opt, 1)) and eventually (o, 1,]¢), meaning that the property ¢ holds at all
times or, respectively, at some time between t; and to, but without a metric until
operator _ Ui, ;- A similar metric temporal logic, TXP, is presented in [10].



Our goal in this paper is not to present a novel logic, especially one with a finite
trace semantics, neither to generate monitors from logical formulae. Instead,
we consider already existing Biichi automata and show how to transform them
into efficient non-deterministic monitors. One can use off-the-shelf techniques to
generate Biichi automata from formulae in different logics, or reuse them from
complementary model-checking efforts.

The technique illustrated here is implemented as a plug-in in the MOP run-
time verification (RV) framework [6, 7]. Other RV tools include Java-MAC [21],
JPAX [16], IMPAX [29], and EAGLE [3]. JAvA-MAC uses a special interval
temporal logic as the specification language, while JPAX and JMPAX support
variants of LTL. These systems instrument the JAVA bytecode to emit events
to an external monitor observer. JPAX was used to analyze NASA’s K9 Mars
Rover code [2]. IMPAX extends JPAX with predictive capabilities. EAGLE is
a finite-trace temporal logic and tool for runtime verification, defining a logic
similar to the p-calculus with data-parameterization.

2 Preliminaries: Biichi Automata

Biichi automata and their w-languages have been studied extensively during
the past decades. They are well suited to program verification because one can
check satisfaction of properties represented as Biichi automata statically against
transition systems [33, 8]. LTL is an important but proper subset of w-languages.

Definition 1. A (nondeterministic) standard Biichi automaton is a tuple
(X,8,6,S0, F), where X is an alphabet, S is a set of states, §: S x X — 2°
s a transition function, Sy C S is the set of initial states, and F C S is a
set of accepting states.

In practice, X' typically refers to events or actions in a system to be analyzed.

Definition 2. A Bichi automaton A = (X, S,0,50,F) is said to accept an
infinite word T € X¢ iff there is some accepting run in the automaton, that
is, a map p: Nat — S such that pg € So, piv1 € 8(pi,7i) for all i > 0, and
inf(p) N F #£ 0, where inf(p) contains the states occurring infinitely often in p.
The language of A, L(A), consists of all words it accepts.

Therefore, p can be regarded as an in-

finite path in the automaton that starts P b

with an initial state and contains at least @

one accepting state appearing infinitely \ \
ab b

often in the trace. Fig. 1 shows a nonde-
terministic Biichi automaton for the w-
regular expression (a + b)*b“ that con- Fig.1. Biichi automaton recognizing
tains all the infinite words over a and b  the w-regular expression (a + b)"b”
with finitely many as.

Definition 3. Let £(A) be the language of a Biichi automaton A=(X, S, 6, So, F).
A finite word x € X* is a bad prefix of A iff for any y € X* the concatenation
xy € L(A). A bad prefix is minimal if no other bad prefiz is a prefix of it.



Therefore, no bad prefix of the language of a Biichi automaton can be ex-
tended to an accepted word. Similarly to [8], from now on we may tacitly as-
sume that X is defined in terms of propositions over atoms. For instance, the
self-transitions of s; in Fig. 1 can be represented as one self-transition, a V b.

3 Multi-Transitions and Binary Transition Trees

Biichi automata cannot be used unchanged as monitors. For the rest of the paper
we explore structures suitable for monitoring as well as techniques to transform
Biichi automata into such structures. Deterministic multi-transitions (MT) and
binary-transition trees (BT'Ts) were introduced in [18,27]. In this section we
extend their original definitions with nondeterminism.

Definition 4. Let S and A be sets of states and atomic predicates, respec-
tively, and let Py denote the set of propositions over atoms in A, using the
usual boolean operators. If {s1,82,....,8,} C S and {p1,p2,....,pn} C Pa, we
call the n-tuple [p1: 81, p2: S2,..., Pni Sn] @ (nondeterministic) multi-transition
(MT) over Py and S. Let MT (P4, S) denote the set of MTs over Py and S.

Intuitively, if a monitor is in a state associated to an MT [p1: 51, pa: S2, ...
,Pni Sn] then p1,pa,...,p, can be regarded as guards allowing the monitor to
nondeterministically transit to one of the states si, so, ..., Sp.

Definition 5. Maps0: A — {true, false} are called A-events, or simply events.
Given an A-event 0, we define its multi-transition extension as the map
Oyt : MT(Pa,S) — 2%, where Oyr([p1: 51,021 82,0, Pn: Sn)) = {5 | 0 = pi}.

The role of A-events is to transmit the monitor information regarding the
running program. In any program state, the map 6 assigns atomic propositions
to true iff they hold in that state, otherwise to false. Therefore, A-events can be
regarded as abstractions of the program states. Moreover, technically speaking,
A-events are in a bijective map to P4. For an MT p, the set of states 07 (p) is
often called the set of possible continuations of p under 6.

Ezample 1. If = [aV —b: s1,7a Ab: sg,c: s3], and 0(a)=true, 0(b)=false, and
6(c)=true, then the set of possible continuations of p under 6, 67 (1), is {s1, s3}

Definition 6. A (nondeterministic) binary transition tree (BTT) over
A and S is inductively defined as either a set in 2° or a structure of the form
a ? By: B2, for some atom a and for some binary transition trees 81 and (2. Let
BTT(A,S) denote the set of BT Ts over the set of states S and atoms A.

Definition 7. Given an event 0, we define its binary transition tree erten-
sion as the map Oprr: BTT(A,S) — 25, where:

O0srT(Q) = Q for any set of states Q C S,

HBTT(G, ? ﬂl : 52) = oBTT(ﬁl) Zf 0(&) = true, (md

HBTT(G, ? ﬂl : 52) = OBTT(ﬁQ) Zf 0(&) :false.

Definition 8. A BTT (3 implements an MT p, written 5 = p, iff for any
event 0, it is the case that Oprr(8) = Opr(10).



Ezample 2. The BTT b? (a? (c? s1 s3: 81) : (c? s2 83 : 82)) : (¢? s1 83: s3) imple-
ments the multi-transition shown in Example 1.

Fig. 2 represents this BTT graphically.
The right branch of the node labeled with b
corresponds to the BTT expression (c ? s1s3 :
s3), and similarly for the left branch and ev-
ery other node. Atomic predicates can be any i Ss
host programming language boolean expres- 185 S S8 S
sions. For example, one may be interested if a
variable z is positive or if a vector v[1...100] is ~ Fig.2. BTT corresponding to
sorted. Some atomic predicates typically are  the MT in Example 1
more expensive to evaluate than others. Since our purpose is to generate effi-
cient monitors, we need to take the evaluation costs of atomic predicates into
consideration. Moreover, some predicates can hold with higher probability than
others; for example, some predicates may be simple “sanity checks”, such as
checking whether the output of a sorting procedure is indeed sorted. We next
assume that atomic predicates are given evaluation costs and probabilities to
hold. These may be estimated apriori, either statically or dynamically.

Definition 9. If¢: A — R* and m: A — [0,1] are cost and probability func-
tions for events in A, respectively, then let v »: BTT(A,S) — R* defined as:
Yo,x(Q) = 0 for any Q C S, and
Yor(a? Br 2 f2) = <(a) + 7(a) xvex(B1) + (1 —m(a)) * 7o, (B2),
be the expected (evaluation) cost function on BTT's in BTT (A, S).

Example 3. Given ¢ = {(a, 10), (b,5), (¢,20)} and = = {(a,0.2), (b,0.5), (¢,0.5)}, the
expected evaluation cost of the BTT defined in Example 2 is 30.

With the terminology and motivations above, the following problem develops as
an interesting and important problem in monitor synthesis:

Problem: Optimal BTT(A,S).

Input: A multi-transition p = [p1 : $1,p2 : S2, ..., Pn : Sn] With associated cost

¢ : A— R7T and probability 7 : A — [0, 1].

Output: A minimal cost BTT 8 with 8 = p.

Binary decision trees (BDTs) and diagrams (BDDs) have been studied as models
and data-structures for several problems in artificial intelligence [25] and program
verification [8]. [9] discusses BDTs and how they relate to BTTs. Moret [25]
shows that a simpler version of this problem, using BDT's, is NP-hard.

In spite of this result, in general the number of atoms in formulae is relatively
small, so it is not impractical to exhaustively search for the optimal BTT. We
next informally describe a backtracking algorithm that we are currently using
in our implementation to compute the minimal cost BTT by exhaustive search.
Start with the sequence of all atoms in A. Pick one atom, say a, and make two
recursive calls to this procedure, each assuming one boolean assignment to a. In
each call, pass the remaining sequence of atoms to test, and simplify the set of
propositions in the multi-transition according to the value of a. The product of



the BTTs is taken when the recursive calls return in order to compute all BT'T’s
starting with a. This procedure repeats until no atom is left in the sequence. We
select the minimal cost BTT amongst all computed.

4 Binary Transition Tree Finite State Machines

We next define an automata-like structure, formalizing the desired concept of an
effective runtime monitor. The transitions of each state are all-together encoded
by a BTT, in practice the statistically optimal one, in order for the monitor
to efficiently transit as events take place in the monitored program. Violations
occur when one cannot further transit to any state for any event. A special state,
called neverViolate, will denote a configuration in which one can no longer detect
a violation, so one can stop the monitoring session if this state is reached.

Definition 10. A binary transition tree finite state machine (BTT-
FSM) is a tuple (A, S, btt, So), where A is a set of atoms, S is a set of states po-
tentially including a special state called “neverViolate”, btt is a map associating
a BTT in BTT(A,S) to each state in S where btt(neverViolate)={neverViolate}
when neverViolate € S, and Sog C S is a subset of initial states.

Definition 11. Let (A, S, btt, So) be a BTT-FSM. For an event 6 and Q,Q" C
S, we write Q A Q' and call it a transition between sets of states, whenever

’

Q = USQQ 0T (btt(s)). A trace of events 0105...0; generates a sequence
Gv

ofetransitions Qo 2% Q1 b 5 Q; in the BTT-FSM, where Qo = So and

Qi ' Qiy1, for all 0<i<j. The trace is rejecting iff Q,;={}.

Note that no finite extension of a trace 6,65...0; will be rejected if neverVi-
olate € Q;. The state neverViolate denotes a configuration in which violations
can no longer be detected for any finite trace extension. This means that the set
Q1 will not be empty, for any k > j, when neverViolate € @;. Therefore, the
monitoring session can stop at event j if neverViolate € @), because we are only
interested in violations of requirements.

5 Generating a BTT-FSM from a Biichi automaton

Not any property can be monitored. For example, in order to check a liveness
property one needs to ensure that certain propositions hold infinitely often, which
cannot be verified at runtime. This section describes how to transform a Biichi
automaton into an efficient BTT-FSM that rejects precisely the minimal bad
prefixes of the denoted w-language.

Definition 12. A monitor FSM (MFSM) is a tuple (X,S,6,S0), where
Y = P4 is an alphabet, S is a set of states potentially including a special state
“neverViolate”, §: Sx X — 2% is a transition function with §(neverViolate, true) =
{neverViolate} when neverViolate € S, and So C S are initial states.

Note that we take X' to be P4, the set of propositions over atoms in A. Like
BTT-FSMs, MFSMs may also have a special neverViolate state.

Definition 13. Let Qongg...sz be a sequence of transitions in the MFSM
(X,5,6,50), generated from t=0105...0;, where Qo=Sy and Qi+1=U, cq,{0(s,0) |
i1 = o}, for all 0<i<j. We say that the MFSM rejects t iff Q; = {}.



No finite extension of ¢ will be rejected if neverViolate € Q;.

From Biichi to MFSM. We next describe two simplification procedures on a
Biichi automaton that are sound w.r.t. monitoring, followed by the construction
of an MFSM. The first procedure identifies segments of the automaton which
cannot lead to acceptance and can therefore be safely removed. As we will show
shortly, this step is necessary in order to guarantee the soundness of the mon-
itoring procedure. The second simplification identifies states with the property
that if they are reached then the corresponding requirement cannot be violated
by any finite extension of the trace, so monitoring is ineffective from there on.
Note that reaching such a state does not necessarily mean that a good prefix has
been recognized, but only that the property is not monitorable from there on.

Definition 14. Let (X, 5,6, S0, F) be a Biichi automaton, C a connected compo-
nent of its associated graph, and nodes(C) the states associated to C. We say that
C is isolated iff for any s € nodes(C) and o € X, it is the case that 6(s,0) C
nodes(C). We say that C is total iff for any s € nodes(C) and event @, there are
transitions o such that 6 = o and §(s, o) N nodes(C) # 0.

Therefore, there is no way to escape from an isolated connected component,
and regardless of the upcoming event, it is always possible to transit from any
node of a total connected component to another node in that component.

Removing Bad States. The next procedure removes states of the Biichi au-
tomaton which cannot be part of any accepting run (see Definition 2). Note
that any state appearing in such an accepting run must eventually reach an ac-
cepting state. This procedure is fundamentally inspired by strongly-connected-
component-analysis [20, 33], used to check emptiness of the language denoted by
a Biichi automaton. Given a Biichi automaton 4 = (X, S, 4§, So, F), let U C S be
the largest set of states such that the language of (¥, 5,0, U, F) is empty. The
states in U are unnecessary in A, because they cannot change its language. For-
tunately, U can be calculated effectively as the set of states that cannot reach
any cycle in the graph associated to A which contains at least one accepting
state in F. Fig. 3 shows an algorithm to do this.

INPUT : A Biichi automaton A
OUTPUT : A smaller Biichi automaton A" such that £L(A") = L(A).
REMOVE_BAD_STATES :
for each maximal connected component C of A
if (C is isolated and nodes(C) N F=() then mark all states in C' “bad”
DFS_MARK_BAD ; REMOVE_BAD

Fig. 3. Removing bad states

The loop identifies maximal isolated connected components which do not contain
any accepting states. The nodes in these components are marked as “bad”. The
procedure DFS_MARK_BAD performs a depth-first-search in the graph and marks
nodes as “bad” when all outgoing edges lead to a “bad” node. Finally, the
procedure REMOVE BAD removes all the bad states. The runtime complexity of this



algorithm is dominated by the computation of maximal connected components.
In our implementation, we used Tarjan’s O(V + E) double DFS [8]. The proof
of correctness is simple and it appears in [9]. The Biichi automaton A" produced
by the algorithm in Fig. 3 has the property that there is some proper path from
any of its states to some accepting state. One can readily generate an MFSM
from a Biichi automaton A by first applying the procedure REMOVE BAD_STATES
in Fig. 3, and then ignoring the acceptance conditions.

Theorem 1. The MFSM generated from a Biichi automaton A as above rejects
precisely the minimal bad prefizes of L(A).

Proof. Let A=(X,S,0,50,F) be the original Biichi automaton, let A'=
(X,87,8, 5}, F) be the Biichi automaton obtained from A by applying the algo-
rithm in Fig. 3, and let (X, 5’,§’,S)) be the corresponding MFSM of A’. For any
finite trace t = 91 0; 7Glet us consider its corresponding sequence of transitions
in the MFSM Q0—> —Qj, where Q is S}. Note that the trace ¢ can also be
regarded as a sequence of letters in the alphabet X' of A, because we assumed X
is P4 and because there is a bijection between propositions in P4 and A-events.
All we need to show is that ¢ is a bad prefix of A’ if and only if @ ;=0. Recall that
A’ has the property that there is some non-empty path from any of its states to
some accepting state. Thus, one can build an infinite path in A’ starting with
any of its nodes, with the property that some accepting state occurs infinitely
often. In other words, (); is not empty iff the finite trace ¢ is the prefix of some
infinite trace in £L(.A’). This is equivalent to saying that (); is empty iff the trace
t is a bad prefix in A’. Since @; empty implies @Q);» empty for any j>j’, it follows
that the MFSM rejects precisely the minimal bad prefixes of A. a

Theorem 1 says that the MFSM obtained from a Biichi automaton as above
can be used as a monitor for the corresponding w-language. Indeed, one only
needs to maintain a current set of states @, initially S, , and transform it ac-
cordingly as new events @ are generated by the observed program: if Q—>Q' then
set Q to Q'; if Q ever becomes empty then report violation. Theorem 1 tells us
that a violation will be reported as soon as a bad prefix is encountered.

Collapsing Never-Violate States. Reducing runtime overhead is crucial in
runtime verification. There are many situations when the monitoring process can
be safely stopped, because the observed finite trace cannot be finitely extended
to any bad prefix. The following procedure identifies states in a Biichi automaton
which cannot lead to the violation of any finite computation. For instance, the
Biichi automaton in Fig. 4 can only reject infinite words in which the state
s occurs finitely many times; moreover, at least one transition is possible at
any moment. Therefore, the associated MFSM will never report a violation,
even though there are infinite words that are not accepted. We call such an
automaton non-monitorable. This example makes it clear that if a state like s1
is ever reached by the monitor, it does not mean that we found a good prefix,
but that we could stop looking for bad prefixes.

Let A=(X,S,4,50,F) be a Bichi automaton simplified with
REMOVE_BAD_STATES. The procedure in Fig. 5 finds states which, if reached by



a monitor, then the monitor can no longer detect violations regardless of what
events will be observed in the future.

The procedure first identifies the to- a

tal connected components. According to T T
. . : / b AN

the definition of totality, once a monitor N

reaches a state of a total connected com- a @ true

ponent, the monitor will have the possi-

bility to always transit within that con- ‘\ /

nected component, thus never getting a S tue

chance to report violation. All states of a
total component can therefore be marked Fig. 4. Non-monitorable automaton
as “never violate”. Other states can also be marked as such if, for any events, it
is possible to transit from them to states already marked “never violate”; that is
the reason for the disjunction in the second conditional. The procedure finds such
nodes in a depth-first-search. Finally, COLLAPSE-NEVER_VIOLATE collapses all com-
ponents marked “never violate”, if any, to a distinguished node, neverViolate,
having just a true transition to itself. If any collapsed node was in the initial set
of states, then the entire automaton is collapsed to neverViolate. The procedure
GENERATE MFSM produces an MFSM by ignoring accepting conditions.

INPUT : A Biichi automaton A, cost function ¢, and probability function 7.
OUTPUT : An effective BTT-FSM monitor rejecting the bad prefixes of £(A).
COLLAPSE_NEVER_VIOLATE :
for each maximal connected component C of A
if ( C is total ) then mark all states in C' as “never violate”
for each s in depth-first-search visit
if (\/{o| d(s,0) contains some state marked “never violate”} )
then mark s as “never violate”
COLLAPSE-NEVER_VIOLATE ; GENERATE_MFSM ; GENERATE BTT-FSM

Fig. 5. Collapsing non-monitorable states

Taking as input this MFSM, say (X, 5,4, 5}), cost function ¢, and probability
function 7, GENERATE BTT-FSM constructs a BTT-FSM (A, S’, bit, S()), where A
corresponds to the set of atoms from which the alphabet X' is built, and the map
btt, here represented by a set of pairs, is defined as follows:

btt = {(neverViolate, {neverViolate}) | neverViolate € S’} U
{(s,8s) | s € S'-{neverViolate} A Bs |= us}, where
Bs optimally implements ps w.r.t. ¢ and m, with pus = ®(J{[o : s'] | ' € §'(s,0)})

The symbol @ denotes concatenation on a set of multi-transitions. Optimal BTTs
Bs are generated like in Section 3. Proof of correctness appears in [9].

6 Monitor Generation and MOP

We have shown that one can generate from a Biichi automaton a BTT-FSM
recognizing precisely its bad prefixes. However, it is still necessary to integrate

10



the BTT-FSM monitor within the program to be observed. Runtime overhead
is introduced by instrumentation and is also dependent on the selection of cost
and probabilities assigned to atoms by the user.

Monitoring-oriented programming (MOP) [7] aims at merging specification
and implementation through generation of runtime monitors from specifications
and integration of those within implementation. In MOP, the task of generating
monitors is divided into defining a logic engine and a language shell. The logic
engine is concerned with the translation of specifications given as logical formulae
into monitoring (pseudo-)code. The shell is responsible for the integration of the
monitor within the application.

Fig. 6 captures the essence of the
synthesis process of LTL monitors in
MOP using the technique described in , {

. . Def. of events, predicates, Program
this paper. The user defines specifica- and handlers Instrumentation
tions either as annotations in the code
or in a separate file. The specification
contains definitions of events and state predicates, as well as LTL formulae
expressing trace requirements. These formulae treat events and predicates as
atomic propositions. Handlers are defined to track violation or validation of re-
quirements. For instance, assume the events a and b denote the login and the
logoff of the same user, respectively. Then the formula O(a — o(—a U b)) states
that the user cannot be logged in more than once. A violation handler could
be declared to track the user who logged in twice. The logic engine is responsi-
ble for the translation of the formulae ¢ and —¢ into two BTT-FSM monitors.
One detects violation and the other validation of . Note that if the user is just
interested in validation (no violation handler), then only the automaton for nega-
tion is generated. Finally, the language shell reads the definition of events and
instruments the code so that the monitor will receive the expected notifications.

We used LTL2BA [26] to generate standard Biichi automata from LTL for-
mulae. The described procedures are implemented in JAVA. This software and a
WWW demo are available from the MOP website [1].

Java shell

Fig. 6. Generation of monitors in MOP

6.1 Evaluation

Table 1 shows BTT-FSM monitors for some LTL formulae. The BTT definition
corresponding to a state follows the arrow (~). Initial states appear in brackets.
For producing this table, we used the same cost and probabilities for all events
and selected the smallest BTT. The first formula cannot be validated by mon-
itoring and presents the permanent possibility to be violated; that is why its
BTT-FSM does not have a neverViolate state. The second formula can never be
violated since event a followed by event b can always occur in the future, so its
BTT-FSM consists of just one state neverViolate. The last formula shows that our
procedure does not aim at distinguishing validating from non-violating prefixes.
Table 2 shows that our technique can not only identify non-monitorable for-
mulae, but also reduce the cost of monitoring by collapsing large parts of
the Biichi automaton. We use the symbols O, &, and & to denote, respec-
tively, the effectiveness of REMOVE_BAD_STATES, the first, and the second loop
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Temporal Formula BTT-FSM

Ola@a—bUc) |[so]~c?(b7?sos1: s0): (@a?(b?s1: 0): (b7 sos1: S0))
s1~b?(c?sps1: s1):(c?s0: 0)
O(a — ob) neverViolate] ~ {neverViolate}
aldbUc so] ~ ¢ ? neverViolate : (a? (b7 sos1: so) : (b7 s1: D))

s1 ~ ¢ ? neverViolate : (b7 s1: 0)
never Violate ~ {neverViolate}

Table 1. BTT-FSMs generated from temporal formulae

of COLLAPSE_NEVER_VIOLATE. The first group contains non-monitorable formu-
lae. The next contains formulae where monitor size could not be reduced by
our procedures. The third group shows formulae where our simplifications could
significantly reduce the monitor size. The last group shows examples of “ac-
cidentally” safe and “pathologically” safe formulae from [22]. A formula ¢ is
accidentally safe iff not all bad prefixes are “informative” [22] (i.e., can serve as
a witness for violation) but all computations that violate ¢ have an informative
bad prefix. A formula ¢ is pathologically safe if there is a computation that
violates ¢ and has no informative bad prefix. Since we detect all minimal bad
prefixes, informativeness does not play any role in our approach. Both formulae
are monitorable. For the last formula, in particular, a minimal bad prefix will
be detected as soon as the monitor observes a —a, having previously observed
a —b. One can generate and visualize the BT T-FSMsof all these formulae, and
many others, online at [1].

Temporal Formula # states|# transitions|symplif.
oa 2,1 3,1 &
a U o(ob) 3,1 5,1 EY
O(anb — oc) 2,1 4,1 &
ald (bU (cU (od))) 2,1 3,1 &
ald (bU (cU O(d — ce))) 5,1 15,1 LY}
—al (bU (cU O(d — ce))) 12,1 51,1 *»
—oa 1,1 1,1
O(a—bU c) 2,2 4,4
ald (U (cU d)) 4,4 10, 10
a A o(ob) A o(Oe) 5,4 11,6 &
a A o(ob) A o(oc) A o(Oe) 9,6 29, 12 &
a A o(ob) A ofoc) A o(od) A o(De) 17,10 | 83,30 &
a A o(=(O(b— cU d))) A o(Te) 7,5 20, 10 L)
O(a V o(de)) A O(b V o(O-¢)) 3,3 5,5
(O(a V o(Oc)) AO(b V o(O-c¢))) V Oa V Ob|| 12,6 43, 22 O

Table 2. Number of states and transitions before and after monitoring simplifications

7 Conclusions

Not all properties a Biichi automaton can express are monitorable. This paper
describes transformations that can be applied to extract the monitorable compo-
nents of Biichi automata, reducing their size and the cost of runtime verification.
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The resulting automata are called monitor finite state machines (MFSMs). The
presented algorithms have polynomial running time in the size of the original
Biichi automata and have already been implemented. Another contribution of
this paper is the definition and use of binary transition trees (BTTs) and cor-
responding finite state machines (BTT-FSMs), as well as a translation from
MFSMs to BTT-FSMs. These special-purpose state machines encode optimal
evaluation paths of boolean propositions in transitions.

We used LTL2BA [26] to generate Biichi automata from LTL, and JAvA
to implement the presented algorithms. Our algorithms, as well as a graphical
HTML interface, are available at [1]. This work is motivated by, and is part
of, a larger project aiming at promoting monitoring as a foundational principle
in software development, called monitoring-oriented programming (MOP). In
MOP, the user specifies formulae, atoms, cost and probabilities associated to
atoms, as well as violation and validation handlers. Then all these are used to
automatically generate monitors and integrate them within the application.

This work is concerned with monitoring wviolations of requirements. In the
particular case of LTL, validations of formulae can also be checked using the same
technique by monitoring the negation of the input formula. Further work includes
implementing the algorithm defined in [13] for generating Biichi automata of size
20(#D) from PTL, combining multiple formulae in a single automaton as showed
by Ezick [12] so as to reduce redundancy of proposition evaluations, and applying
further (standard) NFA simplifications to MFEFSM.
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