
Automatically Translating Bug Reports into
Test Cases for Mobile Apps

Mattia Fazzini
Georgia Tech

Atlanta, GA, USA
mfazzini@cc.gatech.edu

Martin Prammer
Georgia Tech

Atlanta, GA, USA
mprammer3@gatech.edu

Marcelo d’Amorim
Federal U. of Pernambuco

Recife, Brazil
damorim@cin.ufpe.br

Alessandro Orso
Georgia Tech

Atlanta, GA, USA
orso@cc.gatech.edu

ABSTRACT

When users experience a software failure, they have the option of
submitting a bug report and provide information about the failure
and how it happened. If the bug report contains enough information,
developers can then try to recreate the issue and investigate it, so
as to eliminate its causes. Unfortunately, the number of bug reports
filed by users is typically large, and the tasks of analyzing bug re-
ports and reproducing the issues described therein can be extremely
time consuming. To help make this process more efficient, in this
paper we propose Yakusu, a technique that uses a combination of
program analysis and natural language processing techniques to
generate executable test cases from bug reports. We implemented
Yakusu for Android apps and performed an empirical evaluation
on a set of over 60 real bug reports for different real-world apps.
Overall, our technique was successful in 59.7% of the cases; that
is, for a majority of the bug reports, developers would not have to
study the report to reproduce the issue described and could simply
use the test cases automatically generated by Yakusu. Furthermore,
in many of the remaining cases, Yakusu was unsuccessful due to
limitations that can be addressed in future work.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

Mobile testing and debugging, natural language processing
ACM Reference Format:

Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso.
2018. Automatically Translating Bug Reports into Test Cases for Mobile
Apps. In Proceedings of 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’18).ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3213846.3213869

1 INTRODUCTION

Due to the inherent limitations of software verification techniques,
it is virtually impossible to eliminate all faults from a software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5699-2/18/07. . . $15.00
https://doi.org/10.1145/3213846.3213869

system before releasing it. It is therefore unavoidable that users will
experience software failures. For this reason, most software systems
provide a way for users to submit bug reports, either automatically
(e.g., in the case of crashing bugs) or manually. The main goal of a
bug report is to collect information about the problems experienced
by the users, so that developers can investigate these issues, find
their causes, and eliminate such causes [20, 29]. In order to do
so, developers normally have to look at a bug report, understand
what steps led to the issue reported, try to reproduce these steps
and the corresponding issue, and debug the issue. Unfortunately,
performing these tasks can be extremely time consuming, especially
in the presence of a large number of bug reports and of reports
with incomplete information [4].

To help make this process more efficient, we propose Yakusu,1 a
technique for generating executable UI test cases from bug reports
through a combination of program analysis and natural language
processing techniques. Specifically, Yakusu takes as input an app
and a bug report and operates in three main phases. First, it analyzes
the app to identify the elements available in the UI and generate an
ontology for the app. Second, it analyzes the bug report, leveraging
the generated ontology, and tries to identify a set of steps provided
by the user for reproducing the reported issue. Finally, if successful,
it tries to generate a test case that reproduces the issue by mapping
the identified steps to actual UI events.

In defining Yakusu, we had to overcome two main chal-
lenges. First, extracting structured information from typically non-
structured data (i.e., bug reports) is a non-trivial task, as it involves
interpreting possibly incomplete descriptions that use a broad, im-
precise, and context-dependent language (e.g., “Start a new post”—
see Section 2). Second, even when the steps provided by the user
in the bug report have been correctly identified, there is typically
a logical gap between such steps and actual UI events, and the
sequence of steps may be incomplete. Therefore, generating a test
case that suitably encodes the bug report often involves searching
a large space of possible solutions (i.e., sequences of events).

Although the problem of synthesizing code from natural lan-
guage descriptions has been studied before (e.g., [5, 27, 47]), most
existing techniques in this area either make strong assumptions
on the format of the textual description or do not consider the fact
that steps might be described at different levels of abstraction. The
format issue is particularly relevant in the domain of bug reports,
where end users typically do not have the experience or technical
expertise to structure the list of steps in a way that makes them
easily consumable by developers (or by a tool). Furthermore, tech-
niques based on learning (e.g., [5, 27]) tend to perform poorly in
the presence of sentences and terms that are specific to an app
1Yakusu means “to translate” in Japanese.

141

https://doi.org/10.1145/3213846.3213869
https://doi.org/10.1145/3213846.3213869

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso

Figure 1: Bug report. Figure 2: Main screen. Figure 3: Edit post screen. Figure 4: Test encoding.

and rarely appear in other reports. Yakusu, conversely, can handle
these cases by leveraging the ontology of the app that it generates
and using it to match these app-specific terms. The use of an ontol-
ogy also helps Yakusu handle reports without assuming a specific
format, as the ontology allows the technique to match words in a
sentence to elements in the UI and then infer the corresponding
actions by analyzing the elements’ behavior at runtime.

To assess the effectiveness of our technique, we implemented
Yakusu for Android apps and evaluated it on over 60 real bug re-
ports for a range of real-world Android apps. Overall, our technique
was able to generate a test case that reproduced the issue described
in the bug report in 59.7% of the cases, which provides initial, yet
clear evidence of the usefulness of Yakusu. If confirmed by addi-
tional studies, these results would indicate that, in almost 60% of
the cases, developers could simply use the test cases automatically
generated by Yakusu and would have to look at the corresponding
bug reports only if they need additional details. Further, the limi-
tations that prevented Yakusu from generating tests for many of
the remaining reports could be addressed with a combination of
further research and careful engineering. It is also worth noting
that, although we focused on Android applications in this paper,
the general approach could be applied to other mobile platforms.

This paper makes the following contributions:
• An automated technique for generating, from bug reports
written in natural language, test cases that reproduce the
issues described in such reports.

• An implementation of the technique for Android apps that
is publicly available, together with the artifacts and infra-
structure we used in our evaluation [13].

• An empirical evaluation that provides initial evidence of the
effectiveness of our approach.

2 TERMINOLOGY & MOTIVATING EXAMPLE

This section introduces some relevant terminology and presents an
example that we use to motivate and illustrate our technique.

2.1 Terminology

Given a bug report B that describes a failure (or issue) F for an
app A, we informally use the terms relevant failure and relevant
app to indicate F and A. We also use the terms abstract step or
abstract action interchangeably to indicate the description, in B, of

an operation that has to be performed to reproduce F (e.g., create a
user). Finally, we use the term UI action to indicate an actual action
that can be performed on the UI ofA (e.g., push button “New User”).

2.2 Motivating Example

Our motivating example is a bug report for WordPress [51], a
widely used real-world app for creating web sites and blogs that
has been installed over 5 million times. Figure 1 shows the bug
report as it appears in WordPress’s issue tracking system [1]. The
report contains, under the header “Steps to reproduce the behavior”,
a list of three abstract actions followed by a description of the failure.
Figures 2 and 3 show the screens traversed when performing the
actions listed in the report.

As this example shows, actions can be described at different
levels of abstraction; some actions refer directly to easily identifi-
able UI elements, whereas for other actions there is a logical gap
between their description and the corresponding actual UI actions.
Abstract action“Tap on the Publish button”, for instance, can be
easily mapped to the UI action of clicking the button labeled “PUB-
LISH” in the screen depicted in Figure 3 (top right, highlighted).
Conversely, the abstract action “Start a new post” corresponds to
clicking the round button in the screen shown in Figure 2 (bottom
right, highlighted). In this case, identifying the corresponding UI
action requires a deeper analysis of both the report and the app.

As we describe in detail in Section 3, Yakusu uses a combination
of program analysis and natural language processing techniques to
identify mappings from abstract actions to UI actions and generate
a test case that reproduces the relevant failure. For this example, the
test that would be generated by Yakusu is shown in Figure 4. The
test is encoded using the Espresso framework [18], which uses app
identifiers to refer to UI elements in the app (see Section 4 for de-
tails). Lines 4–8 encode the action “Start a new post” and correspond
to clicking the aforementioned round button in Figure 2 (element
with identifier fab_button in the app). Then, lines 10–14 encode
the action “Type something” and consist of typing some randomly-
generated text on the text box with label “Title” in Figure 3 (element
with identifier post_title in the app). Finally, lines 16–20 encode
the action “Tap on the Publish button” by clicking, as described
above, the button in the top-right corner of Figure 3 (element with
identifier menu_save_post in the app).

142

Automatically Translating Bug Reports into Test Cases for Mobile Apps ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Relevant
App

App

Ontology
Extraction

Ontology

Bug Report
Analysis

UI Actions
Search

Test Case

Abstract
Steps

Bug
Report

App

Test
Device

Figure 5: High-level overview of the technique.

3 TECHNIQUE

This section presents Yakusu, a technique for translating bug re-
ports written in natural language into test cases. First, Yakusu
combines static analysis and natural language processing to extract,
from a given bug report, a list of abstract steps describing how to
reproduce the relevant failure. Then, Yakusu performs a dynamic
search, guided by the previously extracted list of abstract steps, to
find a set of UI actions that match these steps.

Figure 5 provides an overview of Yakusu’s workflow, which
consists of three phases. The ontology extraction phase takes the rel-
evant app as input and produces as output the app ontology, which
describes the elements available in the UI. The bug report analysis
phase takes as input the ontology and the bug report and produces
as output a list of abstract steps that the execution needs to follow to
reproduce the failure documented in the report. Conceptually, the
ontology allows for binding the vocabulary used in the bug report
with the elements in the UI. This binding is important for producing
the list of abstract steps. Finally, the UI actions search phase takes
as input the list of abstract steps and produces a concrete test case
that reproduces the relevant failure. In this phase, the technique
runs the relevant app on a test device and tries to map the list of
abstract steps provided as input into UI actions. When all abstract
steps are mapped, Yakusu encodes the identified UI actions as a
test case that can be run on the app, which is the final output of the
technique. The rest of this section describes each phase in detail.

3.1 Ontology Extraction

This phase extracts a machine-comprehensible description of the
UI elements; this description supports the construction of the map-
ping between the vocabulary used in the bug report and the UI
elements in the relevant app, which takes place in the next phase
(see Section 3.2). To create this description, Yakusu statically an-
alyzes the app using a two-pronged approach: first, it analyzes
the UI configuration files to identify the widgets that are created
statically; then, it analyzes the source code of the app to identify
additional widgets that are created at runtime. For this latter anal-
ysis, Yakusu builds a graph of the app that models the creation
of UI elements and the modification of their state through setters.
Nodes in the graph represent creation and modification operations.
Edges represent def-use relations between such operations. Using
this graph, Yakusu can therefore identify (1) which UI elements are
dynamically created and (2) what their properties are. For instance,
Yakusu would be able to identify the creation of a button, its label,
the callbacks associated with the button, and so on.

Yakusu stores the identified UI elements, together with (some
of) their properties, as tuples. The set of these tuples constitutes the
ontology for the app. Specifically, Yakusu stores in the ontology
three kinds of properties for a given UI element: (1) its label, (2)

the name of the file that contains its associated icon, and (3) its
identifier. (If one or more of these properties is not present, Yakusu
simply stores an empty value for it.)

We selected these three properties because they are particularly
suitable for characterizing and identifying a UI element, as we now
illustrate. For an element that can display a label, users tend to use
such label to refer to this element in bug reports. As an example,
consider the step “Tap on the Publish button” in the example of
Section 2, which uses the label “Publish” of the button to refer to
it. Similarly, for a UI element represented by an icon, users often
use the name of the object represented by the icon to refer to that
element. In this case, there is no textual property to store, so Yakusu
stores in the tuple the name of the file that contains the icon, under
the assumption that such name is representative of the icon. As
an example, consider the step “Press on attach”, from one of the
bug reports we used in our evaluation (Section 5). In this case,
“attach” refers to a paper clip icon whose corresponding filename is
attachFileImage. Finally, users may refer to an element of the UI
based on its functionality, which may not be reflected in the visual
aspect of the element. Using the identifier of an element in the app
allows Yakusu to handle some of these cases, as developers often
define identifiers based on the functionality of their corresponding
element. The step “Select a Client”, for instance, is present in another
bug report from our evaluation and is used to refer to one of the
elements in a list of clients. Because the identifier for a client is
tv_clientName, Yakusu is able to match that step with the correct
element using its identifier.

It is worth noting that labels are stored unchanged, whereas
Yakusu performs some normalization for properties icon and identi-
fier to facilitate the analysis in the following phases of the technique.
In particular, our technique replaces underscores with spaces and
splits apart composite words that follow a camel case convention,
both of which are common occurrences in apps [40].

3.2 Bug Report Analysis

This phase aims to extract from a bug report the sequence of abstract
steps to be performed on the UI of the relevant app for reproducing
the relevant failure described in the report. Because bug reports
are typically written in natural language, Yakusu analyzes their
content using natural language processing (NLP) techniques, trans-
lating the text into dependency trees [11, 25]. (A dependency tree is
a directed graph that captures the syntactic structure of a sentence
and provides a representation of grammatical relations between
words in the sentence.) The tree is characterized by a root word and
by relations that connect pair of words in the sentence. Two words
involved in a relation are also defined as head and dependent, with
the direction of the relation going from the head to the dependent.
Our technique uses dependency trees based on the Universal De-
pendency schema [48]. In this schema, frequently used relations
can be broken into two sets: clausal relations, which describe syn-
tactic roles with respect to a predicate (often a verb), and modifier
relations, which categorize how dependents can modify their heads.
Figure 6 provides an example of a dependency tree. In the remain-
der of this section, we provide more details on how the dependency
tree is computed and processed with the help of Algorithm 1.

143

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso

Click on the 0_element button.

mod:on
case

det
compound

Figure 6: Dependency tree computed by Yakusu.

The algorithm takes as input the ontology of the relevant app
(ontology) and the text of the bug report (br), and produces as out-
put a list of abstract steps (aSteps) that represent the list of steps
described in the report. An abstract step is a tuple ⟨action, target,
props⟩, where action is a word describing the UI action to be per-
formed, target is a list of words describing the UI element to be
exercised by action, and props is the list of properties affecting the
behavior of action. The algorithm begins with an empty list of ab-
stract steps (line 2) and starts by analyzing the bug report (function
Get-A-Steps-Text) to identify the portion of text that describes
how to reproduce the relevant failure. Get-A-Steps-Text uses a
set of heuristics defined based on guidelines on how to report bugs
for mobile apps [4, 15, 20, 29]. More precisely, our technique first
checks whether the bug report has a section whose content or head-
ing contains the lemma “reproduce”. If so, it considers the identified
section as the one describing how to reproduce the relevant failure
(as it is common practice to use this lemma to describe such section).
If such a section is not present, Yakusu tries to identify the text
describing abstract steps by checking whether the report contains
a list of bullet points. If neither the section nor the bullet points are
present, our technique considers the complete text of the report
as relevant. For the bug report of Figure 1, our technique would
identify the section with header “Steps to reproduce the behav-
ior”, which contains lemma “reproduce”, as the text describing the
sequence of abstract steps needed to reproduce the failure.

After identifying the right portion of text, Yakusu preprocesses
such text (function Preprocess-Text) to simplify the subsequent
analysis. Preprocess-Text performs three standard NLP opera-
tions: noise removal, lexicon normalization, and object standardiza-
tion [34]. Our technique, however, specializes these operations to
the domain of bug reports for mobile apps. First, for noise removal,
Yakusu discards content within parenthesis, which is in our ex-
perience unnecessary for reproduction. For instance, the sentence
“(don’t add anything but just) Press menu button and Reconnect”
(from one of the benchmarks in Section 5) is changed to “Press
menu button and Reconnect”. Second, for lexicon normalization,
Yakusu normalizes non-standard words to their canonical form to
simplify parsing and understanding of actions. (We identified such
words from a set of more than 400 tutorials [13] on mobile apps that
we collected on the web, by manually inspecting the tutorials for
words that are not app specific and refer to actions on the UI.) As an
example, in the bug report of Figure 1, Yakusu changes “Tap on the
Publish button” to “Click on the Publish button”. Finally, for object
standardization, the technique simplifies the text that refers to the
target of an action by leveraging the fact that the text displayed
by an app usually follows a title or sentence-case convention [44].
Specifically, Yakusu tries to identify sequences of words in title or
sentence-case format that are also textual properties in the ontology
of the app and (1) replaces such sequences with a freshly created
textual reference ID and (2) adds to refMap the mapping between

Algorithm 1: Bug report analysis.
Input :ontology: ontology of the app

br : text of the bug report
Output :aSteps: list of abstract steps describing how to reproduce the relevant failure

1 begin

2 aSteps = []
3 refMap = ∅

4 text = Get-A-Steps-Text(br)
5 text = Preprocess-Text(text, ontology, refMap)
6 foreach sentence ∈ text do
7 foreach clause ∈ sentence do
8 tree = Get-Dependency-Tree(clause)
9 root = Get-Root(tree)

10 if root ∈ {click, type, scroll, swipe, rotate, ... } then
11 action = root
12 target = Extract-Target(action, tree, refMap)
13 props = Extract-Props(action, target, tree, refMap)
14 aStep = Create-A-Step(action, target, props)
15 aSteps.Add(aStep)
16 else

17 if Semantically-Related(clause, ontology, refMap) then
18 gAStep = Create-Generic-A-Step(null, clause, [])
19 aSteps.Add(gAStep)
20 return aSteps

the ID and the original text in the ontology. For the bug report
from Section 2, Yakusu transforms the sentence “Click on the Pub-
lish button” into “Click on the 0_element button” and associates
“0_element” to text “Publish” in refMap. This preprocessing step is
particularly useful when the text being replaced contains multiple
words, as it simplifies the later analysis of dependency trees.

After preprocessing the text of the bug report, Yakusu enters
its main loop (lines 6–19), where it analyzes each sentence in the
text. More specifically, it analyzes each clause that appears in a
sentence, as each of them can specify a different action on the
UI. For example, the sentence “Press menu button and Reconnect”
contains two clauses connected by a coordinating conjunction, and
each clause specifies a different action: (1) open the menu of the app
and (2) perform the “Reconnect” action. To identify clauses from
sentences, our technique leverages related work [2] that parses
a dependency parse tree recursively and, at each step, predicts
whether an edge should yield an independent clause.

For each clause, our algorithm computes the clause’s dependency
tree (Get-Dependency-Tree). Figure 6 provides, as an example,
the dependency tree for clause “Click on the 0_element button”.
The algorithm analyzes the root word of the tree (e.g., “Click“ in
Figure 6) to assess whether it refers to a UI action using, as we
discussed earlier, the domain knowledge we distilled from 400 tuto-
rials (Line 10 in Algorithm 1). If the root word of the dependency
tree refers to a UI action, Yakusu further analyzes the tree to ex-
tract the properties of the action and the action target, which is the
element in the UI affected by the action and, for certain actions,
can be missing. Similarity, the list of properties of an action can be
empty. For example, the clause “Type something” from the example
of Section 2 does not specify the target of the action. In this case,
our technique would consider any editable UI element as a possible
target for the action.

When analyzing a dependency tree, Yakusu looks for two types
of information: the list of words representing the target (Extract-
Target) and the list of properties affecting the behavior of the
action (Extract-Props). To identify words that are affected by
the action (i.e., the target of the action), our technique analyzes
the subtrees rooted at (1) core dependent relations and (2) non-
core dependent relations that are associated with the root word

144

Automatically Translating Bug Reports into Test Cases for Mobile Apps ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

(the action) of the dependency tree. In the case of the dependency
tree of Figure 6, the technique would identify as the target of the
action the subtree rooted at the word associated with the nominal
modifier relation (nmod:on). The subtree includes the words “on the
0_element button”. Yakusu further analyzes the subtree and, if it
contains a textual reference (identified using refMap), it uses the text
associated with the reference as the target of the action (“Publish”,
in the case of the example). Otherwise, it uses as target all the
words in the subtree. To identify words that detail the behavior of
an action, the technique analyzes modifier relations, core dependent
relations, and non-core dependent relations [48] associated with
the root word (the action) of the dependency tree. For example, in
the clause “long click retweet icon underneath tweet” (from one
of the benchmarks in Section 5), the action “click” is affected by
the word “long” through an adverbial modifier relation. Yakusu
identifies such relation, captures the precise action (long click) to
be performed on the UI (line 11), and stores this information in the
list of properties of the action. After the technique determines the
action (action), the target (target), and the properties (props) from
the clause, it encodes this information into an abstract step (Create-
A-Step) and stores the step in the abstract steps list (line 15). We
call the encoding of action, target, and properties an abstract step
because the following phase of the technique will try to find how
to concretely execute the step on the relevant app (i.e., find the
corresponding concrete UI action).

When there is a logical gap between the description contained
in the clause and the corresponding actions to be performed on the
UI (i.e., the root word is not click, type, scroll, and so on), the tech-
nique assesses whether the clause relates to an element of the UI
by semantically comparing (Semantically-Related) the content
of the clause with the elements in the ontology of the relevant app.
If the clause is semantically related to an element of the UI, Yakusu
treats the clause as the target of an abstract step as in some cases
users describe actions in terms of the elements of the UI. The clause
“Start a new post” (from the motivating example in Section 2) is an
example of such situation. More precisely, Yakusu compares the
content of the clause with the components (text, icon, identifier) of
the tuples in the ontology using word embeddings computed from
a word2vec model [32, 33], which offers a mathematical represen-
tation of the meaning of a word. Specifically, word2vec produces a
vector space from a large corpus of text, where each word in the
corpus is assigned to a vector in the space. Vectors are positioned in
the space such that words that share common contexts are located
in close proximity to one another. The technique computes the
word2vec model from a corpus of 100 billion words [19], as word
vectorization requires training on very large sets of words [35].
Yakusu represents the clause as a vector computed by averaging
the vectors of the words in the clause, after removing stopwords
as they introduce unnecessary noise. By taking the average, the
technique is able to incorporate the meaning of every word in the
vector representation of the clause. Yakusu computes the vector of
the components in the tuples of the ontology in the same way. It
then compares the vector of the clause with the vector of each com-
ponent by computing the cosine similarity of the two vectors. The
similarity value ranges between [−1.0, 1.0], where 1.0 corresponds
to the highest similarity. The technique considers a clause to be
semantically related to the a UI element if their cosine similarity

value is greater than 0.5. We computed this value empirically using
a set of bug reports considered for training purposes; this set of
bug reports was not used in the evaluation of Section 5.

For example, Yakusu associates the clause “Start a new post”
(from the motivating example of Section 2) to the text component
‘‘New post’’, as the similarity value with this element of the UI is
0.87. When the technique finds a clause to be semantically related
to an element in the ontology, it creates an abstract step (Create-
Generic-A-Step) and adds the step to the list of abstract steps
(line 19). Generic abstract steps differ from the abstract steps cre-
ated by function Create-A-Step; for these steps, the action to be
performed will be determined dynamically, during the next phase
of the technique, by introspecting the runtime properties of the UI
element identified. Finally, the algorithm terminates by returning
the list of abstract steps (line 20).

3.3 UI Actions Search

This phase takes as input the abstract steps produced in the previous
phase and a device on which to run the app and produces as output
a concrete test that reproduces the relevant failure. It dynamically
explores the relevant app looking for a sequence of UI actions that
match the input abstract steps. Our technique generates test cases
dynamically, rather than statically, because we found that the app
navigation models computed by state-of-the-art static analysis tools
are too imprecise and incomplete to be used in this context.

Algorithm 2 describes how Yakusu searches for test cases. The
algorithm takes as input the list of abstract steps (aSteps), the rel-
evant app (ra), and a test device (td). The output of the algorithm
is a test case (tc), which is also the final output of the technique.
At a high level, the algorithm explores the relevant app to find
a mapping between abstract steps and UI actions to perform on
specific elements of the UI. The state of the search is represented as
a triple containing (1) the list of abstract steps not yet successfully
processed, (2) the list of abstract steps already processed, and (3)
the list of UI actions corresponding to the abstract steps processed
so far. Lines 2 and 3 initialize the state. At line 2, the algorithm
initializes tc with an empty list and states and pStateswith an empty
set. states denotes the set of states yet to be explored, while pStates
denotes the set of states already explored. Line 3 assigns the initial
search state ⟨aSteps, [], []⟩ to set states. In the initial state, the list
of remaining abstract steps corresponds to the list of abstract steps
provided on input, whereas the list of processed abstract steps and
its corresponding list of UI actions are empty.

After these initialization steps, the algorithm starts to execute its
main loop, where each loop iteration processes one state (lines 4–
69). The first step in the main loop selects the most promising state
for the search (line 5) by calling Find-Best-State. This function
selects the state with the highest number of successfully processed
abstract actions, choosing one state randomly in case of ties, returns
it, and removes it from set states. This depth-first search is often
faster for mobile apps, given the cost for restarting the app in
alternative search strategies [8]. After selecting the state to be
processed, the algorithm starts the relevant app on the test device
(Start) and restores the state of the app by running the list of UI
actions associated with the list of already-processed abstract steps
(Restore). It then calls function Get-Remaining-A-Steps to extract
the list of remaining abstract steps to process on the given state

145

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso

Algorithm 2: UI actions search.
Input :aSteps: list of abstract steps describing how to reproduce the relevant failure

ra: relevant app
td: test device

Output : tc: test case that reproduces the bug report
1 begin

2 tc = [], states = ∅, pStates = ∅

3 states.Add(State(aSteps, [], []))
4 while states , ∅ do

5 state = Find-Best-State(states)
6 Start(td, ra)
7 Restore(td, ra, state)
8 rASteps = state.Get-Remaining-A-Steps()
9 while rASteps , [] do

10 aStep = rASteps.Remove(0)
11 //Case 1: Abstract steps without a UI element bound to them
12 if aStep == AStep ∧ ¬aStep.Has-Element() then
13 action = aStep.Get-Action()
14 target = aStep.Get-Target()
15 ps = aStep.Get-Props()
16 elements = Find-UI-Element(td,ra,action,target,ps)
17 if elements , [] then

18 element =elements.Remove(0)
19 foreach aElement ∈ elements do
20 cstate = state.Copy()
21 caStep = aStep.Copy()
22 crASteps = rASteps.Copy()
23 caStep.Set-Element(aElement)
24 crASteps.Add(0, caStep)
25 cstate.Set-Remaining-A-Steps(crASteps)
26 states.Add(cstate)
27 aStep.Set-Element(element)
28 rASteps.Add(0, aStep)
29 continue

30 else

31 rASteps.Add(0, aStep)
32 if aStep.Get-Random-Count() < α then

33 rUIAction = Random-UI-Action(td, ra)
34 state.Add-UI-Action(rUIAction)
35 Perform(td, ra, rUIAction)
36 continue

37 else

38 break

39 //Case 2: Abstract steps with a UI element bound to them
40 else if aStep == AStep ∧ aStep.Has-Element() then
41 element = aStep.Get-Element()
42 if From-Heuristic(element) then
43 hUIAction = Heuristic-UI-Action(element)
44 state.Add-UI-Action(hUIAction)
45 Perform(td, ra, hUIAction)
46 action = aStep.Get-Action()
47 if action == null then

48 action = Find-Action(td, ra, element)
49 ps = aStep.Get-Props()
50 nUIAction = UI-Action(action, element, ps)
51 state.Add-UI-Action(nUIAction)
52 state.Get-Processed-A-Steps().Add(aStep)
53 Perform(td, ra, nUIAction)
54 continue

55 //Case 3: Generic abstract steps
56 else if aStep == GenericAStep then
57 sstate = state.Copy()
58 srASteps = rASteps.Copy()
59 sstate.Set-Remaining-A-Steps(srASteps)
60 states.Add(sstate)
61 target = aStep.Get-Target()
62 nAStep =Create-A-Step(null, target, [])
63 rASteps.Add(0, nAStep)
64 continue

65 if rASteps == [] then
66 tc = Generate-Test-Case(state.Get-UI-Actions())
67 return tc
68 else

69 pStates.Add(state)
70 state = Find-Best-State(pStates)
71 tc = Generate-Test-Case(state.Get-UI-Actions())
72 return tc

(rASteps). The inner loop (lines 9–64) processes these abstract steps.
In the following, we refer to an abstract step whose action (e.g.,
click, rotate, scroll) has not been determined as a generic abstract
step. For example, the first step in the bug report from Figure 1,
“Start a new post”, is a case of generic abstract step. Each iteration of
the inner loop handles one of the following three types of abstract
steps: abstract steps without a UI element bound to them, abstract
steps with a UI element bound to them, and generic abstract steps.

Case 1: Abstract steps without a UI element bound to them. In
this first case (lines 12–38), the algorithm must first find a UI el-
ement that matches the target specified by the abstract step and
then perform the corresponding action on it. To do so, it first ex-
tracts the action (Get-Action), the target (Get-Target), and the
properties (Get-Props) from the abstract step. It then looks for a
potentially matching UI element (Find-UI-Element) by process-
ing the properties of elements currently visible in the UI of the
relevant app. Specifically, function Find-UI-Element compares the
textual content of the target with the properties of UI visible ele-
ments using word embeddings computed, also in this case, from
a word2vec model [32, 33]. The comparison is based on the same
types of UI element properties extracted to compute the ontology,
namely, label, icon, and identifier. A UI element is considered a
match for the target if the cosine similarity between one of the
element’s properties vector representation and the target’s vector
representation is above 0.5. The computation of vector representa-
tions and their comparison follows the same approach described in
Section 3.2. In the example from Section 2, the technique would find
that the button with label “PUBLISH”, appearing at the top-right
corner in Figure 3, is a match for target “Publish” of the abstract
step generated for the sentence “Tap on the Publish button”, as
their vector representations have cosine similarity 1.0 (they are the
same word). Function Find-UI-Element uses two heuristics to also
“reveal” elements within the screen of the relevant app that may
not be readily visible. These heuristics try to identify this hidden
UI elements by opening the menus and scrolling through the lists,
respectively, in the current screen of the app.

At this point (line 16), elements stores (in descending order of
cosine similarity value) the set of potential UI element candidates
returned by Find-UI-Element. If this set is empty (lines 30–38),
the search for candidates was unsuccessful, which typically hap-
pens when a step was missing in the bug report. In that case, the
algorithm generates a random UI action (rUIAction) and continues
to the next iteration, trying to fill the gap in the report, unless the
number of random UI actions generated for the current abstract
step exceeded a predefined threshold (α). If the search is successful
(lines 17–29), set elements is non empty. Yakusu extracts from this
set the element with highest cosine similarity, assigns the element
to the abstract step, and reprocesses the abstract step with this
UI element bound to it as discussed in the next paragraph (Case
2). For the other elements in the set, the algorithm conceptually
forks the execution (lines 19–26) by copying the search state and
setting the top remaining abstract step (aStep) to have its UI ele-
ment (aElement) adjusted accordingly. These copied states will be
processed if the technique does not successfully process all abstract
steps in the current execution.

146

Automatically Translating Bug Reports into Test Cases for Mobile Apps ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Case 2: Abstract steps with a UI element bound to them. In this
second case, the algorithm performs a UI action on the element
bound to the abstract step (lines 40–54). To do so, the technique
either extracts the action associated with the abstract step, or iden-
tifies one if there is no associated action (which is possible after a
generic abstract step has been processed, as discussed in Case 3).
At this point, the technique saves the action in the form of a UI
action in the state, adds the abstract step to the list of satisfied steps
associated with the state, executes the UI action on the relevant app,
and moves forward to analyze the next abstract steps that needs to
be processed (line 54).

Case 3: Generic abstract steps. In this third and last case (lines 56–
64), the algorithm processes steps that may be related to some UI
element in the relevant app, but do not specify any action to be
performed on such element. These steps typically either correspond
to vaguely expressed actions or are not actual steps. The algorithm
accounts for these cases by virtually forking the execution of the
relevant app: one execution tries to perform the generic abstract
step; the other simply skips this step. To do so, Yakusu adds to
the list of current states a copy of the state (sstate) in which the
generic abstract step is removed from the list of steps to be pro-
cessed (line 60). Then, Yakusu continues the exploration for the
current state by generating an abstract step whose target is the one
associated with the generic abstract step and whose action is unde-
fined. Then, the technique adds the abstract step to the beginning
of the list of steps to be processed and moves forward to process
the generic abstract step as an abstract step (line 64).

When the technique finishes processing the abstract steps in a
state, it checks the content of the list of remaining abstract steps
(lines 65–69). If the list is empty, the search process successfully
terminates returning a test case with the list of UI actions associated
with the current state (Generate-Test-Case). In case the list is
not empty, Yakusu adds the state to the list of processed states
(line 69) and continues. When the technique is not able to success-
fully process all abstract steps in any of the states analyzed (line 70),
it finds the state that satisfied the highest number of abstract steps
(Find-Best-State) and generates a “partial” test case that consists
of the UI actions associated with that state.

4 IMPLEMENTATION

We implemented Yakusu in a tool that is publicly available [13] and
consists of three main modules. The ontology extraction module is
written in Java and uses Gator [42, 52] to analyze the source code of
the app and build an ontology, as well as encoding UI elements and
their properties. The ontology is stored in JSON format [24]. The
bug report analysis module is a standalone Java program and uses
the Stanford CoreNLP framework [30] to translate the text of the
report into dependency trees and process them. The computation
of word embeddings using word2vec is implemented in Python as a
web service that leverages the Gensim library [50] and the dataset
based on Google News [19]. Generated abstract steps are also stored
in JSON format. The executable actions search module is built on
top of the Espresso framework [18]. Using this framework, the
implementation of Algorithm 2 is able to introspect the UI content
of the app and perform UI actions. Finally, generated test cases
follow the format specified by the Espresso framework, and their
source code is generated using the JavaPoet library [45].

5 EVALUATION

This section discusses our empirical evaluation. To assess the expres-
siveness and efficiency of Yakusu, we investigated the following
research questions:

• RQ1 (effectiveness): Can Yakusu translate bug reports
written in natural language into executable test cases?

• RQ2 (efficiency):What is the cost of running Yakusu?

5.1 Experimental Benchmarks and Setup

We used a set of bug reports from real-world apps to evaluate
Yakusu. As the use of Espresso to encode test cases requires the
source code of the app to be available, we focused on apps from
GitHub [14]. We queried the GitHub database for issues using key-
words “android”, “crash”, “reproduce”, and “version” and considered
only issues submitted after January 1st, 2017. We used keyword
“android” to find issues that relate to Android apps; we included
keyword “crash” to find issues that could be easily verified; we used
keyword “reproduce” because we were interested in bug reports
that describe how to replicate a bug; finally, we included keyword
“version” to make sure that the specific version of the app and oper-
ating system involved in the issue were available. We considered
only issues created after January 1st 2017 to avoid considering apps
that could have outdated dependencies.

This search returned 2709 issues, of which we randomly selected
100 for further processing. As a side note, we found that 79 of these
100 issues had been created by individuals who did not perform
any commit to the repository, indicating that they were users not
involved in the development of the corresponding app.

To be able to answer RQ1 in an accurate way, we first had to
make sure that the issues considered were indeed reproducible. To
that end, for each of the 100 issues selected, we first tried to build
the version of the app specified in the report. In case a version
was missing, we used the the most recent working commit before
the date of the report to build the app. Somehow surprisingly, we
found that building and setting up apps can be fairly complex and
time consuming. In some cases, for example, we had to update
outdated dependencies or set up server components for an app
to compile and run. Overall, we could build and setup 91 of the
100 apps associated with the set of bug reports considered. For the
remaining 9 apps, we either encountered compilation errors that
we could not fix (7 apps) or could not find the code associated with
the issue because the repository was initially used only for bug
reporting (2 apps).

We then tried to manually reproduce the issues reported for the
91 apps that we were able to build and were successful for 62 of
them. There were several reasons why we could not reproduce
the issues involving the remaining 29 apps. In 9 cases, the report
contained only a stack trace, and this trace did not provide us with
enough information to recreate the issue described in the report.
In 7 cases, the app interacted with a remote server outside of our
control, and the communication protocol between app and server
had changed, preventing the app from running. In 3 cases, the issue
depended on a specific hardware/software configuration that was
not available to us. In the last case, part of the issue description in
the report was written in a language other than English, preventing
us from fully understanding the issue.

147

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso

5.2 Results

5.2.1 RQ1 (Effectiveness). To answer RQ1, we applied our tech-
nique to the set of 62 reproducible issues discussed above. Overall,
Yakusu was able to successfully generate a test case for 37 of these
62 issues. (a success rate of 59.7%). In order to consider a generated
test successful, we manually checked whether (1) the actions in the
generated test matched the steps that a human would perform and
(2) the stack trace generated by the test case corresponded to the
one in the bug report (if one was present). Table 1 reports results for
25 of the cases, as 12 of the 37 issues simply required to launch the
app and were trivial to reproduce. Details on the complete list of
analyzed issues are publicly available [13]. It is worth mentioning
that certain apps required some setup (e.g., user authentication)
before they could be tested. As it is typical in these cases, and during
testing in general, in our evaluation we provided this once-per-app
setup information to Yakusu.

On Table 1, the columns under header Benchmark provide, for
each app/issue considered, the identifier of the issue (ID), the name
of the app (Name), the GitHub issue number (Issue), the lines of
code in the app (LOC (K)), and the number of stars for the app on
GitHub (Stars), which is a measure of popularity. Issues are ordered
by their identifier numbers, whose values correspond to the order
in which we (randomly) selected them.

The columns labeled Actions show the number of UI actions
required to manually reproduce the issue described in the bug
report, which consist of the sum of the number of actions that are
explicitly (Ae) and implicitly (Ai) documented in the bug report.
These latter are actions that were not specified in the bug report but
that need to be performed to reproduce the issue. As the table shows,
for 9 of the 25 issues (rows with Ai>0), at least one implicit action
was involved in the reproduction task. In particular, for MifosX,
the number of implicit actions was higher than number of explicit
actions. (The implicit actions, in this case are “opening a sliding
menu”, “clicking on any element of a list”, and “clicking on the
element of the UI displaying an icon”.) It is important to stress that
the presence of implicit actions is far from rare, and generating tests
for bug reports that involve such actions is particularly challenging.
Therefore, the fact that Yakusu was able to suitably handle these
cases indicates its effectiveness and potential usefulness.

The columns labeled Steps describe the number of abstract steps
generated by the technique. Specifically, they show the number
of abstract steps (AS) and the number of generic abstract steps
(ASд) generated by Yakusu for each issue. The sum of these two
numbers, AS and ASд , corresponds to the number of abstract steps
provided as input to the search phase of the technique, which is
responsible for generating an actual test case. This sum can be
different from the sum of actions for two reasons. First, implicit
actions are not translated into abstract steps, as they are not present
in the bug report. Second, there could be generic abstract steps that
might not actually describe a UI action. As an example, consider the
bug report associated with the Open Event issue, which includes
the following sentence: “Take the pull of the latest code”. Yakusu
translates this sentence into a generic abstract step that does not
describe a specific action on the UI. As explained in Section 3,
our technique handles this situation by forking an execution that
discards this step. Conversely, for seven other issues (i.e., issues

01, 35, 40, 51, 84, 97, and 99), generic abstract steps are essential
to reproduce the issue. This number suggests that Yakusu is able
to handle actions in bug reports that are expressed at different
levels of abstraction. It is also worth noting that seven of the bug
reports reproduced by Yakusu did not contain header “reproduce”,
which provides initial evidence that Yakusu is able to handle less
structured bug reports.

The columns labeled Search provide information on the outcome
of the UI-actions-search phase of the technique. Specifically, they
show statistics of the search that led to the generation of the test
case corresponding to the input abstract steps: number of states gen-
erated (Sд), number of states processed (Sp), number of heuristics
used (H), and number of random UI actions in the generated test
case (R). In 16 cases, the search never had to select a different state
to explore other than the current state (entries with Sд>1 and Sp=1).
These are cases of quick successful runs, in which the technique did
not have to start the app again and restore its state (lines 6-7 from
Algorithm 2). In another 6 cases, conversely, the technique had to
explore other states to find the list of UI actions that satisfied all
the input abstract steps (entries with Sд>1 and Sp>1); these cases
highlight the importance of tracking and exploring multiple states
during the search. As columns H and R show, in creating test cases,
Yakusu used at least one of its heuristics and generated at least one
random action in seven and six cases, respectively.

Finally, the columns labeled Tests show the number of required
(TCs) and non-required (TCa) statements in the generated test cases.
As the table shows, Yakusu generated non-required statements in
only four cases.

False negatives. We investigated the 25 (i.e., 62-37) cases in which
Yakusu was unable to successfully generate a test case and grouped
them into four categories:
Category 1 (7 cases): Reports with actions that need to be per-

formed outside of the app (i.e., actions on the UI of the operating
system). To address these cases, we could extend the ontology
generated by Yakusu with system actions.

Category 2 (3 cases): Reports with actions on UI elements whose
properties cannot be introspected at runtime (e.g., custom
views [17]). We plan to explore how to make such properties
available at runtime through app instrumentation.

Category 3 (11 cases): Reports in which a single step corresponds
to multiple implicit UI actions. The sentence “After a while
browsing through folders app crash [sic] immediately” [6], for
instance, should be translated to a sequence of clicks on various
folders, but Yakusu fails to interpret the sentence correctly. We
plan to investigate ways to handle these cases by leveraging
related work (e.g., [9, 36, 37, 43]) and incorporating additional
domain knowledge, possibly on demand.

Category 4 (4 cases): Reports with actions that involve multi-
touch gestures (e.g., pinch zoom). Yakusu could handle these
actions through suitable, albeit extensive, engineering.

False positives. We did not observe false positives, that is, success-
fully generated test cases that did not lead to the failure described
in the bug report. If these cases were to occur, in the context of
bug reports describing crashes, Yakusu could address this issue by
filtering out non-crashing tests.

148

Automatically Translating Bug Reports into Test Cases for Mobile Apps ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

Table 1: Benchmarks for which Yakusu could generate a test case reproducing the bug report. For each benchmark considered: ID = identifier;

Name = name; Issue = identifier of the GitHub issue considered; LOC(K) = # lines of code (thousands); Stars = # stars on GitHub; Ae = # explicit

actions in the issue; Ai = # implicit actions in the issue; AS = # abstract steps generated; ASд = # generic abstract steps generated; Sд = # states

generated; Sp = # states processed; H = # heuristics used in the successful state; R = # random actions generated in the successful state; TCs =

number of statements in the test; TCa = number of additional statements in the test; Toe = time taken by the ontology extraction phase; Tbra
= time taken by the bug report analysis phase; Tuias = time taken by the UI actions search phase.

Benchmarks Actions Steps Search Tests Cost
ID Name Issue LOC (K) Stars Ae Ai AS ASд Sд Sp H R TCs TCa T oe Tbra Tuias

01 Tachiyomi 880 38 1603 4 1 - 4 10 1 1 - 5 - 54s 18s 1m12s
03 Twidere 738 141 1672 2 - 2 - 12 1 - - 2 - 2m34s 15s 1m07s
05 Signal 6660 125 9803 1 - 1 - 2 1 - - 1 - 1m23s 17s 6m57s
08 RedReader 516 42 830 2 - 2 2 5 1 - - 4 2 25s 19s 1m25s
14 Silence 557 109 871 1 - 1 - 2 1 - - 1 - 43s 15s 5m08s
23 K-9 Mail 1910 136 3868 3 - 3 - 8 1 - - 3 - 32s 16s 1m00s
25 Nextcloud 883 78 768 1 2 1 - 1 1 1 1 3 - 34s 16s 2m08s
27 ButterKnife 46 5 165 1 - 1 - 3 1 - - 1 - 13s 16s 09s
35 ODK Collect 360 49 292 2 - 1 4 11 3 - - 2 - 30s 18s 3m51s
39 Pix-Art Messenger 127 58 30 3 - 3 - 2 1 - - 3 - 43s 15s 31s
40 Yalp Store 204 17 960 5 - 4 1 11 1 - - 5 - 16s 17s 2m25s
50 OCReader 48 13 49 3 - 3 - 8 2 - - 3 - 22s 17s 1m33s
51 WordPress 5497 180 1758 3 - 2 1 2 1 - - 3 - 1m35s 16s 3m18s
52 Signal 6924 126 9803 2 1 2 - 3 1 - 4 6 3 1m16s 17s 18m10s
57 Open Event 1402 18 344 1 1 1 1 3 2 1 - 2 - 36s 20s 2m48s
68 TagMo 12 32 663 1 1 1 1 10 1 - 3 4 2 17s 16s 31s
69 AnkiDroid 4586 101 1231 5 - 5 - 8 1 - - 5 - 29s 17s 28m55s
73 K-9 Mail 2612 137 3868 2 - 2 - 6 3 - - 2 - 35s 18s 3m22s
74 Cluttr 2 13 9 2 - 2 - 6 1 - - 2 - 26s 15s 24s
78 Nextcloud 850 74 768 2 1 2 - 1 1 1 - 3 - 32s 15s 2m20s
84 K-9 Mail 2019 136 3868 1 - - 1 2 1 - - 1 - 32s 17s 45s
95 MifosX 734 65 85 2 3 2 - 3 1 1 2 5 - 39s 18s 1m25s
96 ScreenRecorder 25 7 62 3 2 3 - 1 1 2 - 5 - 15s 17s 54s
97 Nextcloud 1061 81 768 1 1 - 2 4 2 1 - 2 - 37s 23s 9m28s
99 FlashCards 13 5 8 3 - 2 1 6 2 - 3 4 1 15s 18s 58s

In summary, we consider the results for RQ1 encouraging. De-
spite the limitations presented above, which can be addressed as
discussed, Yakusu was already able to generate test cases for a
majority of bug reports while generating no spurious tests.

5.2.2 RQ2 (Efficiency). To answer RQ2, we measured the time
taken to run each phase of the technique on a MacBook Pro with
2.8 GHz i7 processor and 16GB of RAM. Table 1 shows, for each
issue considered, the time required to extract the ontology (T oe),
perform bug report analysis (Tbra), and explore the app to generate
a test case (Tuias). The times in the table are expressed in minutes
(m) and seconds (s).

As the table shows, the UI-actions-search phase is where Yakusu
spent most of its time, followed by the ontology-extraction phase,
and then the bug-report-analysis phase. Our technique generates a
test case in less than five minutes overall in most cases, with the
average and median times being 5m00s and 2m58s, respectively.
In only two cases, the execution time was above ten minutes. In
particular, AnkiDroid (issue 69) is the case in which Yakusu takes
the longest time to generate a test case: 29m41s. The execution time
for this benchmark is dominated by the UI actions search phase of
the technique, which is 28m55s. This value is higher than the one
associated with other benchmarks due to a higher number of com-
putations of the cosine similarity value. (This operation is relatively
expensive compared to other operations because it requires to issue
a network request from the test device to get the similarity value,
as presented in Section 4.) Considering that the execution time is
fairly low even in the worst case, we did not further investigate this
issue, nor tried hard to optimize Yakusu. In fact, these execution
times suggest that Yakusu could be used to monitor bug reports

and generate test cases throughout the day, as opposed to overnight
only. Moreover, for issues that cannot be translated successfully
and may result in longer running explorations of the app states,
developers could provide a suitable timeout.

5.3 Threats To Validity

As it is the case for most empirical evaluations, there are both ex-
ternal and construct threats to validity associated to the results we
presented. In terms of external validity, our results might not gener-
alize to other bug reports or apps. In particular, we only considered
100 bug reports. This limitation is an artifact of the complexity
involved in manually building and setting up the infrastructure to
run the app associated with a bug report. To mitigate this threat, we
used randomly selected real-world bug reports from different apps.
An additional threat could be posed by the fact that we used only
open source apps in the evaluation. However, the evaluation in-
cludes apps such as K-9 Mail, Signal, and Wordpress, which have
complex functionality, hundreds of widgets, and millions of users.
We believe that, given the complexity of the apps we analyzed,
Yakusu should also be applicable to other types of apps. In terms
of construct validity, there might be errors in the implementation
of our technique. To mitigate this threat, we extensively inspected
the results of the evaluation manually.

6 RELATEDWORK

The problem of synthesizing code from natural language descrip-
tions was studied in different domains (e.g., [5, 7, 10, 12, 16, 21, 26–
28, 31, 41, 47, 49]). In the following, we discuss the work most
closely related to our technique.

149

https://github.com/inorichi/tachiyomi/issues/880
https://github.com/TwidereProject/Twidere-Android/issues/738
https://github.com/WhisperSystems/Signal-Android/issues/6660
https://github.com/QuantumBadger/RedReader/issues/516
https://github.com/SilenceIM/Silence/issues/557
https://github.com/k9mail/k-9/issues/1910
https://github.com/nextcloud/android/issues/883
https://github.com/vestrel00/android-dagger-butterknife-mvp/issues/46
https://github.com/opendatakit/collect/issues/360
https://github.com/kriztan/Pix-Art-Messenger/issues/127
https://github.com/yeriomin/YalpStore/issues/204
https://github.com/schaal/ocreader/issues/48
https://github.com/wordpress-mobile/WordPress-Android/issues/5497
https://github.com/signalapp/Signal-Android/issues/6924
https://github.com/fossasia/open-event-android/issues/1402
https://github.com/HiddenRamblings/TagMo/issues/12
https://github.com/ankidroid/Anki-Android/issues/4586
https://github.com/k9mail/k-9/issues/2612
https://github.com/garretyoder/Cluttr/issues/2
https://github.com/nextcloud/android/issues/850
https://github.com/k9mail/k-9/issues/2019
https://github.com/openMF/android-client/issues/734
https://github.com/vijai1996/screenrecorder/issues/25
https://github.com/nextcloud/android/issues/1061
https://github.com/ASU-CodeDevils/FlashCards/issues/13

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso

Branavan and colleagues [5] and Lau and colleagues [27] inde-
pendently used NLP techniques to extract concrete actions from text
documents for improving productivity of various tasks (e.g., trou-
bleshooting, learning from tutorials). Branavan and colleagues [5]
proposed a reinforcement learning approach for translating tuto-
rials of desktop applications into a list of concrete actions. Their
approach uses a learning algorithm, trained with a corpus of text
documents, to infer actions. Yakusu uses dependency parsing to
infer actions from bug reports because, in our application domain,
a set of documents (i.e., bug reports) is not always available for
training. Lau and colleagues [27] proposed an automated approach
to translate into test cases documents that describe how to accom-
plish various tasks on the web. Their work and ours both translate
natural language sentences into concrete actions. However, their ap-
proach assumes that instructions are properly segmented (i.e., one
action per sentence), while Yakusu is able to automatically identify
segments (referred to as clauses in Section 3.2) in a sentence. In a
sense, Branavan and colleagues and Lau and colleagues realized
that the problem of interpreting arbitrary hand-written documents,
although very challenging in general, becomes more amenable
to machine processing when the input language is restricted to a
certain domain. Yakusu builds on this idea, while weakening the
assumptions on the input made by the aforementioned techniques.

Thummalapenta and colleagues [47] proposed ATA, an approach
to translate web application tests, written in natural language by
professional testers, into their corresponding scripts. Both Yakusu
and ATA identify actions using dependency parsing and account
for the fact that multiple choices for a target might be present
during test generation. However, there are generally considerable
differences between professionally written test specifications and
bug reports, which prevents ATA from being straightforwardly
applied to bug reports. For instance, bug reports written by users do
not generally follow a precise structure and can use different levels
of abstractions in describing the steps to reproduce an issue. Our
work takes these aspects into account bymapping the description of
the bug report to an ontology of the app. Additionally, our technique
is also able to handle cases in which some necessary steps of the
test are not explicitly mentioned in the bug report.

Le and colleagues [28] proposed SmartSynth, a technique
that combines NLP and program synthesis to produce automation
scripts. For example, SmartSynth could handle an automation
script like the following one: “When I receive a new SMS message,
if the phone is connected to my car’s bluetooth, it reads out loud
the message content and replies the sender ’I’m driving’.” Smart-
Synth and Yakusu differs in terms of their application context,
as SmartSynth generates system events (e.g., “Turn off GPS”) as
opposed to UI events. In this sense, SmartSynth can be seen as
complementary to Yakusu, which could leverage system events to
increase the range of bug reports it can handle (e.g., “Turn off GPS
before clicking button x”).

More broadly, our work relates to the area of field failure re-
production (e.g., [3, 22, 23, 38, 39, 46, 53]). We believe that Yakusu
and these alternative techniques tend to have complementary ad-
vantages and disadvantages. In particular, techniques for failure
reproduction based on partial information (e.g., stack traces, partial
event sequences) do not require NLP but tend to involve heavy-
duty analysis. Overall, these techniques and Yakusu are mostly

orthogonal, and a developer may decide which one to use for a
specific bug report based on the information available or just use
multiple ones and see which one performs best.

7 CONCLUSION

When processing a bug report, developers would typically try to
reproduce the failure described in the report, so as to be able to
investigate it and identify its causes. This is a time consuming and
challenging task, due to the typically large number of bug reports
and the effort involved in analyzing them. To help developers with
this task, we proposed Yakusu, a technique that combines natural
language processing and program analysis to extract from a bug
report a test case that reproduces the issue described in the report.

We implemented and empirically evaluated Yakusu by running it
on a set 62 real-word bug reports. Yakusu was able to automatically
generate tests for 59.7% of the reports, which we believe is an
initial, yet strong indication of the effectiveness of the approach;
for all these reports the developers could simply use the test cases
automatically generated by Yakusu instead of having to study the
reports and understand how to recreate the issue described therein.
It is also worth noting that this number could increase even further
after we address some of the existing limitations of the approach.

We foresee a number of venues for future work. First, we will
perform a user study in which we will assess the usefulness of
our technique and to what extent developers can benefit from it.
Second, we will investigate ways to extend the ontology extracted
from an app by analyzing callbacks, that is, the functions that are
executed as a consequence of UI actions; the name of a callback
function or the data elements used therein could help us generate
a better characterization of the UI event associated to that function
through a callback. Third, we will extend the technique to include
system actions and events, so as to be able to reproduce issues that
involve operations performed outside the specific app of interest.
To do this, we will study ways to build an ontology for relevant
system elements, actions, and events. Fourth, we will investigate
ways to incorporate more domain knowledge to be able to handle
descriptions of (macro) steps in a report that should be interpreted
as sequences of lower-level actions on the UI (e.g., “enter credential”
being interpreted as providing a login and a password in some
form). Fifth, we will study ways to interpret the description of (non-
crashing) failures in bug reports, so as to be able to generate oracles
for the automatically generated tests. Although this is not needed
for crashing bugs, it can make the technique useful for more subtle
failures. Sixth, we will investigate ways to adapt the technique to
web and GUI-based desktop apps. Seventh, we will explore ways to
extend Yakusu so that it can generate test cases from specifications
in written or spoken English. We will also consider ways to use
our approach for identifying duplicate bug reports. Finally, and
more on the engineering side, we will extend the implementation
of the technique to support custom views and multi-touch gestures,
which will allow us to handle reports that involve these kinds of
events.

ACKNOWLEDGMENTS

Jacob Eisenstein provided useful input and feedback on the NLP
part of our technique. This work was partially supported by NSF
under awards CCF-1161821 and CCF-1563991.

150

Automatically Translating Bug Reports into Test Cases for Mobile Apps ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands

REFERENCES

[1] 0nko. 2017. Notification icon: App crash when publishing a post. Retrieved June 8,
2018 from https://github.com/wordpress-mobile/WordPress-Android/issues/5497

[2] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning.
2015. Leveraging Linguistic Structure For Open Domain Information Extraction.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing.
The Association for Computer Linguistics, Stroudsburg, PA, USA, 344–354.

[3] Shay Artzi, Sunghun Kim, and Michael D. Ernst. 2008. ReCrash: Making Software
Failures Reproducible by Preserving Object States. In 22nd European Conference
on Object-Oriented Programming. Springer, Berlin, Heidelberg, 542–565.

[4] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, New York, NY, USA, 308–318.

[5] S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer, and Regina Barzilay. 2009.
Reinforcement Learning for Mapping Instructions to Actions. In Proceedings of
the 47th Annual Meeting of the Association for Computational Linguistics and the
4th International Joint Conference on Natural Language Processing of the AFNLP.
The Association for Computer Linguistics, Stroudsburg, PA, USA, 82–90.

[6] Bullnados. 2017. Main and Nightly Version crashing all time on LG G4. Retrieved
June 8, 2018 from https://github.com/nextcloud/android/issues/760

[7] Cohan Sujay Carlos. 2011. Natural Language Programming Using Class Sequen-
tial Rules. In Proceedings of the Fifth International Joint Conference on Natural
Language Processing. The Association for Computer Linguistics, Stroudsburg, PA,
USA, 237–245.

[8] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of
Android Apps with Minimal Restart and Approximate Learning. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages and Applications. ACM, New York, NY, USA, 623–640.

[9] Pedro Costa, Ana C. R. Paiva, and Miguel Nabuco. 2014. Pattern Based GUI
Testing for Mobile Applications. In 2014 9th International Conference on the
Quality of Information and Communications Technology. IEEE Computer Society,
Washington, DC, USA, 66–74.

[10] Anthony Cozzie, Murph Finnicum, and Samuel T. King. 2011. Macho: Program-
ming with Man Pages. In 13th Workshop on Hot Topics in Operating Systems.
USENIX Association, Napa, CA, United States.

[11] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning.
2006. Generating Typed Dependency Parses from Phrase Structure Parses. In
Proceedings of the Fifth International Conference on Language Resources and Evalu-
ation. European Language Resources Association (ELRA), Genoa, Italy, 449–454.

[12] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare,
Mark Marron, Sailesh R., and Subhajit Roy. 2016. Program Synthesis Using
Natural Language. In Proceedings of the 38th International Conference on Software
Engineering. ACM, New York, NY, USA, 345–356.

[13] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Yakusu. Retrieved June 8, 2018 from http://www.cc.gatech.edu/~orso/software/
yakusu

[14] GitHub 2018. GitHub. Retrieved June 8, 2018 from https://github.com
[15] GitHub 2018. Manually creating a single issue template for your repos-

itory. Retrieved June 8, 2018 from https://help.github.com/articles/
manually-creating-a-single-issue-template-for-your-repository

[16] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic Generation of Oracles for Exceptional Behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM, New York, NY,
USA, 213–224.

[17] Google 2018. Custom View Components. Retrieved June 8, 2018 from https:
//developer.android.com/training/custom-views/index.html

[18] Google 2018. Espresso. Retrieved June 8, 2018 from https://developer.android.
com/training/testing/espresso/index.html

[19] Google 2018. Google News Vectors Negative 300. Retrieved June 8, 2018 from
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM

[20] Google 2018. Reporting Bugs. Retrieved June 8, 2018 from https://source.android.
com/setup/report-bugs

[21] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expressions from Free-
form Queries. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. ACM,
New York, NY, USA, 416–432.

[22] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for In-
house Debugging. In Proceedings of the 34th International Conference on Software
Engineering. IEEE Computer Society, Washington, DC, USA, 474–484.

[23] Wei Jin and Alessandro Orso. 2013. F3: Fault Localization for Field Failures. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis.
ACM, New York, NY, USA, 213–223.

[24] JSON 2018. Introducing JSON. Retrieved June 8, 2018 from https://www.json.org
[25] Dan Jurafsky and James H Martin. 2014. Speech and language processing. Pearson

Education, London, UK.

[26] Mathias Landhäußer, Sebastian Weigelt, and Walter F. Tichy. 2017. NLCI: a
Natural Language Command Interpreter. Automated Software Engineering 24
(2017), 839–861.

[27] Tessa A. Lau, Clemens Drews, and Jeffrey Nichols. 2009. Interpreting Written
How-To Instructions. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence. AAAI Press, Bellevue, Washington, USA, 1433–1438.

[28] Vu Le, Sumit Gulwani, and Zhendong Su. 2013. SmartSynth: Synthesizing Smart-
phone Automation Scripts from Natural Language. In Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and Services.
ACM, New York, NY, USA, 193–206.

[29] Dennis Lee. 2016. How to write a bug report that will make your engineers love
you. Retrieved June 8, 2018 from https://testlio.com/blog/the-ideal-bug-report

[30] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics. The Association for Computer Linguistics,
Stroudsburg, PA, USA, 55–60.

[31] Mehdi Hafezi Manshadi, Daniel Gildea, and James F. Allen. 2013. Integrating
Programming by Example and Natural Language Programming. In Proceedings
of the Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI Press,
Bellevue, Washington, USA, 661–667.

[32] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and Their Compositionality. In
Advances in Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Curran Associates Inc., Lake Tahoe,
Nevada, USA, 3111–3119.

[34] Gary Miner, John Elder, Thomas Hill, Robert Nisbet, Dursun Delen, and Andrew
Fast. 2012. Practical Text Mining and Statistical Analysis for Non-structured Text
Data Applications. Academic Press, Orlando, FL, USA.

[35] Chris Moody. 2015. A Word is Worth a Thousand Vectors. Re-
trieved June 8, 2018 from https://multithreaded.stitchfix.com/blog/2015/03/11/
word-is-worth-a-thousand-vectors

[36] Rodrigo M. L. M. Moreira, Ana C. R. Paiva, and Atif Memon. 2013. A Pattern-
Based Approach for GUI Modeling and Testing. In 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE). IEEE Computer Society,
Washington, DC, USA, 288–297.

[37] Ines Coimbra Morgado and Ana C. R. Paiva. 2015. Testing Approach for Mobile
Applications through Reverse Engineering of UI Patterns. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering Workshop (ASEW).
IEEE Computer Society, Washington, DC, USA, 42–49.

[38] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet: Contin-
uously Recording Program Execution for Deterministic Replay Debugging. In
32nd International Symposium on Computer Architecture. IEEE Computer Society,
Washington, DC, USA, 284–295.

[39] Mathieu Nayrolles, Abdelwahab Hamou-Lhadj, Sofiène Tahar, and Alf Larsson.
2015. JCHARMING: A Bug Reproduction Approach Using Crash Traces and
Directed Model Checking. In 2015 IEEE 22nd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER). IEEE Computer Society,
Washington, DC, USA, 101–110.

[40] Jason Ostrander. 2012. Android UI Fundamentals: Develop and Design. Peachpit
Press, Berkeley, CA, USA.

[41] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing
What I Mean: Code Search and Idiomatic Snippet Synthesis. In Proceedings of the
38th International Conference on Software Engineering. ACM, New York, NY, USA,
357–367.

[42] Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for GUI Objects
in Android Software. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization. ACM, New York, NY, USA, 143–153.

[43] Clara Sacramento and Ana C. R. Paiva. 2014. Web Application Model Generation
through Reverse Engineering and UI Pattern Inferring. In 2014 9th International
Conference on the Quality of Information and Communications Technology. IEEE
Computer Society, Washington, DC, USA, 105–115.

[44] John Saito. 2016. Making a case for letter case. Retrieved June 8, 2018 from
https://medium.com/@jsaito/making-a-case-for-letter-case-19d09f653c98

[45] Square 2018. JavaPoet. Retrieved June 8, 2018 from https://github.com/square/
javapoet

[46] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. 2000. jRapture:
A Capture/Replay Tool for Observation-based Testing. In Proceedings of the
International Symposium on Software Testing and Analysis. ACM, New York, NY,
USA, 158–167.

[47] Suresh Thummalapenta, Saurabh Sinha, Nimit Singhania, and Satish Chandra.
2012. Automating Test Automation. In Proceedings of the 34th International
Conference on Software Engineering. IEEE Computer Society, Washington, DC,
USA, 881–891.

[48] Universal Dependencies 2018. Universal Dependencies. Retrieved June 8, 2018
from http://universaldependencies.org

151

https://github.com/wordpress-mobile/WordPress-Android/issues/5497
https://github.com/nextcloud/android/issues/760
http://www.cc.gatech.edu/~orso/software/yakusu
http://www.cc.gatech.edu/~orso/software/yakusu
https://github.com
https://help.github.com/articles/manually-creating-a-single-issue-template-for-your-repository
https://help.github.com/articles/manually-creating-a-single-issue-template-for-your-repository
https://developer.android.com/training/custom-views/index.html
https://developer.android.com/training/custom-views/index.html
https://developer.android.com/training/testing/espresso/index.html
https://developer.android.com/training/testing/espresso/index.html
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM
https://source.android.com/setup/report-bugs
https://source.android.com/setup/report-bugs
https://www.json.org
https://testlio.com/blog/the-ideal-bug-report
https://multithreaded.stitchfix.com/blog/2015/03/11/word-is-worth-a-thousand-vectors
https://multithreaded.stitchfix.com/blog/2015/03/11/word-is-worth-a-thousand-vectors
https://medium.com/@jsaito/making-a-case-for-letter-case-19d09f653c98
https://github.com/square/javapoet
https://github.com/square/javapoet
http://universaldependencies.org

ISSTA’18, July 16–21, 2018, Amsterdam, Netherlands Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso

[49] David Vadas and James R. Curran. 2005. ProgrammingWith Unrestricted Natural
Language. In Proceedings of the Australasian Language Technology Workshop.
Australasian Language Technology Association, Sydney, Australia, 191–199.

[50] Radim Řehůřek. 2018. Gensim. Retrieved June 8, 2018 from https://radimrehurek.
com/gensim

[51] WordPress 2018. WordPress. Retrieved June 8, 2018 from https://play.google.
com/store/apps/details?id=org.wordpress.android

[52] Shengqian Yang, Hailong Zhang, HaoweiWu, YanWang, Dacong Yan, and Atanas
Rountev. 2015. Static Window Transition Graphs for Android (T). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE Computer Society, Washington, DC, USA, 658–668.

[53] Daniele Zuddas, Wei Jin, Fabrizio Pastore, Leonardo Mariani, and Alessandro
Orso. 2014. MIMIC: Locating and Understanding Bugs by Analyzing Mimicked
Executions. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering (ASE). ACM, New York, NY, USA, 815–826.

152

https://radimrehurek.com/gensim
https://radimrehurek.com/gensim
https://play.google.com/store/apps/details?id=org.wordpress.android
https://play.google.com/store/apps/details?id=org.wordpress.android

	Abstract
	1 Introduction
	2 Terminology & Motivating Example
	2.1 Terminology
	2.2 Motivating Example

	3 Technique
	3.1 Ontology Extraction
	3.2 Bug Report Analysis
	3.3 UI Actions Search

	4 Implementation
	5 Evaluation
	5.1 Experimental Benchmarks and Setup
	5.2 Results
	5.3 Threats To Validity

	6 Related Work
	7 Conclusion
	References

