
Enlightened Debugging∗

Xiangyu Li Shaowei Zhu Marcelo d’Amorim Alessandro Orso

Georgia Institute of Technology Federal Univesity of Pernambuco
Atlanta, GA 30332-0765, USA Recife, PE 50740-560, Brazil

{xiangyu.li, swzhu, orso}@cc.gatech.edu damorim@cin.ufpe.br

ABSTRACT

Numerous automated techniques have been proposed to reduce
the cost of software debugging, a notoriously time-consuming and
human-intensive activity. Among these techniques, Statistical Fault
Localization (SFL) is particularly popular. One issue with SFL is
that it is based on strong, often unrealistic assumptions on how
developers behave when debugging. To address this problem, we
propose Enlighten, an interactive, feedback-driven fault localiza-
tion technique. Given a failing test, Enlighten (1) leverages SFL
and dynamic dependence analysis to identify suspicious method
invocations and corresponding data values, (2) presents the devel-
oper with a query about the most suspicious invocation expressed
in terms of inputs and outputs, (3) encodes the developer feedback
on the correctness of individual data values as extra program spec-
ifications, and (4) repeats these steps until the fault is found. We
evaluated Enlighten in two ways. First, we applied Enlighten
to 1,807 real and seeded faults in 3 open source programs using an
automated oracle as a simulated user; for over 96% of these faults,
Enlighten required less than 10 interactions with the simulated
user to localize the fault, and a sensitivity analysis showed that the
results were robust to erroneous responses. Second, we performed
an actual user study on 4 faults with 24 participants and found that
participants who used Enlighten performed significantly better
than those not using our tool, in terms of both number of faults
localized and time needed to localize the faults.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

debugging, fault localization, dynamic analysis

∗In the title, we use the term “enlightened” with its physical, rather than spiritual,
meaning of “well informed.” The technique we propose is well informed because it
incorporates user feedback in its otherwise automated debugging process.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180242

1 INTRODUCTION

Software debugging is a notoriously difficult, time consuming, and
human-intensive activity. The task of locating the faulty code (i.e.,
fault localization), specifically, is one of the most challenging parts
of debugging. For this reason, countless techniques have been pro-
posed over the years to help developers decrease the cost of fault
localization (and debugging in general). Among these approaches,
one that has been particularly successful is statistical fault localiza-
tion (SFL) (e.g., [6–9, 15, 16, 23, 27, 33, 34]).

The intuition behind SFL is that dynamic data collected while
running passing and failing test cases can be used to perform a
statistical analysis and to compute a suspiciousness value for each
entity (e.g., statement, basic block, or predicate) in the program.
Basically, the suspiciousness of a code entity should be directly
(resp., inversely) proportional to the number of failing (resp., pass-
ing) test cases that traverse that entity. Although SFL has been a
disruptive change in the area of debugging, and has generated a
tremendous amount of followup research, it has some significant
limitations. Most SFL techniques tend to make strong, often unreal-
istic assumptions on how developers behave when debugging. In
particular, previous work has shown that it is unrealistic to assume
that developers provided with a possibly long list of suspicious
statements would go through this list in order and immediately
spot the fault when they see it, without any additional context [25].

To address these limitations of SFL, while still taking advantage
of its strengths, we propose Enlighten, an interactive, feedback-
driven fault localization technique. We defined Enlighten so as
to follow the way in which debugging is typically performed, with
the goal of helping—rather than completely replacing—the humans
in the loop. Typically, developers would study the failure at hand,
make hypotheses on what the cause(s) of the failure may be, and
examine a subset of the execution that can confirm or disprove their
hypothesis. They would then leverage the additional understanding
of the failure acquired in this process to make new hypotheses or
refine the existing ones, examine additional subsets of the execution,
and so on. This process would continue until either the developers
give up or they find the fault.

Enlighten aims to mimic and support this process as follows.
First, it uses traditional SFL to formulate an initial hypothesis of
where the fault may be. Second, it identifies a relevant subset of
the execution that can help support or negate the formulated hy-
pothesis. Intuitively, this execution subset is identified in the form
of a method invocation that results in the execution of highly sus-
picious entities. Third, Enlighten presents the developer with a
query about the identified method invocation, expressed in terms of

https://doi.org/10.1145/3180155.3180242

Dynamic
Dependency
Graph (DDG)

Feedback
Analyzer

Incorrect
Data Values

Test Results
and Coverage

✔✔
✘ SFL

Calculator

Ranked List
of Statements

1. ---------
2. ----------
3. -------
4. --------
5. ----------
6. …

Query
Generator

De
bu

gg
in

g
Da

ta

Debugging
Query

✘
✔✔

✔
✔ ✔

Feedback

Test
Runner

Dependency
Analyzer

Test Suite

Program

ENLIGHTEN

Figure 1: Overview of the approach.

the input and resulting output of the invocation. Fourth, Enlighten
collects the developer feedback on the correctness of individual
data values in the provided inputs and outputs and encodes this
feedback as extra program specifications (i.e., extra tests that can
improve the SFL results). Finally, Enlighten repeats these steps
until the fault is found or the developer decides to stop.

Our approach can overcome the important limitations of tradi-
tional SFL that we highlighted earlier. Specifically, Enlighten does
not require developers to decide whether a statement in isolation
is correct, but rather to check high-level input-output relationships
at the method level. We believe that operating at the level of ab-
straction of a method, whose semantics is often well understood
by developers, can make the technique considerably more effec-
tive and usable. Moreover, developers can skip queries that they
cannot answer and, as shown in our evaluation, the technique is
resilient to occasional erroneous responses. Basically, when suc-
cessful, Enlighten can nicely guide the developers towards the
fault by following an iterative process that gets their input at a level
of abstraction they can typically understand.

To evaluate Enlighten, we implemented the approach and per-
formed two empirical studies. In our first study, we used an auto-
mated oracle to simulate the presence of a developer and applied
Enlighten to a large number of faults in 3 open source programs.
The faults we considered included 27 real faults and 1,780 mutation
faults, which we generated to increase the number of data points. As
our results show, for over 96% of the faults considered, Enlighten
required less than 10 interactions with the simulated user to local-
ize the fault. In the second part of our evaluation, we performed
an actual user study. We selected 4 real faults and 24 participants
and assigned to each participant two debugging tasks: one to be
performed using Enlighten, and one to be performed using the
debugging technique(s) of their choice. When using Enlighten, the
participants performed considerably better than when debugging
without the help of our tool. The improvement was significant in
terms of both number of faults localized and time needed to local-
ize the faults. Overall, we believe that our results provide a clear
indication that Enlighten is a promising approach for debugging
and fault localization.

The main contributions of this paper are:
• Enlighten, a new debugging technique that improves tra-
ditional fault localization approaches by incorporating user
feedback.

• A tool that implements Enlighten and that is publicly avail-
able, together with our experiment data and infrastructure
(http://www.cc.gatech.edu/~orso/software/enlighten/).

• Two complementary evaluations of Enlighten: an extensive
analytical study with simulated users, in which we evalu-
ate Enlighten on a large number of faults; and an actual
user study, in which we evaluate Enlighten in a realistic
debugging scenario involving real users.

2 APPROACH

Figure 1 provides a high-level view of Enlighten and shows input
(left side), output (right side), and main components of the tech-
nique (inside the box). As the figure shows, Enlighten takes as
input a program and its test suite and produces as output the likely
location of the fault. The fault localization process of Enlighten
is iterative and user-driven, as indicated by the loop and the de-
veloper’s avatar in the figure. Intuitively, at the beginning of the
process, Enlighten has limited knowledge about what may be
causing a failure. Each iteration, however, adds relevant debugging
information to Enlighten’s knowledge base, which helps eventu-
ally locating the bug. In the following, we first briefly describe the
main components of the technique and then discuss them in detail.
1) The Test Runner and Dependency Analyzer component takes as

input the faulty program and a test suite for the program and
computes, for each test, a dynamic dependence graph, test results,
coverage information, and a set of incorrect data values.

2) The SFL Calculator uses the test results and the coverage infor-
mation to produce a ranked list of suspicious statements, using a
traditional SFL approach.

3) The Query Generator takes as input the program, its test suite,
and the artifacts produced by the Test Runner and Dependency
Analyzer, and generates debugging queries using the SFL results.
Each query consists of a method invocation, together with its
inputs (parameters plus relevant state) and outputs (including
side effects), which the developer canmark as correct or incorrect.

http://www.cc.gatech.edu/~orso/software/enlighten/

4) The Feedback Analyzer takes as input the response to a debugging
query. If the developer has found the bug, the process stops.
Otherwise, the Feedback Analyzer updates the debugging data
based on the developer feedback and performs another iteration.

Conceptually, Enlighten can operate with test suites that con-
tain test cases triggering different faults. Multiple faults can nega-
tively affect the initial SFL results. However, because Enlighten
generates queries for a specific test case, the feedback provided
by the user should overcome the noise introduced by the multiple
faults. Moreover, there are several techniques that can cluster test
cases that fail for similar reasons (e.g., [5, 14]) and that could be
used to “specialize” the test suite before applying Enlighten.

It is also worth noting that debugging queries do not need to be
formulated at the granularity of method invocations, and alternative
partial program executions could be used instead. We choose to
use method calls because methods are a fundamental abstraction
developers use to reason about program semantics, and the behavior
of many methods should be well understood by the developers.

2.1 Test Runner & Dependency Analyzer

The Test Runner is a traditional driver that takes a program and its
test suite as input and produces as output the test results (pass or
fail), coverage data, and a set of incorrect values. This latter is a set of
incorrect values that is initialized, for each test case, with the value
associated with the corresponding failure. (The Feedback Analyzer
then adds to the set values marked as erroneous by the developers in
response to queries.) In our implementation of Enlighten, which
is for Java programs, a test failure can result in either an uncaught
exception or a failing assertion. In these cases, the value associated
with the failure is the reference to the object corresponding to the
uncaught exception or the failed assertion, respectively.

The Dependency Analyzer, conversely, produces a Dynamic
Dependence Graph (DDG) for every failing test in the test suite. In
the DDG, nodes represent occurrences of statements in the program,
whereas edges represent dynamic (data or control) dependences
between these statements. As it is traditionally done, statements
that contain more than one definition are split so that each node
contains at most one definition [11].

2.2 SFL Calculator

Enlighten uses a modified version of Ochiai [3] to perform SFL.
We selected Ochiai because it has been shown to perform well in
practice. The specific formula we use to compute the suspicious-
ness of a statement s is susp(s)=aef /

√(
aep + aef

)
×
(
aef + anf

) . In the
formula, aef (resp., anf) denotes the number of failing tests that
covered (resp., did not cover) s. The term aep denotes the sum of
the weights of the passing tests that covered s (as opposed to the
number of passing tests that covered s in the original formula). The
approach assigns weight 0.1 to the tests in the initial test suite and
weight 1 to the virtual tests that encode the feedback provided by
the user (see Section 2.4). The rationale for this decision is that we
want the human feedback to have a high impact on the SFL results,
as it relates to very focused partial executions. We picked these
specific numbers so that there is an order of magnitude difference
between the two. In future work, we plan to experiment with dif-
ferent weights and better understand their effect. In computing the

formula, statements that are not executed in any test are assigned
a suspiciousness score of 0.

2.3 Query Generator

Enlighten interacts with the developer through debugging queries,
which are expressed in terms of inputs and outputs of a suspicious
method invocation and are about the correctness of that invocation.
The query generation process consists of (1) selecting a failing test,
(2) selecting a suspicious method invocation, and (3) producing a
debugging query. We now describe each of these steps.

2.3.1 Selecting a Failing Test. Enlighten generates debugging
queries for a failing test. When multiple failing tests exist, and de-
velopers do not specify their test of choice, the technique selects the
test that makes the smallest number of method calls. The rationale
is that shorter traces should be easier to debug.

2.3.2 Selecting a Suspicious Method Invocation. Before describ-
ing how Enlighten selects suspicious method invocations, we
must define the concept of value suspiciousness. Traditional SFL
techniques (e.g., [3, 15]) associate suspiciousness scores to pro-
gram statements. Enlighten uses these scores to compute the
suspiciousness of values defined within a dynamic method invo-
cation (i.e., a specific runtime instance of a method execution).
In the following, slice(v,invoc) denotes the dynamic backward
slice associated with value definition v , limited to dynamic method
invocation invoc , v .instr denotes the instruction associated with
definition v (i.e., the instruction that defines v), and susp(instr)
denotes the suspiciousness score of instruction instr , as computed
by the SFL calculator. Enlighten computes the suspiciousness
of a value definition v for a dynamic method invocation invoc
in two steps. First, it computes the base suspiciousness of v as
base_susp(v, invoc) = max{susp(v ′.instr)|v ′ ∈ slice(v, invoc)}. It
then computes the actual value suspiciousness of v (val_susp(v))
based on whetherv affects, through direct or indirect dependencies,
values already known to be incorrect. Specifically, Enlighten com-
putes val_susp(v) by multiplying base_susp(v) by an amplifying

factor that is equal to either 1, if no previously labeled incorrect
value depends on v , or 1 plus the number of incorrect values that
depend on v , otherwise. Intuitively, values that affect others that
developers previously labeled as incorrect are more suspicious.

To select the method invocation for the next query, Enlighten
considers the output of all the invocations within the (failing) test
execution being considered, where the output includes the state
of the objects passed as parameters, the values of the modified
global variables and objects, and the return value (or exception
thrown).1 For each such output item, Enlighten computes the
corresponding value suspiciousness (i.e., the value suspiciousness
of the corresponding definition). It then identifies the outputs with
the highest value suspiciousness and selects the corresponding
method invocation. In case of ties, Enlighten prioritizes methods
higher in the call chain and chooses randomly when all conditions
are equal.

2.3.3 Producing a Debugging Query. Conceptually, a query is a
set of questions in the form “Is this value correct?”. Specifically, En-
lighten reports to the developer the inputs and outputs of amethod

1Enlighten currently ignores data written through I/O operations, which could be
added through additional engineering.

1 Set<Test> passingTests = ...
2 Set<Value> incorrectValues = ...
3
4 incorporateFeedback(Feedback feedback) {
5 if (feedback.isIncorrectInput()) {
6 incorrectValues.addAll(
7 feedback.getIncorrectInputValueDefs());
8 return;
9 }
10 for (Value v : feedback.getCorrectOutputValueDefs()) {
11 Test virtualTest = new Test();
12 virtualTest.setCoverage(slice(v, feedback.invoc));
13 passingTests.add(virtualTest);
14 }
15 if (feedback.hasIncorrectOutput()) {
16 response = askIfFaultFound();
17 if (response == ``yes'') return;
18 Set<Instr> directCov = feedback.invoc.getDirectCoverage();
19 if (response == ``no'') removeCoverage(directCov);
20 else { // ``I don't know''
21 Test virtualTest = new Test();
22 virtualTest.setCoverage(directCov);
23 }
24 incorrectValues.addAll(
25 feedback.getIncorrectOutputValueDefs());
26 Set<Instr> transitiveCov =
27 feedback.invoc.getTransitiveCoverage();
28 restrictSflTo(transitiveCov);
29 }}

Figure 2: Algorithm for incorporating feedback.

call that produces the most suspicious output (see Section 2.3.2) and
highlights the data values with various colors (and transparency)
to indicate their relative suspiciousness. Figure 4 shows an exam-
ple of a debugging query where the field numElems is classified as
highly suspicious. Developers can answer positively or negatively
to any number of questions in a debugging query. A positive (resp.,
negative) answer indicates that the developer believes the value
is correct (resp., incorrect) for that specific invocation. Intuitively,
labeling an output as incorrect indicates that the bug is either in the
method itself or in one of the methods it calls. Note that developers
can also label an input as incorrect (e.g., an unexpected null value);
labeling an input as incorrect tells Enlighten to ignore the current
invocation and focus on methods that led to this invocation instead.
2.4 Feedback Analyzer

Figure 2 shows the algorithm for incorporating the feedback pro-
vided by developers through their answers to debugging queries
(see Figure 1). Global variables passingTests and incorrectValues,
declared at lines 1 and 2, store coverage information for passing
tests and a set of known incorrect values observed during a de-
bugging session. Enlighten incorporates feedback by modifying
these sets. At lines 5–9, the algorithm handles the case of the de-
veloper marking some values on the input as incorrect; method
getIncorrectInputValueDefs returns the set of value definitions
specified as incorrect by the developer, and the algorithm adds
those values to the set incorrectValues and returns.

Lines 10–14 handle the case in which the developer has labeled
some output values as correct. In this case, Enlighten creates a
passing virtual test for each value v labeled as correct and updates
the debugging information accordingly: function slice computes
the dynamic backward slice from v, and function setCoverage

marks the statements in the slice as covered by the newly created
virtual test. Intuitively, adding passing virtual tests reduces the
suspiciousness of statements related to the computation of v.

Lines 15–29 handle the case in which the developer has labeled
some output values as incorrect, which indicates that there may
be faults in the current method or in one of the methods it calls.

Enlighten therefore asks the developer to check whether the fault
is in the code of the current method and to provide one of three
possible answers: yes , no, Idon′tknow (line 16). If the developer’s
answer is yes , the fault localization process ends (line 17). If the
answer is no, Enlighten marks all the statements in the method
as not covered (by any test), which has the effect of setting to
zero the suspiciousness of all instructions in this method (line 19).
(Note that this does not prevent Enlighten from looking for the
fault in methods called by this method.) Finally, if the answer is
Idon′tknow , Enlighten slightly decreases the suspiciousness of
the current method by adding a passing virtual test whose coverage
consists of the statements directly covered by the current invocation
(lines 21–22).

In these two latter cases (i.e., no and Idon′tknow answers), the
fault localization process then continues. As in the case of incorrect
input values, Enlighten adds output values marked as incorrect
to the set of known incorrect values. Lines 26–28 then restrict
the computation of SFL suspiciousness to the instructions covered,
directly or indirectly, by the current invocation only.

2.5 Illustrative Example

To help illustrate the details of our approach, we introduce an exam-
ple consisting of a simple faulty program. Figure 3 shows the code
and corresponding test suite for class BoundedStack, which imple-
ments a stack of bounded size and which we adapted from previous
work [30]. For brevity, we omitted the code that checks the capacity
of the stack in method push. The fault is located at line 8: method
pop should have no effect on an empty stack, but it does not check
whether the stack is empty. Consequently, when the stack is empty,
the method pop incorrectly decrements the field numElems denot-
ing the stack size, which becomes negative. This class has three unit
tests, and test t3 fails with an ArrayIndexOutOfBoundsException
when calling bs.peek() at line 35, after calling bs.pop() on an
empty stack. At that point, the field numElems is -1, and the expres-
sion size()-1 at line 12 evaluates to -2.

We now describe how Enlighten would support a developer in
localizing the fault in this code.

First Iteration. The left table in Figure 5 shows the initial SFL
results: line 13 is the most suspicious statement, while the actually
faulty line is ranked, in the worst case, at fourth place among the
eight executable statements of the program. The imprecision of SFL
is caused by the fact that line 13 happens to be invoked only in
the failing test case, and it thus has a stronger correlation with test
failures than the actual faulty statement.

The value stored in field numElems, defined during the invocation
of clear, gets its base suspiciousness score from the suspiciousness
of the definition at line 13, which is 1.0. This score is then multiplied
by its amplifying factor, which is computed based on the set of
incorrect data values. This set initially only contains the exception
object thrown when accessing the array elems at line 12 in t3.
Because this exception object has a dynamic dependence on the
value stored in field numElems, the amplifying factor associatedwith
that value would be 2, and the value suspiciousness for numElems
would therefore be 2.0 (see Section 2.3.2).

In this case, the value suspiciousness of numElems would be the
highest amongst all values observed. Enlighten would therefore

1 public class BoundedStack {
2
3 Integer[] elems; int numElems;
4 BoundedStack(int max) { elems = new Integer[max]; }
5
6 void push(Integer k) {// check size against capacity
7 elems[numElems++] = k; }
8 void pop() { --numElems; }
9 Integer peek() {
10 if (size() = 0)
11 return null;
12 else return elems[size() - 1]; }
13 void clear() { numElems = 0; }
14 int size() { return numElems; } ... }
15
16 @Test
17 t1() {
18 BoundedStack bs = new BoundedStack(3);
19 bs.push(3);
20 assertEquals(1, bs.size()); }
21
22 @Test
23 t2() {
24 BoundedStack bs = new BoundedStack(3);
25 bs.push(4); bs.push(5);
26 bs.pop();
27 assertEquals(4, bs.peek()); }
28
29 @Test
30 t3() {
31 BoundedStack bs = new BoundedStack(3);
32 bs.push(6);
33 bs.clear();
34 bs.pop();
35 assertEquals(null, bs.peek()); }

Figure 3: Stack and corresponding test suite.

generate a debugging query for clear, shown in Figure 4, with the
value of field numElems, marked as highly suspicious (i.e., red).

After inspecting the inputs and outputs, the developer would
find that the method correctly set numElems to 0 and respond to the
query accordingly. As a result, Enlighten would add a virtual test
to the test suite reflecting the positive feedback from the developer
on that output value. The coverage matrix on the right side of
Figure 5 shows the updated rankings after this first iteration. Note
that failing test cases and passing virtual test cases have weight 1,
as described in Section 2.2.

Second Iteration. The statements at lines 8, 10, and 12 appear at
the top of the ranking after the first iteration, with suspiciousness
0.95. Line 8 computes the value of bs.numElems in bs.pop(), while
the execution of line 10 and 12 result in an array-out-of-bound ex-
ception in bs.peek(). The value of bs.numElems at the exit of pop()
and the reference of the exception thrown by bs.peek() have thus
a base suspiciousness of 0.95. Because the observed failure dynami-
cally depends on both these values, their value suspiciousness is
1.90 (0.95 × 2). Since there are two invocations that result in the
same (highest) suspiciousness value, let us assume that Enlighten
randomly picks the call to function peek for the next query. In this
case, the exception object (along with the “this” reference) would
be the output of the call.

Given this query, the developer would realize that the exception
is expected, as it is caused by a stack size that was already negative
at the entry of the call. The developer would therefore mark field
numElems in the input as incorrect. Enlighten would thus add the
value (−1) in field numElems to the set of known-incorrect values,
which has the effect of increasing the amplifying factor associated
with all definitions that affect that value, and return (see Section 2.4).

Third Iteration. Due to the increase in its amplifying factor dur-
ing the last iteration, the data value bs.numElems in bs.pop()

Figure 4: Debugging query on the 1st iteration.

stmt. t1 t2 t3 susp.

4 1 1 1 0.91
7 1 1 1 0.91
8 0 1 1 0.95
10 0 1 1 0.95
11 0 0 0 0.00
12 0 1 1 0.95
13 0 0 1 1.00
14 1 1 1 0.91

result ✓ ✓ ✗ -
weight 0.1 0.1 1 -

stmt. t1 t2 t3 t4 susp.

4 1 1 1 0 0.91
7 1 1 1 0 0.91
8 0 1 1 0 0.95
10 0 1 1 0 0.95
11 0 0 0 0 0.00
12 0 1 1 0 0.95
13 0 0 1 1 0.71
14 1 1 1 0 0.91

result ✓ ✓ ✗ ✓ -
weight 0.1 0.1 1 1 -

Figure 5: Coverage matrices before / after the 1
st

iteration.

becomes the single most suspicious value definition, with a sus-
piciousness score of 2.85 (0.95 × 3). Enlighten would therefore
select the invocation of pop() for the third query to the developer.
The developer would likely and quickly understand the failure, by
observing that the value of this.numElems is 0 at the entry of the
call and −1 at its exit, and end the fault localization process.

3 EMPIRICAL EVALUATION

We conducted two complementary studies to evaluate Enlighten:
an analytical study with simulated users (Section 3.1) and a user
study with real users (Section 3.2). The former let us evaluate our
technique on a large number of data points and under various set-
tings, which is typically challenging in studies involving real users.
The study with real users, conversely, let us assess the usefulness of
Enlighten when considering actual developers’ behavior, which
can only be approximated in a simulation.

3.1 Study with Simulated Users

In this study, we investigated different aspects of Enlighten us-
ing simulated users and a large number of faults. Specifically, we
investigated the following research questions:
RQ1. Howmany iterations are necessary for Enlighten to localize

a fault?
RQ2. What is the impact of the customized SFL formula and the

amplifying factor on the effectiveness of Enlighten?
RQ3. How sensitive is Enlighten to incorrect user responses to

debugging queries?
The first question evaluates the performance of Enlighten in a

scenario in which the user always answers queries correctly. The
second question assesses the usefulness of some key features of
Enlighten. Finally, the third question evaluates how the perfor-
mance of Enlighten degrades when the accuracy of the developers’
responses degrades.

3.1.1 Experiment Setup.

Benchmark Programs and Faults. As benchmarks, we used three
open-source programs widely used in fault localization research:
Math, Lang, and Jsoup. Math and Jsoup are available in their public

Table 1: Benchmarks and faults considered.

Benchmark # Classes # Methods kLOC

Faults

Real Mutation

Math 236 - 447 1,723 - 3,899 43 - 83 11 1,174
Lang 123 - 170 1,835 - 2,281 45 - 57 8 490
Jsoup 75 - 206 611 - 1,032 8 - 14 8 116

repositories [1], whereas Lang is available in the Defects4J reposi-
tory [18]. (Math is also part of Defects4J, but with different versions
from the ones we considered.) We selected these benchmarks be-
cause they do not use features unsupported by Java PathFinder [31],
which Enlighten currently leverages to build DDGs. Table 1
presents these programs and faults. Since each program has multi-
ple versions, we report the number of classes, number of methods,
and code size as numeric ranges. We considered two sets of faults:
(1) 27 real faults, available together with the benchmarks, and (2)
1,780 mutation faults [4, 19], which we created using the mutation
tool Major [17]. We discarded faults that traditional SFL ranked in
a top position, as we wanted to evaluate Enlighten in the more
challenging (and more common) cases in which vanilla SFL would
not be useful. This led to discarding 3 of the 30 real faults available.
For the mutation faults, we ran Major in its default configuration
and only considered mutants killed by at least one failing test case.

Simulated Users (Automated Oracles). We used automated oracles,
in lieu of real users, to answer the queries that Enlighten generated.
Consider a query involving a specific invocation i of a method. To
suitably classify an output value as correct or incorrect, the oracle
re-runs i using the correct version of the program and compares
this expected output with that of i’s actual execution. To ensure
that i is executed with the same input as the faulty program, the
oracle starts the test execution on the faulty version and replaces
the definition of the faulty class with the correct one right before
invoking i , using runtime class re-definition [2].

We assume deterministic executions, so that any difference in
program state between the two runs on the faulty and correct
versions can only be caused by the fault. Also, for each query, our
oracle only provides feedback on the most suspicious of the output
values, rather than on multiple ones. Note that providing feedback
on multiple values would help locate the fault in fewer iterations,
and thus likely improve the performance of our technique. However,
we believe that the approach we chose mirrors well the behavior
of a real user, who is more likely to focus on one or at most a few
output values than on all of them. We confirmed this in our user
study (see Section 3.2).

In the simulated study, Enlighten terminates when (1) the cur-
rent most suspicious data value is actually faulty (i.e., it has been
produced by a faulty statement), and (2) this value is computed
directly in the current queried invocation. If these two conditions
are not met within 100 iterations, Enlighten terminates the fault
localization process and considers it failed.

Metrics. We used two metrics for evaluating the effectiveness of
Enlighten: (1) the number of queries answered by the simulated
user before finding the fault and (2) the number of distinct method
invocations involved in such queries (the same invocation can
become the most suspicious more than once). We consider these
metrics reasonable approximations of developer effort: the former

Table 2: Summary of results for real faults.

Benchmark Fault ID IRoF #Invocs
#Queries

default w/o Wt w/o AF

Math

C_AK_1 5 2 2 2 4
EDI_AK_1 37 2 2 2 6
F_AK_1 36 3 3 4 3
M_AK_1 112 8 10 22 13
VS_AK_1 16 1 1 2 3
CDI_AK_1 26 3 28 32 38
CRVG_AK_1 62 6 23 19 19
F_AK_2 9 1 1 1 5
MU_AK_1 29 1 1 1 10
MU_AK_4 36 3 3 4 8
URSU_AK_1 13 1 1 1 1

Lang

b10 63 10 16 39 17
b16 53 1 1 1 7
b24 65 1 1 1 64
b26 114 - - - -
b28 5 1 2 1 1
b39 53 2 2 2 4
b5 7 1 1 1 1
b6 17 3 3 4 6

Jsoup

1_3_4-1 3 1 1 1 11
1_3_4-3 73 4 4 4 -
1_4_2-1 16 1 1 1 1
1_5_2-2 21 2 2 2 2
1_5_2-5 20 1 1 1 1
1_6_1-1CR1 56 2 9 16 8
1_6_1-1CR2 3 1 1 1 14
1_6_3-3 36 5 5 3 6

Average - 2.58 4.81 6.46 10.12

measures the number of interactions between the developer and
the tool; the latter measures the number of times the developer
needs to understand a new invocation (i.e., partial execution).

3.1.2 RQ1: How many iterations are necessary for Enlighten to

localize a fault? To answer RQ1, we ran Enlighten on our bench-
marks and faults. We discuss the results for the real faults and those
for the mutation faults separately. Table 2 shows the summary of
our results for the real faults. Column “Fault ID” shows the iden-
tifier of the faults documented in the repositories from which we
obtained them. Column “IRoF” (Initial Rank of Fault) shows the
statement-level rank of the fault produced by SFL on the first itera-
tion of a debugging session. Column “# Invocs” shows the number
of distinct method invocations in the queries produced to locate the
fault. Column “# Queries” shows the number of queries answered
by the simulated user before finding the fault. Column “default”
shows the results obtained with the default configuration of En-
lighten, whereas the remaining columns show results obtained
using alternative configurations (see Section 3.1.3).

Enlighten successfully localized 23 of the 27 (85%) faults within
10 iterations or less, and 26 of the 27 (96%) faults within 28 iterations
or less. In 11 cases Enlighten required only 1 query to localize the
fault, even though SFL did not rank the faulty line first. Considering
all the faults in the study, the average number of iterations necessary
for localization was 4.81 (min = 1, max = 28), and the average
number of invocations involved was 2.58 (min = 1,max = 10).

We manually inspected the case of Lang b26, for which En-
lighten fails to locate the fault with less than 100 queries. The
faulty invocation is selected for the first time on the 15th debug-
ging query. The suspicious output of this invocation is a string
that is partially incorrect. However, due to the particular way the

Table 3: Summary of results for mutation faults.

Benchmark #Mut.

Queries

Not Found

[1, 1] [2, 10] [11, 100]

Math 1,174 915 77.94% 215 18.31% 29 2.47% 15 1.28%
Lang 490 438 89.39% 47 9.59% 5 1.02% 0 0.00%
Jsoup 116 77 66.38% 34 29.31% 2 1.72% 3 2.59%

Total 1,780 1,430 80.34% 296 16.63% 36 2.02% 18 1.01%

assertion of the failing test is written, the amplifying factor for all
characters in the string is the same, and the oracle fails to identify
the character that is actually incorrect. In subsequent debugging
queries, the same faulty invocation is selected several times, but the
oracle keeps missing the incorrect character for the same reason.
We conjecture that in this case a real developer would be more
likely to spot the error in the output string and provide the right
feedback, as humans tend to view strings as a whole instead of
as individual characters. (Our oracle is purposely weak to avoid
unfairly favoring our technique and considers the string as multiple
values, as discussed above.)

We also analyzed the correlation between IRoF and # Queries and
between IRoF and # Invocs. The Pearson’s correlation coefficient [26]
between the number of queries and the initial rank of the fault is
0.38, which suggests a weak positive correlation. The correlation
coefficient between the number of distinct invocations in the queries
and the initial rank of the fault is 0.67, suggesting a moderate
to strong positive correlation. Overall, the results suggest some
correlation between the problem difficulty, as measured by IRoF, and
the performance of Enlighten. However, the data also suggests
that, even in cases where IRoF has a considerably high value, #
Queries can be fairly low (e.g., Math.M_AK_1 and Lang.b10).

Table 3 shows the summary of our results for the mutation faults.
Column “# Queries [min, max]” shows the number of mutants for
which the number of queries needed to locate the corresponding
fault was between the indicated min and max values. For example,
only one query was necessary to locate 915 faults (i.e., mutants)
in Math, whereas between two and ten queries were necessary to
localize 47 faults in Lang. Overall, Enlighten successfully localized
99% of the 1,780 mutation faults, and on average, over 96% of all
mutation faults were localized with at most 10 queries. Enlighten
failed to localize the fault in only 1.01% of the cases. The results
suggest that Enlighten works slightly better for mutation faults
than for real faults, at least for the cases we considered. The reason
may be that many of the real faults are inherently more difficult to
debug—a conjecture that is potentially supported by the observation
that some of these faults were present in the released versions of
popular libraries.

Answering RQ1: Our results show that Enlighten can identify

a large number of faults within a few iterations. With 10 or less

single answers to queries, Enlighten located 85% of the real faults

and 96% of the mutation faults.

3.1.3 RQ2: What is the impact of the customized SFL formula and

the amplifying factor on the effectiveness of Enlighten? The weights
used to compute statement suspiciousness and the amplifying factor
used to compute value suspiciousness are two important aspects of
the design of Enlighten. This research question evaluates their

effectiveness. To answer RQ2, we ran Enlighten disabling each
of these features separately and compared the results so obtained
with those obtained using both features.

Table 2 shows the results for this study in the columns labeled
“# Queries”. Column “w/o Wt” shows the number of answers to
queries that Enlighten needed to locate the fault when weights
were not taken into account (i.e., we simply set to 1 the weights
of all tests, which are used to compute the term aep of the SFL
formula in Section 2.2). Results show that, on average, Enlighten
needed 6.46 queries in this setting, compared to 4.81 queries in the
default configuration, which correspond to a 34% increase. Column
“w/o AF” shows the number of queries when the amplifying factor
(AF) was ignored (see Section 2.3.2). When using this configuration,
Enlighten failed to locate the fault Jsoup.1_3_4-3 and needed, on
average, 10.12 queries to locate the remaining faults. This corre-
sponds to a 110% increase over the default configuration. Note that,
due to the statistical nature of Enlighten, it is possible for the
configurations “w/o Wt” and “w/o AF” to perform slightly better in
some cases (e.g., Math CRVG_AK_1), but these cases are rare.

We observed similar results on mutation faults, which we do not
report for space reasons. For “w/o Wt”, the success rate of locating
the fault decreased by 0.5%, and the average number of queries
increased by 3.7%. For “w/o AF”, the success rate decreased by 1.8%,
and the average number of queries increased by 139%.

Answering RQ2: Results indicate that the customized SFL formula

and the amplifying factor both contribute to improve Enlighten’s

performance. The contribution of the customized SFL formula is

lower compared to the contribution of the amplifying factor.

3.1.4 RQ3: How sensitive is Enlighten to incorrect user responses

to debugging queries? So far, we have assumed that developers do
not make mistakes. In practice, however, they can err by labeling
correct values as incorrect or vice versa. This research question
investigates how sensitive is the performance of Enlighten to
incorrect values labeled as correct. (We leave to future work the
investigation of the opposite case, which we consider less likely
to happen.) To conduct this study, we modified our automated
oracle so that it produced this type of erroneous answers with
a configurable probability. Specifically, we considered error rates
ranging from 5% to 30%, with 5 percentage points increments, and
measured the number of queries and the number of cases in which
Enlighten fails. As before, we configured the oracle to provide
only one answer per query.

Table 4 shows, for each benchmark and for the different error
rates considered, the average increase in the number of queries
necessary to localize a fault over the case of an ideal oracle (i.e., a
user that does not makemistakes). For example, when the erroneous
answer rate is 30%, Enlighten needs, on average, 42.67% more
queries to locate a fault. The results in the table show, as expected,
a positive correlation between the rate of erroneous answers and
the increase in the number of answers required to locate a fault.
However, the results also show that Enlighten is still able to
localize the fault in almost all cases. Even with 30% erroneous
answers, the average success rate was higher than 99.8%.

Table 4: Sensitivity of Enlighten to human errors. Values

indicate the percentual increase in the number of queries

over an ideal oracle (i.e., a user that does notmakemistakes).

Benchmark

Error rate
5% 10% 15% 20% 25% 30%

Math 5.92% 12.26% 18.82% 25.46% 32.08% 38.58%
Lang 6.08% 14.36% 21.93% 29.44% 36.74% 43.75%
Jsoup 7.63% 15.88% 24.37% 32.82% 41.02% 48.85%

Average 6.13% 13.89% 21.24% 28.58% 35.75% 42.67%

Answering RQ3: Although the number of queries needed to localize

a fault increases with the ratio of erroneous answers, Enlighten

can successfully locate the fault in most cases even in the presence

of (considerable amounts of) erroneous feedback.

3.2 User Study

In addition to our study with simulated users, we conducted two
actual user studies to evaluate Enlighten in a realistic scenario.
Our user studies involve two debugging tasks each, where each task
consists of localizing and proposing a fix for a fault in a program.

3.2.1 Study Setup.

Benchmarks, Faults, and Participants. The software benchmarks
and faults we selected are non-trivial, real faults that existed in
released versions of popular software libraries written in Java. To
simulate a scenario in which participants debug code with which
they are familiar, we wanted software whose semantics should be
well understood by a person with a computer science background.
To this end, we chose code that involves either basic mathematical
concepts or XML parsing. In addition, as we did for our simulated
study, we selected faults for which traditional SFL techniques do
not perform well (i.e., the faulty statements are not ranked among
the most suspicious statements). We do so to avoid trivial cases in
which SFL by itself would be enough to localize the fault.

Table 5 summarizes the information about the two studies we
performed. For each study and each task in that study, it shows the
benchmark used in the task and a concise description of the corre-
sponding fault considered. As the table shows, the faults we used
for Tasks 1, 2, and 4 were selected from a benchmark used in the
simulated study, whereas the fault we selected for Task 3 was used
in a previous user study on SFL techniques [25]. It is worth noting
that, although we used the same benchmark for Tasks 1 and 2, the
parts of the program involved in the two tasks are different. In other
words, completing Task 1 should not affect the participants’ perfor-
mance in Task 2. (Even if it had an effect, it should benefit equally
participants performing Task 2 with and without Enlighten.)

Based on our assessment and observations during pilot studies,
the pair of debugging tasks in each study are of similar difficulty, but
the tasks in Study 2 are significantly harder than those in Study 1.
This let us evaluate how Enlighten performs on faults at different
difficulty levels.

For each of the studies, we recruited 12 participants (different
for each study). The participants are graduate students enrolled
in the computer science program either at Georgia Tech or at the
Federal Univesity of Pernambuco. We also required the participants

Table 5: Debugging tasks for the user study.

User Study Task ID Benchmark Fault Description

1 Task 1 Math Complex number multiplication error
Task 2 Math Least common divisor computation error

2 Task 3 Nanoxml XML qualified name parsing error
Task 4 Jsoup Absolute address construction error

to (1) have at least three years of programming experience and (2)
be familiar with the Java language and the Eclipse IDE.

For each study, we randomly assigned the participants to one
of two groups: Group A or Group B. Participants in Group A per-
formed Task 1 (Study 1) or Task 3 (Study 2) without Enlighten
and Task 2 (Study 1) or Task 4 (Study 2) with Enlighten. Partici-
pants in Group B performed Task 2 (Study 1) or Task 4 (Study 2)
without Enlighten and Task 1 (Study 1) or Task 3 (Study 2) with
Enlighten. The participants not using Enlighten were allowed
to use their preferred traditional debugging approach(es) (e.g., the
Eclipse IDE debugger, print statements, step-by-step execution).

We used traditional debugging approaches instead of SFL as
our baseline for two reasons. First, existing studies show that SFL
tends to produce no measurable advantages over traditional debug-
ging [25, 32], so we do not expect user performance to improve
using SFL instead of traditional debugging. Second, we believe that
traditional debugging is a more objective baseline, as it relies on
mature/well-accepted tools known to our participants.

We implemented Enlighten as a plugin for the Eclipse IDE and
distributed the materials for the user study as a virtual machine
image, so as to ensure a uniform experience across all participants.
We informed the participants that we would measure their perfor-
mance while debugging using two debugging approaches, without
mentioning that Enlighten was our technique. Before the study
began, the participants read a tutorial on the Enlighten plugin.
When done with the tutorial, they performed their assigned debug-
ging task. The time limit for each debugging task in Study 1 and
Study 2 was 20 and 30 minutes, respectively.

In pilot studies, we found that the participants gave up on their
tasks due to the complexity of the code involved and their lack of
understanding of (some of) that code. Therefore, when perform-
ing the actual study, we allowed participants in all groups to ask
questions about the semantics of a piece of code during the debug-
ging process. This is akin to the common scenario in which the
person who is performing the debugging task asks questions about
the code to a developer with deeper knowledge of the software
involved. We made sure to answer only general questions about
what the methods were supposed to do, and we did not answer any
questions about the faults being diagnosed.

3.2.2 Results. Tables 6 and 7 show the results of the two studies.
In both tables, the first two columns show the ID and the corre-
sponding group for each participant. Columns labeled “Success”
indicate whether the participant correctly identified the fault in the
debugging tasks (“Y”) or not (“N”). Columns labeled “Time (min)”
report the time spent in localizing the fault (in case of success). For
both groups, the results for the task performed using traditional
debugging are shown in the 3rd and 4th columns, and the results
for the task performed using Enlighten are shown in the 5th and

Table 6: Results for User Study 1.

Participant Group
Task 1 (Traditional) Task 2 (Enlighten)

Success Time (min) Success Time (min)

1 A Y 17.5 Y 5.4
3 A Y 8.9 Y 11.0
5 A Y 8.0 Y 10.8
7 A Y 5.5 Y 8.5
9 A Y 18.3 Y 16.0
11 A Y 25.1 Y 16.4

Task 2 (Traditional) Task 1 (Enlighten)

Success Time (min) Success Time (min)

2 B Y 19.7 Y 8.6
4 B Y 20.1 Y 9.0
6 B Y 12.2 Y 4.0
8 B Y 20.8 Y 9.5
10 B Y 18.9 Y 8.4
12 B Y 11.0 Y 5.4
Average 100% 15.5 100% 9.4

6th columns. The last row in each table shows the average success
rate and debugging time for each task and technique.

In Study 1, all participants successfully completed both of their
debugging tasks. On average, participants took 15.5 minutes to
complete the tasks using traditional debugging, and 9.4 minutes
to complete the tasks using Enlighten. Therefore, for the tasks
considered, Enlighten reduced the debugging time by 39% on
average. This difference is statistically significant with a p-value
less than 0.005 using a one-tailed t test.

In Study 2, participants successfully completed 58.3% of the de-
bugging tasks using traditional debugging, and the average debug-
ging time for these successful cases was 23.2 minutes. Conversely,
the participants successfully completed all their tasks when us-
ing Enlighten, and the average time spent on each task was 9.5
minutes. In these cases, therefore, the use of Enlighten increased
the success rate by 71.5% and reduced the debugging time by 59%.
Also in this case, the differences for both metrics are statistically
significant. The p-value of the one-tailed t-test of the success rates
is 0.009, and that of the debugging time is less than 0.001.

On average, for the tasks completed using Enlighten, partici-
pants needed 67% more queries than the perfect oracle to localize
the faults, which indicates that humans domakemistakes in answer-
ing queries. However, it is worth noting that 71% of the participants
needed exactly the same number of queries as the perfect oracle.

Comparing the reduction in debugging time in the two studies,
the results seem to indicate that Enlighten improves developers’
efficiency in debugging tasks more significantly for faults that are
more difficult to diagnose, which we consider a positive result.

At the end of the user study, we asked the participants to com-
plete a questionnaire about whether/how Enlighten helped them,
as well as what other information could have been provided by
the tool to make it easier to localize and understand the fault. The
two advantages of Enlighten most frequently mentioned were
that (1) it points developers to the likely faulty invocation in the
execution, and (2) it provides detailed program state information
for inspection. These two aspects roughly correspond to what we
consider to be the main improvements we made in Enlighten over
traditional debugging and traditional SFL techniques. The most
wanted feature that Enlighten does not currently provide, accord-
ing to the questionnaires, is the ability to get the context of the

Table 7: Results for User Study 2.

Participant Group
Task 3 (Traditional) Task 4 (Enlighten)

Success Time (min) Success Time (min)

1 A N - Y 9.3
3 A Y 21.9 Y 18.0
5 A N - Y 9.6
7 A Y 30.0 Y 5.9
9 A Y 24.0 Y 6.0
11 A Y 21.8 Y 9.9

Task 4 (Traditional) Task 3 (Enlighten)

Success Time (min) Success Time (min)

2 B N - Y 11.1
4 B N - Y 7.4
6 B Y 16.9 Y 7.3
8 B Y 25.4 Y 11.0
10 B Y 22.4 Y 4.1
12 B N - Y 14.9
Average 58.3% 23.2 100% 9.5

method invocation in the debugging query, including the call stack
and the position of the current invocation in the entire execution.
Several participants thought that this information would give them
a better understanding of the entire debugging process and help
them give feedback to debugging queries more efficiently. It would
be straightforward to provide this additional information, and we
are planning to do it in future work.

We also interviewed the participants about their general feeling
on the debugging experience using Enlighten. Multiple partici-
pants mentioned that learning to use the Enlighten plugin in the
time we allocated for the training was challenging. One partici-
pant specifically pointed out that it was difficult to change their
debugging mindset from a traditional code-centric paradigm to a
more data-centric one. Finally, several participants reported that
they spent a long time inspecting the code of the method in the
query only to later discover that it was not necessary. We speculate
that these feedback may indicate that people’s performance using
Enlighten could further improve after they get more familiar with
the technique.

3.3 Limitations and Threats to Validity

The main limitation of our current implementation of Enlighten
comes from the computation of the dynamic dependence informa-
tion. Due to the enormous engineering effort required to develop
a tool that implements our approach, the current dynamic depen-
dency analyzer does not support some features of the Java standard
library (e.g., certain encryption algorithms and Swing). This is an
implementation-specific limitation and can be addressed with ad-
ditional engineering. Another limitation, shared with many other
debugging techniques that rely on dynamic slicing, is that the per-
formance overhead of Enlighten during program execution can be
significant. In the user study, however, no participant complained
about the running time of Enlighten.

The major internal threat to validity for our evaluation has to do
with possible faults in our implementation of Enlighten that may
invalidate our results. To address this threat, we carefully checked
and unit tested our code during development. Furthermore, for the
real faults in the benchmark, wemanually inspected the interactions
between the automated oracle and Enlighten to confirm that the
sequences of debugging queries and feedback were correct.

The main external threat to validity is that the benchmarks we
used might not be representative of faults in real-world scenarios
and/or our results may not generalize. To mitigate this threat, we
selected benchmarks that perform different types of tasks: manipu-
lating complex data structures, performing numeric computations,
and processing XML files. In addition, in the study with simulated
users we evaluated Enlighten with both real faults and a large set
of mutation faults, and in the study with real developers we used
four different real-world faults. Another possible external threat is
that the population of participants we recruited for the user study
might not be representative of real developers. To mitigate this
threat, we required the participants to have at least three years of
programming experience.

4 RELATEDWORK

Countless papers have been published on debugging and fault lo-
calization. For the sake of space, this section focuses on the work
that is most closely related to Enlighten.

Algorithmic Debugging (AD) is an interactive debugging tech-
nique that was proposed in the functional programming community
by Shapiro in the early eighties [28]. Similar to our technique, AD
asks developers questions on the correctness of specific function
invocations in the execution tree for a given failing test. The tree
is then systematically pruned based on the answers to these ques-
tions until the fault can be isolated. Enlighten differs from AD
in two important ways. First, AD uses basic heuristics to identify
which function invocations to target, whereas Enlighten leverages
SFL and dynamic dependences. Second, AD requires developers
to determine whether a function invocation is completely correct,
which is difficult to do in the common case of functions that involve
large portions of the program state. (This problem is common to
most techniques based on AD [29], including our own previous
work [22], and tends to make these approaches error-prone and
impractical.) Conversely, Enlighten asks developers for feedback
on individual input and output values, which we believe (and our
initial results show) is a more realistic approach.

Ko and Myers proposed Whyline [20, 21], an interactive debug-
ger that lets a developer trace incorrect variable values backwards
by asking questions about how these values came to be. Whyline
is similar in spirit to dynamic backward slicing—the user follows
a sequence of incorrect variable values through program depen-
dence chains to get to the fault. More recently, Lin and colleagues
proposed Microbat [24], a feedback-driven debugging technique
that improves on Whyline by inferring patterns in execution traces
and using developer feedback to skip partial program executions,
expediting the backward tracing process. Enlighten, Whyline,
and Microbat all leverage lightweight user feedback to improve
fault localization. However, in contrast to these other techniques,
the queries Enlighten produces are contextualized by method
invocations as opposed to focused on arbitrary execution points.
This feature not only lets the developer obtain relevant contextual
information when answering specific queries, but also enables the
technique to jump across calling contexts guided by the suspicious-
ness of program statements.

The debugging technique proposed by Hao and colleagues [12]
sets breakpoints in the faulty program using suspiciousness of pro-
gram statements given by SFL. At each breakpoint, the technique

asks the developer to inspect the program using a debugger to de-
termine whether the program state has been infected by the fault.
The suspiciousness of related statements is then increased or de-
creased by a fixed ratio based on the provided feedback. In contrast
to their approach, Enlighten selects for inspection a small set of
suspicious data items within selected method invocations; it does
not require the developers to find faulty memory locations in the
entire program state. In addition, Enlighten incorporates develop-
ers’ feedback into the SFL algorithm, so as to dynamically update
suspiciousness information. In follow-up work, Hao and colleagues
proposed VIDA [13], which leverages program dependences to find
statements whose suspiciousness must be updated. Compared to
VIDA, Enlighten asks for feedback on the input-output relations
of methods, whose intended behavior tends to be well understood,
rather than on individual program statements.

Gong and colleagues [10] proposed an interactive fault localiza-
tion technique that continuously updates the ranked list of suspi-
cious statements as the user marks statements as faulty and non-
faulty. The intuition behind the technique is that, once a statement
is labeled as non-faulty, the other statements executed in the same
failing test case should be considered more suspicious. Like tra-
ditional SFL approaches, and unlike Enlighten, their technique
requires developers to determine the correctness of individual pro-
gram statements without contextual information, which has been
shown to be problematic [25].

5 CONCLUSIONS

We presented Enlighten, an interactive feedback-driven fault lo-
calization technique. Enlighten combines SFL, algorithmic de-
bugging, and dynamic dependence analysis by leveraging their
strengths while mitigating their weaknesses. In particular, unlike
traditional SFL, Enlighten ask developers contextualized questions
that consist of queries about the inputs and outputs associated with
concrete instances of suspicious method invocations. Also, unlike
algorithmic debugging, Enlighten lets developers reason in terms
of individual input/output data items, which is important in order
to be able to handle large program states.

Our empirical results show that Enlighten is effective when
applied to both real-world and mutation faults in the benchmarks
we considered. Specifically, our study with simulated users shows
that Enlighten can localize a majority of the faults with less than
10 debugging queries; and our user study shows that Enlighten
can provide significant improvements over traditional debugging in
terms of both number of faults localized and time needed to localize
the faults.

In future work, we will conduct additional user studies to further
investigate our core assumption that methods are a suitable level of
abstraction for developers to understand program behavior during
debugging. We will also perform a direct comparison between our
approach and traditional SFL techniques in real-world scenarios.
Finally, we will extend our implementation to incorporate it into
additional IDEs and to remove some of its practical limitations.

ACKNOWLEDGMENTS

This work was partially supported by the NSF under grants CCF-1161821
and 1548856, and by CNPq under grants 457756/2014-4 and 203981/2014-6.

REFERENCES

[1] 2015. SAEG - Software Analysis and Experimentation Group (at Universidade
de São Paulo (USP), Brazil). (2015). https://github.com/saeg/experiments/tree/
master/jaguar-2015.

[2] 2017. Java Instrumentation API (Class Redefinition). (2017). https://docs.oracle.
com/javase/8/docs/api/java/lang/instrument/package-summary.html.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An Evaluation
of Similarity Coefficients for Software Fault Localization. In Proceedings of the

12th Pacific Rim International Symposium on Dependable Computing (PRDC 2006).
IEEE Computer Society, Washington, DC, USA, 39–46.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche. 2005. Is Mutation an Appropriate
Tool for Testing Experiments?. In Proceedings of the 27th International Conference

on Software Engineering (ICSE 2005). ACM, New York, NY, USA, 402–411.
[5] B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa, and

Vipindeep Vangala. 2009. DebugAdvisor: A Recommender System for Debugging.
In Proceedings of the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering (ESEC/FSE 2009). ACM, New York, NY, USA, 373–382.
[6] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. 2003. From Symptom to

Cause: Localizing Errors in Counterexample Traces. In Proceedings of the 30th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL 2003). 97–105.
[7] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. An-

gelic Debugging. In Proceedings of the 33rd International Conference on Software

Engineering (ICSE 2011). 121–130.
[8] Holger Cleve and Andreas Zeller. 2005. Locating Causes of Program Failures. In

Proceedings of the 27th International Conference on Software Engineering (ICSE

2005). 342–351.
[9] Brian Demsky, Michael D. Ernst, Philip J. Guo, StephenMcCamant, Jeff H. Perkins,

and Martin Rinard. 2006. Inference and Enforcement of Data Structure Con-
sistency Specifications. In Proceedings of the 2006 International Symposium on

Software Testing and Analysis (ISSTA 2006). 233–244.
[10] Liang Gong, David Lo, Lingxiao Jiang, and Hongyu Zhang. 2012. Interactive

fault localization leveraging simple user feedback. In Proceedings of the 28th

International Conference on Software Maintenance (ICSM 2012). 67–76.
[11] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. 1999. An Efficient Rele-

vant Slicing Method for Debugging. In Proceedings of the 7th European Software

Engineering Conference Held Jointly with the 7th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering (ESEC/FSE 1999). Springer-Verlag,
London, UK, UK, 303–321.

[12] Dan Hao, Lu Zhang, Tao Xie, Hong Mei, and Jia-Su Sun. 2009. Interactive Fault
Localization Using Test Information. Journal of Computer Science and Technology

24, 5 (2009), 962–974.
[13] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei. 2009. VIDA: Visual interac-

tive debugging. In Proceedings of the 31st International Conference on Software

Engineering (ICSE 2009). 583–586.
[14] James A. Jones, James F. Bowring, and Mary Jean Harrold. 2007. Debugging in

Parallel. In Proceedings of the 2007 International Symposium on Software Testing

and Analysis (ISSTA 2007). ACM, New York, NY, USA, 16–26.
[15] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test

Information to Assist Fault Localization. In Proceedings of the 24th International

Conference on Software Engineering (ICSE 2002). 467–477.
[16] Manu Jose and Rupak Majumdar. 2011. Cause Clue Clauses: Error Localiza-

tion Using Maximum Satisfiability. In Proceedings of the 32Nd ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2011).
437–446.

[17] René Just. 2014. The Major mutation framework: Efficient and scalable mutation
analysis for Java. In Proceedings of the International Symposium on Software Testing

and Analysis (ISSTA). San Jose, CA, USA, 433–436.
[18] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database

of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis

(ISSTA 2014). ACM, New York, NY, USA, 437–440.
[19] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and

Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22Nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering (FSE 2014). ACM, New York, NY, USA,
654–665.

[20] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging
Interface for Asking Questions About Program Behavior. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI 2004). ACM,
New York, NY, USA, 151–158.

[21] Andrew J. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking and
AnsweringWhy andWhy Not Questions About Program Behavior. In Proceedings
of the 30th International Conference on Software Engineering (ICSE 2008). ACM,
New York, NY, USA, 301–310.

[22] Xiangyu Li, Marcelo d’Amorim, and Alessandro Orso. 2016. Iterative User-Driven
Fault Localization. Springer International Publishing, Cham, 82–98.

[23] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
2005. Scalable Statistical Bug Isolation. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2005).
15–26.

[24] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-
based Debugging. In Proceedings of the 39th International Conference on Software

Engineering (ICSE 2017). IEEE Press, Piscataway, NJ, USA, 393–403.
[25] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Techniques

Actually Helping Programmers?. In Proceedings of the 2011 International Sympo-

sium on Software Testing and Analysis (ISSTA 2011). ACM, New York, NY, USA,
199–209.

[26] Karl Pearson. 1895. Notes on regression and inheritance in case of two parents.
In Royal Society of London. 246–263.

[27] Manos Renieris and Steven P. Reiss. 2003. Fault Localization With Nearest
Neighbor Queries. In Proceedings of the 18th IEEE International Conference on

Automated Software Engineering (ASE 2003). 30–39.
[28] Ehud Y. Shapiro. 1983. Algorithmic Program DeBugging. MIT Press, Cambridge,

MA, USA.
[29] Josep Silva. 2011. A Survey on Algorithmic Debugging Strategies. Advances in

Enginnering Software 42, 11 (Nov. 2011), 976–991.
[30] P. David Stotts, Mark Lindsey, and Angus Antley. 2002. An Informal Formal

Method for Systematic JUnit Test Case Generation. In Proceedings of the Second

XP Universe and First Agile Universe Conference on Extreme Programming and

Agile Methods (XP/Agile Universe 2002). 131–143.
[31] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio

Lerda. 2003. Model Checking Programs. Automated Software Engineering 10, 2
(April 2003), 203–232.

[32] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the Use-
fulness of IR-based Fault Localization Techniques. In Proceedings of the 2015

International Symposium on Software Testing and Analysis (ISSTA 2015). ACM,
New York, NY, USA, 1–11.

[33] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Locating Faults Through
Automated Predicate Switching. In Proceedings of the 28th International Conference
on Software Engineering (ICSE 2006). 272–281.

[34] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken.
2006. Statistical Debugging: Simultaneous Identification of Multiple Bugs. In
Proceedings of the 23rd International Conference on Machine Learning (ICML 2006).
1105–1112.

https://github.com/saeg/experiments/tree/master/jaguar-2015
https://github.com/saeg/experiments/tree/master/jaguar-2015
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html

