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Abstract

The complexity of constraints is a major obstacle for constraint-based software verification. Au-
tomatic constraint solvers are fundamentally incomplete:input constraints often build on some unde-
cidable theory or some theory the solver does not support. This paper proposes and evaluates several
randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3),
a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search
solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated con-
straints and another generated with a concolic execution of8 subjects. In addition to fully decidable
constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo
and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in par-
ticular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate
decidable constraints. For the remaining subjects the solvers are complementary.

1 Introduction

Software testing is important and expensive [8, 28, 35]. Several techniques have been proposed to reduce
this cost. Automation of test data generation, in particular, can improve testing productivity. Random
testing [13, 30] and symbolic testing [25] are two widely used techniques with this goal and with well-
known limitations. On the one hand, random testing fails to explore a search space in a systematic
manner: it can explore the same program path repeatedly and also fail to explore important paths (i.e.,
paths to which only a small portion of the space of input data can lead to an execution). On the other
hand, pure symbolic testing is problematic for indexing arrays, dealing with native calls, detecting infinite
loops and recursion, and, especially, dealing with undecidable constraints. Combined random-symbolic
testing [22] has been recently proposed to circumvent theselimitations. One important limitation it
attempts to address is theincapability of solving general constraints. This is the focus of this paper. We
study the impact of alternative randomization strategies for solving constraints. In this setting, random-
symbolic testing reduces to random-symbolic constraint solving.

One possible way to combine random and symbolic solvers is tofirst delegate to the random solver
the parts of a constraint that build on theories a symbolic solver does not support. Then use the solution
to simplify the original constraint. And finally combine therandom solution with the one obtained from
calling the symbolic solver on the simplified constraint. (For simplicity, we assume the constraint is sat-
isfiable and that the random solver can find a solution.) Important to note is that, as for typical decision
procedures in SMT solvers [20, 37], random and symbolic solvers arenot independent in this combina-
tion; theycollaborate. One practical consequence of this is that the more constraints the symbolic solver
rejects the more complex random solving becomes, and conversely. Therefore, random solving is critical
for the effectiveness of the combined solver.

We definerecall as the fraction of constraints that a solver can find solutions out of the total number
of satisfiable constraints. (We classify aproximately a constraint as satisfiable if atleast one solver can
find solution to it.) This metric quantifies completeness. Our goal is to increase recall. This paper makes
the following contributions:
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• The proposal and implementation of several randomized constraint solvers. We implemented a
plain random solver, three hybrid constraint solvers, and two search-based solvers. We use the
random solver and the symbolic solver (in our case, CVC3 [1])as baselines for comparison;

• Empirical evaluation of solvers with manually constructedconstraints and constraints generated
with a concolic execution of 8 subjects.

2 Technique: Randomized Solvers

This section presents randomized solvers with common input-output interface.Input. All solvers take
as input (i) a constraintpc (in reference to apath conditionfrom a symbolic execution), (ii) a random
seeds, and (iii) a range of values[lo,hi]. An input constraint takes the form

∧
bi , wherebi is a boolean

expression constructed, in principle, with any logical system. For example, the expressionx > 0 ∧ x >

y+ 1 illustrates a valid input constraint. We often use the termconstraint alone orclausein reference
to a single boolean expressionbi and constraint systemor pc in reference to the conjunction of all
constraints.Output. A solution is a vector of variable assignments that satisfies one input constraint.
For instance,〈x 7→ 2,y 7→ 0〉 is a solution to the constraintx > y+ 1 (using integer variables). A solver
returns a solution when it finds one or the flagemptyotherwise.

Note on implementation. We wrote all solvers in the Java language, used the BCEL library [14] to
instrument the bytecode of the experimental subject for concolic execution, and used part of the code
from the JPF symbolic execution [5] for the integration withCVC3.

2.1 Baseline solvers

We use the solversranSOL andsymSOL as representatives of plain random and symbolic solvers re-
spectively. In our experiments we use these solvers as baselines for comparison. Figure 1 shows the
pseudo-code for a random constraint solver ranSOL. The mainloop generates random input vectors and
selects those that satisfypc (lines 1-6). The expression vars(pc) denotes the set of variables that occur
in pc. Functionrandomselects random integer values in the range[lo,hi] and builds assignments to
each variable in this set (line 2). (For simplification, we only show the case for integers.) The function
eval(pc,

−→
iv ) checks whether the candidate solution

−→
iv modelspc. This function evaluates the concrete

boolean expression thatpc encodes using the variable assignments in
−→
iv . ranSOL returns

−→
iv at line 4

if it is a solution topc, or returnsemptyon timeout. Symbolic constraint solvers are complete for a set
of decidable theories. For example, CVC3 [1] supports rational and integer linear arithmetic (among
others). However, these solvers are incomplete for solvingconstraints with non-linear arithmetic, integer
division and modulo whose theories are undecidable. We use the labelsymSOL to refer to a symbolic
solver. We used CVC3 in our experiments.

2.2 Heuristic search solvers

This section discusses two solvers based on well-known heuristic search techniques: genetic algorithms
(GA) [23] and particle swarm optimization (PSO) [24]. Conceptually, these solvers attempt to optimize
the random search that ranSOL drives. The basic task of thesealgorithms is to search aspaceof candidate
solutions to identify the best ones in terms of a problem-specific fitness function. The search process
usually starts with the selection of randomly-chosen individuals (i.e., candidate solutions to the search
problem) in the search space. The search proceeds by making movements on each individual iteratively
with search operatorsuntil the search meets some stop criteria (e.g., the result is good enough or the
search time expired). The decision to move individuals in the search space depends on the evaluation of
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Input: path conditionpc
Input: random seeds, range[lo,hi]

1: while ¬timeoutdo
2:

−→
iv ⇐ random(vars(pc), range)

3: if eval(pc,
−→
iv ) then

4: return
−→
iv

5: end if
6: end while
7: return empty

Figure 1: Random (ranSOL)

Input: path conditionpc
Input: random seeds, and range[lo,hi]

1: (pcgood, pcbad) ⇐ partition(pc)
2:

−→
iv1 ⇐ symSOL.solve(pcgood)

3: if (
−→
iv1 = empty) then

4: return empty
5: end if
6: newpc⇐ pcbad\

−→
iv1

7:
−→
iv2 ⇐ ranSOL.solve(newpc,seed,range)

8: return
−→
iv2 = empty?empty:

−→
iv1 +

−→
iv2

Figure 2: Good constraints first (GCF)

Input: path conditionpc
Input: random seeds, and range[lo,hi]

1: (pcgood, pcbad) ⇐ partition(pc)
2: sols⇐ eRanSOL.solve(pcbad,seed,range)
3: for all

−→
iv1 in solsdo

4: newpc⇐ pcgood\
−→
iv1

5:
−→
iv2 ⇐ symSOL.solve(newpc)

6: if
−→
iv2 6= empty then

7: return
−→
iv1 +

−→
iv2

8: end if
9: end for

10: return empty

Figure 3: Bad constraints first (BCF)

Input: path conditionpc
Input: random seeds, and range[lo,hi]

1: (goodvars, badvars) ⇐ partition(pc)
2: while ¬timeoutdo
3:

−→
iv1 ⇐ random(badvars)

4: newpc⇐ pc\
−→
iv1

5:
−→
iv2 ⇐ symSOL.solve(newpc)

6: if
−→
iv2 6= empty then

7: return
−→
iv1 +

−→
iv2

8: end if
9: end while

Figure 4: Bad variables first (BVF)

their current fitness values. The principle of these algorithms is that the movements across successive
iterations will approximate the individuals to the solution space, i.e., each iteration potentially explores
better regions in the search space. We discuss next two common aspects to GA and PSO central to
our domain of application: (i) the representation of a solution (individual) and (ii) the fitness function.
Representation of a (candidate) solution.One solution to a constraint solving problem is a mapping
of variables in the constraint system to a concrete value from its domain. For instance,〈x 7→ 2,y 7→ 0〉
is a solution tox > y+ 1 (using integer variables).Fitness function. The fitness function serves to
evaluate the quality ofcandidatesolutions. Two functions have been widely used for constraint solving
problems: MaxSAT [17, 27, 33] and Stepwise Adaptation of Weights (SAW) [6, 16]. MaxSAT is a
simple heuristic that counts the number of clauses that can be satisfied by a solution. Maximum fitness is
obtained when the solution satisfies all clauses (boolean expressions) in a constraint system (conjunction
of clauses). The main issue with MaxSAT is that the solver cansometimes favor solutions that satisfy
several easy-to-solve constraints at the expense of solutions that satisfy only a few hard-to-solve. Bäck
et al. proposed SAW [6] to reduce the impact of this issue. SAWassociates a weight to each clause in
a constraint. Each weight is updated with each iteration when it is not satisfied. The use of SAW helps
to identify harder-to-solve clauses with the increase of iterations. The solver can use this information to
favor individuals (i.e., to reduce movements on those individuals) that are more fit to satisfy harder to
solve clauses. We used SAW to evaluate fitness in our GA and PSOimplementations.

Summary of GA and PSO.A GA search starts with a population of individuals randomlyselected
from the search space. Each iteration produces a new population with special operators: acrossover
combines two individuals to produce others and amutationchanges one individual. The individuals are
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probabilistically selected considering their fitness values. Similar to GA, PSO operates with an initial
random population of candidate solutions calledparticles. The interactive collaboration of particles to
compute a solution is the main difference between GA and PSO.Each particle has apositionin the search
space and a contribution factor to the population, typically calledvelocity, which PSO uses to update the
next position of each particle. A typical PSO iteration updates the velocity of a particle according to
global best and local best solutions. The next position of a particle depends on the old position and
the new computed velocity. The mutually-recursive equations below govern the update of velocity and
position across successive iterationst.

vt+1 = ω ∗vt + r1∗c1∗ (bestpart −xt)+ r2∗c2 ∗ (bestpop−xt)
xt+1 = xt +vt+1

Figure 5: Update of velocity and position in Particle Swarm Optimization (PSO).

The vectorsv andx store respectively velocities and positions for each particle. We use the labelt
to refer to one iteration. This label is not the index of the vectors. The coefficientω , typically called
inertia, denotes the fraction of velocity in iteration (instant) t that the particle will inherit in iteration
t + 1. Coefficientsr1 andr2 are numbers within the range [0,1] randomly generated according to some
informed distribution. The vectorbestpart stores the best solution each particle visited andc1 indicates
the confidence level to local solutions (i.e., to one individual particle). The termbestpop indicates the
best solution in the population andc2 indicates the confidence level to global solutions. Note that the
position of a particle at instantt +1 is computed by simply adding the contribution (velocity)vt+1.

2.3 Hybrid solvers

This section describes solvers that conceptually combine ranSOL and symSOL. These hybrid solvers
make different decisions in (i) what to randomize and in (ii)which order. Note on terminology. We
use the termeRanSOL in reference to an extension of ranSOL that can return many solutions. We use
the termpc\

−→
iv to denote a substitution of variables inpc with their concrete values in

−→
iv . For example,

(x > 0 ∧ x > y+1)\〈x 7→ 2〉 is equivalent to(2 > 0 ∧ 2 > y+1).

Good constraints first (GCF).Figure 2 shows the pseudo-code for theGCF solver. At line 1, the solver
partitions the constraintpc in two: the first, namedpcgood, contains decidable constraints. The second,
pcbad, complements the first with undecidable constraints. Recall that pc consists of a conjunction of
boolean expressions. The algorithm reduces to plain randomsolving if pcgoodis empty and to plain
symbolic solving ifpcbad is empty. (We omit these checks for simplicity.) When both parts are non-
empty, the combined solver uses the symbolic solver to first find a solution topcgood(line 2). Aspcgood
only contains decidable constraints, an empty answer from symSOL indicates thatpcgoodis unsatisfi-
able (lines 3-5). Consequently,pc is also unsatisfiable since¬pcgoodimplies¬pc (from the partition
function). In case symSOL finds a solution, the solver produces the constraintnewpcwith the substitu-
tion pcbad\

−→
iv1. If the random solver can find one solution tonewpcGCF returns

−→
iv1 +

−→
iv2 as solution,

i.e., variable assignments that the symbolic and random solvers produced, respectively. For illustration,
GCF partitions the constraintb % a 6= 0 ∧ a > 0 in two: pcgood= a > 0 andpcbad= b % a 6= 0. (The
modulo operator makes the constraint undecidable.) GCF passespcgoodto the symbolic solver, and uses
the solution, say〈x 7→ 2〉, to simplify pcbadand finally call the random solver onb % 2 6= 0.

Bad constraints first (BCF). Figure 3 shows the pseudo-code for theBCF solver. It differs from GCF
in the order of randomization: it attempts to solve the undecidable parts first. BCF uses eRanSOL to
find many solutions topcbad. The main loop checks for each solution

−→
iv1 whether symSOL can find a

solution topcgood\
−→
iv1 (lines 3-9) . Note that, differently from GCF, BCF calls symSOL once in each
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iteration. This algorithm corresponds to the one we discussed in Section 1.

Bad variables first (BVF). Figure 4 shows the pseudo-code for theBVF solver. It is similar to BCF in
the order of calls to random and symbolic solvers. However, it partitions the problem differently. While
the previous hybrid solvers partition the set of clauses from one input constraint, BVFpartitions the set
of variablesthat occur in that constraint. For example, BVF randomizes only the variableb to solve the
constrainta = b2 + c, while BCF and GCF randomizes all variables in this case as they appear in a clause
involving non-linear arithmetic. BVF is similar to the one proposed in DART [22] as it randomizes a
selection of variables for making the constraint decidable. DART, however, randomizes variables incre-
mentally from left to right in the order they appear in the constraint. The constrainta = b2∧ ...∧b= a2

illustrates one diference between BVF and DART. BVF randomizes variablesb anda while DART can
avoid the randomization ofa as its value depends only onb’s value. We did not evaluate DART itself in
this paper.

3 Evaluation

We evaluate the proposed solvers with two sets of experiments. The first compares the solvers we pro-
posed and also the symbolic solver CVC3 [1] using a set of constraints written independently by the
authors. The second compares the solvers using constraintsgenerated from the concolic execution [36]
of data-structures from a variety of sources.

3.1 Microbenchmark

The microbenchmark consists of 51 satisfiable constraints.We included 15 constraints with only linear
integer arithmetic, 7 using the absolute value operator (not supported natively on CVC3), 5 using modulo
and division (undecidable), 22 using non-linear integer arithmetic (undecidable), and 2 using floating-
point arithmetic. Except for CVC3, we run each solver 10 times with different random seeds, using the
range of values [-100,100], and a timeout of 1 second. We selected these input parameters arbitrarily.
The experiments show that, except for the symbolic solver CVC3, the average recall of each solver was
roughly the same: minimum average recall is 0.85 for BVF and maximum average recall is 0.92 for PSO.
As expected CVC3 could not solve most of the constraints in this microbenchmark. It solved 21 out of
the 52 constraints. But note that it could solve some specialcases of undecidable constraints (only 15
decidable constraints in the microbenchmark). For each constraints except two (one involving non-linear
integer arithmetic and the other floating-point) there was asolver that can solve it.

3.2 Concolic execution

Subjects and Setup.We used data-structure from a variety of sources.bst (P1) is an implementation
of a binary search tree from Korat [11].filesystem(P2) is a simplification of the Daisy file system [32].
treemap(P3) is a jdk1.4 implementation (java.util.TreeMap) of red-black trees.switch (P4) refers
to one example program from the jCUTE distribution [36].ratpoly (P5) is an implementation of
rational polynomial operations from the Randoop distribution [30]. rationalscalar (P6) is another
implementation of rational polynomials from the ojAlgo library [3]. newton(P7) is an implementation
of the newton’s method to iteratively compute the square root of a number [2]. hashmap(P8) is a
jdk1.4 implementation (java.util.HashMap) of a map that uses hash values as keys. This experi-
ment uses a concolic (concrete and symbolic) execution [36]to generate constraints for the subject
programs described above. A concolic execution interpretsthe program simultaneously in a concrete
and symbolic domain. On the one hand, the use of a concrete state enables a concolic execution to
evaluatedeterministicallyany program expression. This provides a means to handle infinite loops
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Input: parameterized testptest
Input: random seeds, range[lo,hi]

1:
−→
iv ⇐ random(vars(ptest), range)

2: result⇐ {
−→
iv}

3: pcs⇐ pcs+ run(ptest,
−→
iv )

4: while size(pcs) > 0 do
5:

−→
iv ⇐ solve(pickOne(pcs), s, range)

6: if
−→
iv 6= emptythen

7: result⇐ result ∪{
−→
iv}

8: pcs⇐ pcs+ run(ptest,
−→
iv )

9: end if
10: end while
11: return result

Figure 6: Concolic Execution Driver

S1 S2 S3 S4 S5 S6 S7
P1 0.17 0.16 0.28 0.98 0.98 0.98 0.98
P2 0.2 0.03 0.21 1.00 1.00 1.00 1.00
P3 0.25 0.57 0.71 1.00 1.00 1.00 1.00
P4 0.48 0.25 0.48 1.00 0.04 0.25 0.15

avg. 0.28 0.25 0.42 0.99 0.71 0.77 0.74

P5 0.55 0.00 0.45 0.00 1.00 1.00 0.00
P6 0.92 0.02 0.98 0.00 0.00 0.92 0.18
P7 0.82 0.11 0.89 0.00 0.82 0.82 0.11
P8 0.36 0.64 0.86 0.00 0.36 0.36 0.00

avg. 0.73 0.08 0.78 0.00 0.50 0.88 0.09

Figure 7: Cell shows recall for each pair subject
(row) and solver (column). S1 and S4 correspond
to our baseline solvers.

and recursion, exploration of infeasible paths, and array indexing; which are typical limitations of a
pure symbolic execution. On the other hand, the use of a symbolic state (which the concrete state is
an instance of) enables a concolic execution to collect constraints that lead to non-visited paths along
the execution of one concrete path. Figure 6 shows the pseudo-code of a test driver for a concolic
execution. The driver takes as input (in addition to random seed and range of values) any procedure
with parametersptest and outputs inputs toptest (that will lead execution to its different program
paths). One iteration of the main loop explores one concretepath and produces several path constraints
(corresponding to non-visited paths along that concrete path). A solution to a constraint, when found,
will drive the next concolic execution ofptest(line 8). The operation solve at line 5 calls each solver
with a 300 milliseconds timeout (based on average time from the microbenchmark). We set the
overall timeout to 30 minutes. The concolic execution of thefirst four subjects only generates integer
linear constraint, while the others construct non-linear constraints and unsupported constraints to CVC3.

Discussion.We use the following identifiers to label solvers: S1=ranSOL, S2=GA, S3=PSO, S4=CVC3,
S5=GCF, S6=BCF and S7=BVF. Figure 7 shows a summary of the results. For the first 3 subjects the
symbolic solver (S4) and consequently all hybrid solvers showed roughly the same average recall. Note
that all constraints passed to the solver in this case are decidable. For switch (P4) which also builds
decidable constraints, S4 timeouts often. For the last 4 subjects, S4 can rarely find a solution. In these
cases, the search-based algorithms performed better on average. However, we observed that often one
solver find solutions when the other misses. Figure 8 makes a pairwise comparison of the solvers.
Line and row denote identifiers of solvers. A cell on linei and columnj indicates that solveri solves
a constraint thatj misses. Note that, for the 4 experiments at the bottom and switch, the solvers vary
significantly in the set of constraints they can solve. Theseresults confirm our expectations that the
solvers are complementary. It suggests that one may not be able to predict the heuristic that will fit best
for a particular subject; it is preferable to run them all in parallel.

Impact of timeout in recall. Efficiency is important to enable symbolic testing: the number of queries
submitted to the solver can be very high. One way to deal with this issue is to reduce the alloted time for
constraint solving. However timeout reduction can reduce recall. To observe the impact of timeout in
recall, we run each concolic execution experiment using timeouts from 100 to 500ms. We observed that
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BST
S1 S2 S3 S4 S5 S6 S7

S1 - 5 2 0 0 0 0
S2 4 - 4 0 0 0 0
S3 13 16 - 2 2 2 2
S4 80 81 71 - 0 0 0
S5 80 81 71 0 - 0 0
S6 80 81 71 0 0 - 0
S7 80 81 71 0 0 0 -

Summary: 99 SAT, 354 UNK.
S1:17, S2:16, S3:28, S4:97, S5:97, S6:97,S7:97

FileSystem
S1 S2 S3 S4 S5 S6 S7

S1 - 12 0 0 0 0 0
S2 2 - 1 0 0 0 0
S3 1 12 - 0 0 0 0
S4 49 59 48 - 0 0 0
S5 49 59 48 0 - 0 0
S6 49 59 48 0 0 - 0
S7 49 59 48 0 0 0 -

Summary: 61 SAT, 475 UNK.
S1:12, S2:2, S3:13, S4:61, S5:61, S6:61,S7:61

TreeMap
S1 S2 S3 S4 S5 S6 S7

S1 - 1 1 0 0 0 0
S2 22 - 11 0 0 0 0
S3 31 20 - 0 0 0 0
S4 49 28 19 - 0 0 0
S5 49 28 19 0 - 0 0
S6 49 28 19 0 0 - 0
S7 49 28 19 0 0 0 -

Summary: 65 SAT, 470 UNK.
S1:16, S2:37, S3:46, S4:65, S5:65, S6:65,S7:65

Switch
S1 S2 S3 S4 S5 S6 S7

S1 - 30 0 0 43 32 38
S2 8 - 8 0 20 17 19
S3 0 30 - 0 43 32 38
S4 49 71 49 - 91 71 81
S5 1 0 1 0 - 3 3
S6 10 17 10 0 23 - 10
S7 6 9 6 0 13 0 -

Summary: 95 SAT, 235 UNK.
S1:46, S2:24, S3:46, S4:95, S5:4, S6:24,S7:14

RatPoly
S1 S2 S3 S4 S5 S6 S7

S1 - 27 5 27 0 0 27
S2 0 - 0 0 0 0 0
S3 0 22 - 22 0 0 22
S4 0 0 0 - 0 0 0
S5 22 49 27 49 - 0 49
S6 22 49 27 49 0 - 49
S7 0 0 0 0 0 0 -

Summary: 49 SAT, 295 UNK.
S1:27, S2:0, S3:22, S4:0, S5:49, S6:49,S7:0

RationalScalar
S1 S2 S3 S4 S5 S6 S7

S1 - 56 1 57 57 0 46
S2 0 - 0 1 1 0 0
S3 5 60 - 61 61 5 50
S4 0 0 0 - 0 0 0
S5 0 0 0 0 - 0 0
S6 0 56 1 57 57 - 46
S7 0 10 0 11 11 0 -

Summary: 62 SAT, 296 UNK.
S1:57, S2:1, S3:61, S4:0, S5:0, S6:57,S7:11

Newton
S1 S2 S3 S4 S5 S6 S7

S1 - 20 3 23 0 0 20
S2 0 - 0 3 0 0 0
S3 5 22 - 25 5 5 22
S4 0 0 0 - 0 0 0
S5 0 20 3 23 - 0 20
S6 0 20 3 23 0 - 20
S7 0 0 0 3 0 0 -

Summary: 28 SAT, 305 UNK.
S1:23, S2:3, S3:25, S4:0, S5:23, S6:23,S7:3

HashMap
S1 S2 S3 S4 S5 S6 S7

S1 - 0 0 5 0 0 5
S2 4 - 2 9 4 4 9
S3 7 5 - 12 7 7 12
S4 0 0 0 - 0 0 0
S5 0 0 0 5 - 0 5
S6 0 0 0 5 0 - 5
S7 0 0 0 0 0 0 -

Summary: 14 SAT, 379 UNK.
S1:5, S2:9, S3:12, S4:0, S5:5, S6:5,S7:0

Figure 8: Results of various solvers for constraints that concolic execution generates. Column and row
show solver identifiers. A cell denotes the difference of constraints that a solver (from row) can solve
and another (from column) cannot. The bottom line summarizes the results.
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CVC3 typically finds a solution for decidable constraints inless than 100ms. However, for the Switch
experiment the recall of CVC3 was 0.25 for 100ms, 0.75 for 200ms and 0.95 from 300 to 500ms. We
could not determine the reason for this. In particular, we did not find a strong correlation between the
size of the constraints or the number of variables in it and higher impact of time. We also observed a
significant variation in recall on PSO for Newton and HashMapand on GA for TreeMap and HashMap.
For these cases, we conjecture that the impact of time relates to the complexity of the search problem,
i.e., the relative small size of the solution space comparedto that of the search space.

4 Related Work
Random-symbolic testing has been widely investigated recently to automate test input generation [22,
26, 21]. It alternates concrete and symbolic execution to alleviate their main limitations. It is important
to note that random-symbolic testing provides two orthogonal contributions: (i) constraint generation
and (ii) constraint solving. Our goal is to improve constraint solving. In this context, DART [22] concep-
tually uses a random solver to simplify symbolic solving. Weplan to evaluate the solvers we proposed
with a DART solver as discussed in Section 2. Another approach to automate test input generation is
random testing [10, 18, 31, 29]. The ranSOL solver differs from random testing in two important ways:
(a) random testing generates inputs for program parameters; a classification of good input depends on
the result of an actual execution, and (b) random testing typically generates test sequence and data si-
multaneously. We plan to combine random sequence generation together with random-symbolic input
generation to automate testing.

We used the Satisfiability Modulo Theories (SMT) [37, 20, 12]solver CVC3 [1], which uses built-in
theories for rationals and integer linear arithmetic (withsome support to non-linear arithmetic). SAT
solving research of undecidable theories has focused on theanalysis of hybrid and control systems, as
recently evidenced by the iSAT [19] and the ABSolver [7] systems. The first integrates the power of SMT
solvers to solve boolean constraints with the capability ofInterval Constraint Propagation (ICP) [9] to
deal with non-linear constraint systems, while the second uses a DPLL-based [15] algorithm to perform
the search and defers theory problems to subordinate solvers. As in hybrid and control systems, undecid-
able theories also arise in the domain of software systems. This paper shows simple algorithms that can
be effective to solve both decidable and undecidable fragments of constraints that a concolicprogram
execution generates. Another distinguishing feature of our solvers is that, in contrast to a DPLL(T) [20]
solver, they are not dependent on a background theory T. One can use the solvers this paper describes in
combination to any theory-specific solver to fully benefit from their complementary nature.

There are variations to the search-based solvers presentedin Section 2 which we plan to investigate.
Ru and Jianhua propose a hybrid technique which combines GA and PSO by creating individuals in a
new generation by crossover and mutation operations [34]. Instinct-based PSO adds another criterion
(the instinct) to influence a particle’s behavior [4]. The instinct represents the intrinsic “goodness” of
each variable of a particle’s candidate solution. We also plan to analyze how test inputs generated from
our solvers compare to those generated directly with a PSO algorithm whose fitness function is based on
coverage [38].

5 Conclusions

This paper proposes and implements a plain random solver, three hybrid solvers combining random
and symbolic solvers, and two heuristic search solvers. We use a random solver and a symbolic solver
(CVC3) as baselines for comparison. We evaluate the solverson two benchmarks. One with constraints
the authors constructed and the other with constraints thata concolic execution generates on 8 subjects.
For the concolic execution on subjects that generated only decidable constraints the the experiments
reveal as expected that CVC3 is superior in all but 2 cases. CVC3 timed out in these cases. For solving
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undecidable constraints, no solver subsumes another. It suggests that one may not be able to predict the
heuristic that will fit best for a particular subject; it is preferable to run them all in parallel.

Next we want to analyse several open source projects to quantify the number of constraints that
would produce undecidable constraints. We believe this is anecessary step to provide evidence for the
practical relevance of this research.
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