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Abstract

The complexity of constraints is a major obstacle for caistrbased software verification. Au-
tomatic constraint solvers are fundamentally incomplietieut constraints often build on some unde-
cidable theory or some theory the solver does not suppois. pldper proposes and evaluates several
randomized solvers to address this issue. We compare #haieéiness of a symbolic solver (CVC3),
a random solver, three hybrid solvers (i.e., mix of randomh symbolic), and two heuristic search
solvers. We evaluate the solvers on two benchmarks: onestiogsof manually generated con-
straints and another generated with a concolic executi@wsobjects. In addition to fully decidable
constraints, the benchmarks include constraints with limear integer arithmetic, integer modulo
and division, bitwise arithmetic, and floating-point anitétic. As expected symbolic solving (in par-
ticular, CVC3) subsumes the other solvers for the concalécation of subjects that only generate
decidable constraints. For the remaining subjects thesphlre complementary.

1 Introduction

Software testing is important and expensive [828, 35]egdvechniques have been proposed to reduce
this cost. Automation of test data generation, in partigudan improve testing productivity. Random
testing [13/.30] and symbolic testing 125] are two widely disechniques with this goal and with well-
known limitations. On the one hand, random testing failsXpl@e a search space in a systematic
manner: it can explore the same program path repeatedlylsndadl to explore important paths (i.e.,
paths to which only a small portion of the space of input data lead to an execution). On the other
hand, pure symbolic testing is problematic for indexingugst dealing with native calls, detecting infinite
loops and recursion, and, especially, dealing with unddxedconstraints. Combined random-symbolic
testing [22] has been recently proposed to circumvent thastations. One important limitation it
attempts to address is tivecapability of solving general constraint3 his is the focus of this paper. We
study the impact of alternative randomization strategiesblving constraints. In this setting, random-
symbolic testing reduces to random-symbolic constrailvirsg.

One possible way to combine random and symbolic solversfisstadelegate to the random solver
the parts of a constraint that build on theories a symboliees@oes not support. Then use the solution
to simplify the original constraint. And finally combine trendom solution with the one obtained from
calling the symbolic solver on the simplified constraintor(Bimplicity, we assume the constraint is sat-
isfiable and that the random solver can find a solution.) Inambito note is that, as for typical decision
procedures in SMT solvers [20,137], random and symbolicesslarenot independent in this combina-
tion; theycollaborate One practical consequence of this is that the more contdrtie symbolic solver
rejects the more complex random solving becomes, and caalyel herefore, random solving is critical
for the effectiveness of the combined solver.

We definerecall as the fraction of constraints that a solver can find solstimut of the total number
of satisfiable constraints(We classify aproximately a constraint as satisfiable iast one solver can
find solution to it.) This metric quantifies completenessr @aal is to increase recall. This paper makes
the following contributions:
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e The proposal and implementation of several randomizedtiaint solvers. We implemented a
plain random solver, three hybrid constraint solvers, aval ¢earch-based solvers. We use the
random solver and the symbolic solver (in our case, CVC344]paselines for comparison;

e Empirical evaluation of solvers with manually constructemhstraints and constraints generated
with a concolic execution of 8 subjects.

2 Technique: Randomized Solvers

This section presents randomized solvers with common {aptgut interface.lnput. All solvers take
as input (i) a constrainpc (in reference to gath conditionfrom a symbolic execution), (ii) a random
seeds, and (iii) a range of valuefo, hi]. An input constraint takes the forfb;, whereb; is a boolean
expression constructed, in principle, with any logicalteys For example, the expression- 0 A X >
y—+ lillustrates a valid input constraint. We often use the teamstraint alone orclausein reference
to a single boolean expressidm and constraint systemor pc in reference to the conjunction of all
constraints.Output. A solution is a vector of variable assignments that satisfies one iqngtint.
For instance{x — 2,y — 0) is a solution to the constraimt> y+ 1 (using integer variables). A solver
returns a solution when it finds one or the flagptyotherwise.

Note on implementation. We wrote all solvers in the Java language, used the BCELNi&]] to
instrument the bytecode of the experimental subject focalim execution, and used part of the code
from the JPF symbolic executionl [5] for the integration witkiC3.

2.1 Baseline solvers

We use the solversanSOL andsymSOL as representatives of plain random and symbolic solvers re-
spectively. In our experiments we use these solvers asihesdbr comparison. Figuld 1 shows the
pseudo-code for a random constraint solver ranSOL. The loamgenerates random input vectors and
selects those that satisfic (lines 1-6). The expression vaps]) denotes the set of variables that occur
in pc. Functionrandomselects random integer values in the rafigehi] and builds assignments to
each va@ble in this set (line 2). (For simplification, wdyoshow the case for integers.) The function
eval(pc, iv) checks whether the candidate solutisnmodelspc. This function evaluates the concrete
boolean expression thaic encodes using the variable assignmentﬁn ranSOL returnsv at line 4

if it is a solution topc, or returnsemptyon timeout. Symbolic constraint solvers are complete fogta s
of decidable theories. For example, CVC3 [1] supports nali@nd integer linear arithmetic (among
others). However, these solvers are incomplete for solemgtraints with non-linear arithmetic, integer
division and modulo whose theories are undecidable. WehgskabelsymSOL to refer to a symbolic
solver. We used CVC3 in our experiments.

2.2 Heuiristic search solvers

This section discusses two solvers based on well-knowridtieusearch techniques: genetic algorithms
(GA) [23] and particle swarm optimization (PSQ)[24]. Coptelly, these solvers attempt to optimize
the random search that ranSOL drives. The basic task of #igsathms is to searchspaceof candidate
solutions to identify the best ones in terms of a problentijoefitness function The search process
usually starts with the selection of randomly-chosen iiadigls (i.e., candidate solutions to the search
problem) in the search space. The search proceeds by makwvemments on each individual iteratively
with search operatorsintil the search meets some stop criteria (e.g., the resgibod enough or the
search time expired). The decision to move individuals éngbarch space depends on the evaluation of
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Input: path conditionpc
Input: path conditionpc Input: random seed, and rangélo, hi]
Input: random seed, range[lo, hi] : (gcgood pcbad <« partition(pc)
1: whie —timeoutdo vy < symSOL.solvgicgood
2 iv <= random(varg{c), range) if (ivy = empty then

3. if eval(pc, i_v>) then return empty
4 return iv end if
—
5. endif newpc< pcbadivy
—
6: end while ivo < ranSOL.solvatewpcgseedrange
— —

O N oahrwbdR

7: return empty return vy, = empty? empty: ivy +ivy

Figure 1: Random (ranSOL) Figure 2: Good constraints first (GCF)

Input: path conditionpc
Input: random seed, and rangélo, hi]
1: (pcgood pcbad <« partition(pc)
2: sols< gRanSOL.solvqa(cbadseedrange)
3: for all ivy in solsdo -
4:  newpc< pcgoodivy
—
5 Vo & symSOL.solvatewpg
6
7
8
9

Input: path conditionpc
Input: random seed, and rangélo, hi]
1: (goodvars badvarg < partition(pc)
2: whlg —timeoutdo
3 v« random_b)advars)
4:  newpc< pe\iva
—
it iva - empty then 5: v = symSOL.solvaiewpg
— 7 = 6: if vy £ emptythen
return vy +ivs — 7 —
) 7
:endif g
: end for o

10: return empty

return ivy+ivs
. endif
end while

Figure 3: Bad constraints first (BCF) Figure 4: Bad variables first (BVF)

their current fitness values. The principle of these alpor# is that the movements across successive
iterations will approximate the individuals to the solutispace, i.e., each iteration potentially explores
better regions in the search space. We discuss next two conaspects to GA and PSO central to
our domain of application: (i) the representation of a sotu(individual) and (ii) the fitness function.
Representation of a (candidate) solution.One solution to a constraint solving problem is a mapping
of variables in the constraint system to a concrete valua fts domain. For instancéx — 2,y — 0)

is a solution tox > y+ 1 (using integer variables)Fitness function. The fitness function serves to
evaluate the quality afandidate solutions. Two functions have been widely used for constrsolving
problems: MaxSATI[[17l 27, 33] and Stepwise Adaptation of §es (SAW) [6,16]. MaxSAT is a
simple heuristic that counts the number of clauses that eaatisfied by a solution. Maximum fitness is
obtained when the solution satisfies all clauses (boolepresgions) in a constraint system (conjunction
of clauses). The main issue with MaxSAT is that the solversmmnetimes favor solutions that satisfy
several easy-to-solve constraints at the expense of aotuthat satisfy only a few hard-to-solve. Back
et al. proposed SAW [6] to reduce the impact of this issue. Sabciates a weight to each clause in
a constraint. Each weight is updated with each iterationnahis not satisfied. The use of SAW helps
to identify harder-to-solve clauses with the increaseearfiions. The solver can use this information to
favor individuals (i.e., to reduce movements on those iddials) that are more fit to satisfy harder to
solve clauses. We used SAW to evaluate fitness in our GA andifal@mentations.

Summary of GA and PSO.A GA search starts with a population of individuals randoraglected
from the search space. Each iteration produces a new pmpulaith special operators: erossover
combines two individuals to produce others anadatationchanges one individual. The individuals are
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probabilistically selected considering their fithess ealuSimilar to GA, PSO operates with an initial
random population of candidate solutions calfetticles The interactive collaboration of particles to
compute a solution is the main difference between GA and E&Ch particle hasositionin the search
space and a contribution factor to the population, typycedlledvelocity, which PSO uses to update the
next position of each particle. A typical PSO iteration ugdathe velocity of a particle according to
global best and local best solutions. The next position oaiigle depends on the old position and
the new computed velocity. The mutually-recursive equtibelow govern the update of velocity and
position across successive iteratians

Vi4+1 = W* Vg + 11 %Cp * (besbart —Xt) +ro*xCox* (beSbop—Xt)
Xe+1 =% + Vi1

Figure 5: Update of velocity and position in Particle Swarpti@ization (PSO).

The vectorsy andx store respectively velocities and positions for each glartiWe use the label
to refer to one iteration. This label is not the index of thetaes. The coefficientv, typically called
inertia, denotes the fraction of velocity in iteration (est) t that the particle will inherit in iteration
t+ 1. Coefficients; andr, are numbers within the range [0,1] randomly generated doupto some
informed distribution. The vectdrespart Stores the best solution each particle visited enohdicates
the confidence level to local solutions (i.e., to one indnaldparticle). The ternbesh,p indicates the
best solution in the population armg indicates the confidence level to global solutions. Note tiha
position of a particle at instamt- 1 is computed by simply adding the contribution (velocigy): .

2.3 Hybrid solvers

This section describes solvers that conceptually coman&®©L and symSOL. These hybrid solvers
make different decisions in (i) what to randomize and in\{iDich order. Note on terminology. We
use the terneRanSOLln reference to an extension of ranSOL that can return mﬂmylms We use
the termpc\ iv to denote a substitution of variablespnwith their concrete values iiv. For example,
(x>0 A x>y+1)\(x+— 2)isequivalenttd2 >0 A 2>y+1).

Good constraints first (GCF). Figurel2 shows the pseudo-code for G€F solver. At line 1, the solver
partitions the constrairc in two: the first, namegcgood contains decidable constraints. The second,
pcbad complements the first with undecidable constraints. Réfeal pc consists of a conjunction of
boolean expressions. The algorithm reduces to plain rargtiwing if pcgoodis empty and to plain
symbolic solving ifpcbadis empty. (We omit these checks for simplicity.) When bothigare non-
empty, the combined solver uses the symbolic solver to firdtdisolution tgpcgood(line 2). Aspcgood
only contains decidable constraints, an empty answer framS©OL indicates thapcgoodis unsatisfi-
able (lines 3-5). Consequentlggc is also unsatisfiable sincepcgoodimplies —pc (from the partition
function). In case symSOL finds a solution, the solver predube constralrrneWpCW|th the substitu-
tion pcbad\lvl If the random solver can find one solutionrtewpcGCF returnsv1 + |v2 as solution,
i.e., variable assignments that the symbolic and randomesoproduced, respectively. For illustration,
GCEF partitions the constraiit% a# 0 A a > 0in two: pcgood= a > 0 andpcbad=b % a= 0. (The
modulo operator makes the constraint undecidable.) GCsepasgoodto the symbolic solver, and uses
the solution, sayx — 2), to simplify pcbadand finally call the random solver dn% 2+ 0.

Bad constraints first (BCF). Figure[3 shows the pseudo-code for B€F solver. It differs from GCF
in the order of randomization: it attempts to solve the urdidie parts first. BCF uses eRanSOL to
find many solutions tqncbad The main loop checks for each solutmﬁ whether symSOL can find a
solution topcgood\lvl (lines 3-9) . Note that, differently from GCF, BCF calls sy@®IiSonce in each
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iteration. This algorithm corresponds to the one we disdigs Sectiohll.

Bad variables first (BVF). Figure[4 shows the pseudo-code for BMF solver. It is similar to BCF in
the order of calls to random and symbolic solvers. Howevgaititions the problem differently. While
the previous hybrid solvers partition the set of clausemfame input constraint, BVpartitions the set
of variablesthat occur in that constraint. For example, BVF randomizdg the variableb to solve the
constrainta = b2 + ¢, while BCF and GCF randomizes all variables in this casee@sdppear in a clause
involving non-linear arithmetic. BVF is similar to the oneoposed in DARTI[2R] as it randomizes a
selection of variables for making the constraint decidabl&RT, however, randomizes variables incre-
mentally from left to right in the order they appear in the stoaint. The constraird =b? A ... Ab= &
illustrates one diference between BVF and DART. BVF rand@sivariable® anda while DART can
avoid the randomization & as its value depends only & value. We did not evaluate DART itself in
this paper.

3 Evaluation

We evaluate the proposed solvers with two sets of expersndrite first compares the solvers we pro-
posed and also the symbolic solver CVC3 [1] using a set oftcaings written independently by the
authors. The second compares the solvers using constgaingsated from the concolic executionl[36]
of data-structures from a variety of sources.

3.1 Microbenchmark

The microbenchmark consists of 51 satisfiable constraivsincluded 15 constraints with only linear

integer arithmetic, 7 using the absolute value operatdrgmpported natively on CVC3), 5 using modulo

and division (undecidable), 22 using non-linear integé&haretic (undecidable), and 2 using floating-

point arithmetic. Except for CVC3, we run each solver 10 sméth different random seeds, using the
range of values [-100,100], and a timeout of 1 second. Wetsglg¢hese input parameters arbitrarily.
The experiments show that, except for the symbolic solve€8Mhe average recall of each solver was
roughly the same: minimum average recall is 0.85 for BVF aadimum average recall is 0.92 for PSO.

As expected CVC3 could not solve most of the constraintsigirtiicrobenchmark. It solved 21 out of

the 52 constraints. But note that it could solve some speeisgs of undecidable constraints (only 15
decidable constraints in the microbenchmark). For eachktraints except two (one involving non-linear

integer arithmetic and the other floating-point) there waslaer that can solve it.

3.2 Concolic execution

Subjects and Setup.We used data-structure from a variety of sourdest (P1) is an implementation
of a binary search tree from Korat J11]lesystem(P2) is a simplification of the Daisy file system [32].
treemap(P3) is a jdk1.4 implementationj4va.util.TreeMap) Of red-black trees.switch (P4) refers
to one example program from the jCUTE distribution[36fatpoly (P5) is an implementation of
rational polynomial operations from the Randoop distidout[30]. rationalscalar (P6) is another
implementation of rational polynomials from the ojAlgory [3]. newton(P7) is an implementation
of the newton’s method to iteratively compute the squardg oda number [[2]. hashmap(P8) is a
jdk1.4 implementation java.util.HashMap) of a map that uses hash values as keys. This experi-
ment uses a concolic (concrete and symbolic) execufioh §@&jenerate constraints for the subject
programs described above. A concolic execution interghetgprogram simultaneously in a concrete
and symbolic domain. On the one hand, the use of a concrdte estables a concolic execution to
evaluatedeterministicallyany program expression. This provides a means to handldténfoops
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. SI [ S2 [ S3[ S4 ] S5 S6 ] s7

Input:  parameterized tegttest P1 | 0.17| 0.16 | 0.28 | 0.98 | 0.98 | 0.98 | 0.98
Input: random seed, range[lo, hi] P2 | 0.2 | 0.03] 0.21| 1.00 | 1.00 | 1.00 | 1.00
2 result < {W} P4 | 0.48| 0.25| 0.48 | 1.00 | 0.04 | 0.25 | 0.15

: avg. | 028 0.25| 0.42| 0.99| 0.71 | 0.77 | 0.74
3: pcs< pcs+ run(ptest iv) P5 | 0.55] 0.00 | 0.45] 0.00 | 1.00 | 1.00 | 0.00
4: while sizefpcg >0 do P6 | 0.92 | 0.02| 0.98| 0.00 | 0.00 | 0.92 | 0.18
5: iv_<>: solve(pickOnefc9, s, range P7 | 0.82] 0.11| 0.89| 0.00| 0.82 | 0.82 | 0.11
6. if v # emptythen P8 | 0.36 | 0.64 | 0.86 | 0.00| 0.36 | 0.36 | 0.00
7 result < resultu{W} [avg. [ 0.73]0.08] 0.78] 0.00 [ 0.50 [ 0.88 [ 0.09 |
8: pcs<= pcs+ run(ptest W)
9. endif
10: end while ] ) ]
11- return result Figure 7: Cell shows recall for each pair subject

(row) and solver (column). S1 and S4 correspond
Figure 6: Concolic Execution Driver to our baseline solvers.

and recursion, exploration of infeasible paths, and amaxing; which are typical limitations of a
pure symbolic execution. On the other hand, the use of a sfenstate (which the concrete state is
an instance of) enables a concolic execution to collecttcainss that lead to non-visited paths along
the execution of one concrete path. Figlite 6 shows the pseadio of a test driver for a concolic
execution. The driver takes as input (in addition to rande®dsand range of values) any procedure
with parametergtest and outputs inputs tptest (that will lead execution to its different program
paths). One iteration of the main loop explores one congratie and produces several path constraints
(corresponding to non-visited paths along that concretie) pa solution to a constraint, when found,
will drive the next concolic execution gitest(line 8). The operation solve at line 5 calls each solver
with a 300 milliseconds timeout (based on average time frbm rhicrobenchmark). We set the
overall timeout to 30 minutes. The concolic execution of firg four subjects only generates integer
linear constraint, while the others construct non-linearstraints and unsupported constraints to CVC3.

Discussion.We use the following identifiers to label solvers: S1=ranS82=GA, S3=PS0O, S4=CVC3,
S5=GCF, S6=BCF and S7=BVF. Figure 7 shows a summary of thiétsesd-or the first 3 subjects the
symbolic solver (S4) and consequently all hybrid solvemasid roughly the same average recall. Note
that all constraints passed to the solver in this case anealde. For switch (P4) which also builds
decidable constraints, S4 timeouts often. For the last fest#) S4 can rarely find a solution. In these
cases, the search-based algorithms performed better cmgaveHowever, we observed that often one
solver find solutions when the other misses. Fiddre 8 makesiraipe comparison of the solvers.
Line and row denote identifiers of solvers. A cell on linend columnj indicates that solver solves

a constraint thaj misses. Note that, for the 4 experiments at the bottom anttlswhe solvers vary
significantly in the set of constraints they can solve. Theseillts confirm our expectations that the
solvers are complementary. It suggests that one may notledapredict the heuristic that will fit best
for a particular subject; it is preferable to run them all aradlel.

Impact of timeout in recall. Efficiency is important to enable symbolic testing: the nemaf queries
submitted to the solver can be very high. One way to deal withissue is to reduce the alloted time for
constraint solving. However timeout reduction can red@lt. To observe the impact of timeout in
recall, we run each concolic execution experiment usingonts from 100 to 500ms. We observed that
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BST FileSystem
S1|S2|S3|S4|S5|S6| S7 S1|S2|S3|S4|S5|S6| S7
S1| - 5|1 20|00 0 S1| - |12 00| 0] O 0
S2| 4 - 4 |0 0] O0 0 S2| 2 - 1,1 0]0/|O 0
S3| 13| 16 | - 2|1 2] 2 2 S3| 1|12 - o|0]O 0
S4|180 |81 71| - 0|0 0 S4| 49| 59 | 48 | - 0|0 0
S5|/80|81|71| 0 - 0 0 S5|49 | 59|48 | 0 - 0 0
S6|18 (81|71 0| 0 - 0 S6|49|59|48| 0| O - 0
S7|8 (81|71 0| 0] O - S7|149|59|48| 0| 0| O -

Summary: 99 SAT, 354 UNK. Summary: 61 SAT, 475 UNK.
S1:17, S2:16, S3:28, S4:97, S5:97, S6:97,S7:97| S1:12, S2:2, S3:13, S4:61, S5:61, S6:61,S761

TreeMap Switch

S1|S2| S3| S4| S5| S6 S7 S1|S2|S3| S4|S5| S6| S7
S1| - 1 1 0 0 0 0 S1| - 30| 0 0 | 43| 32 38
S2|22| - (110 |0] O 0 S2| 8 - 8 | 0|20 17| 19
S3| 31| 20| - 0 0 0 0 S3| 0| 30| - 0 | 43| 32 38
S4|49| 28| 19| - 0 0 0 S4| 49| 71| 49| - 91| 71 81
S5|149 (28|19 0 - 0 0 S5 10 11|0 - 3 3
S6|149(28(19| 0| O - 0 S6|10| 17| 10| O | 23| - 10
S7149| 28| 19| O 0 0 - S7| 6 9 6 0|13 0 -

Summary: 65 SAT, 470 UNK. Summary: 95 SAT, 235 UNK.
S1:16, S2:37, S3:46, S4.65, S5:65, S6:65,S7:65| S1:46, S2:24, S3:46, S4:95, S5:4, S6:24,S7:14

RatPoly RationalScalar

S1|S2| S3| S4| S5| S6| S7 S1|S2| S3| S4| S5| S6| S7
S1| - | 27| 5 |27| 0 0 | 27 S1| - 56| 1 |57|57| 0 | 46
S2| 0 - 0 0 0 0 0 S2| 0 - 0 1 1 0 0
S3| 0|22 - 221 0 0| 22 S3| 5 |60 - 61| 61| 5 | 50
S4( 0 0 0 - 0 0 0 S4( 0 0 0 - 0 0 0
S5 22| 49| 27| 49| - 0 | 49 S5( 0 0 0 0 - 0 0
S6( 2249|2749 | O - | 49 S6| 0 | 56| 1 |57|57| - | 46
S7(1 0 0 0 0 0 0 - s7( 0|10 0O |11|11]| O -
Summary: 49 SAT, 295 UNK. Summary: 62 SAT, 296 UNK.
S1:27, S2:0, S3:22, S4:0, S5:49, S6:49,S7:0 S1:57,S2:1, S3:61, S4:0, S5:0, S6:57,S7:11

Newton HashMap

S1|S2| S3| S4| S5 S6| S7 S1|S2| S3| S4| S5 S6| S7
S1| - |20 3 23| O 0| 20 S1| - 0 0 5 0 0 5
S2( 0 - 0 3 0 0 0 S2| 4 - 2 9 4 4 9
S3| 5 |22 - 25| 5 5122 S3| 7 5 - 12| 7 7 |12
S4( 0 0 0 - 0 0 0 S4( 0 0 0 - 0 0 0
S5 0 |20| 3 | 23| - 0| 20 S5 0 0 0 5 - 0 5
S6| 0 |20 3 23| O - 20 S6| 0 0 0 5 0 - 5
S7(1 0 0 0 3 0 0 - S71 0 0 0 0 0 0 -
Summary: 28 SAT, 305 UNK. Summary: 14 SAT, 379 UNK.
S1:23, S2:3, S3:25, S4:0, S5:23, S6:23,S7:3 S1:5, S2:9, S3:12, S4:0, S5:5, S6:5,S7:0

Figure 8: Results of various solvers for constraints thatcotic execution generates. Column and row
show solver identifiers. A cell denotes the difference ofst@ints that a solver (from row) can solve
and another (from column) cannot. The bottom line summatitize results.
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CVC3 typically finds a solution for decidable constraintdass than 100ms. However, for the Switch
experiment the recall of CVC3 was 0.25 for 100ms, 0.75 fom28@nd 0.95 from 300 to 500ms. We
could not determine the reason for this. In particular, werht find a strong correlation between the
size of the constraints or the number of variables in it amghdi impact of time. We also observed a
significant variation in recall on PSO for Newton and HashMag on GA for TreeMap and HashMap.
For these cases, we conjecture that the impact of time selatthe complexity of the search problem,
i.e., the relative small size of the solution space comptrédat of the search space.

4 Related Work

Random-symbolic testing has been widely investigatedntgcéo automate test input generatidni[22,
26,[2]]. It alternates concrete and symbolic executionlaviakte their main limitations. It is important
to note that random-symbolic testing provides two orth@aontributions: (i) constraint generation
and (ii) constraint solving. Our goal is to improve consttaiolving. In this context, DART[22] concep-
tually uses a random solver to simplify symbolic solving. jd¥en to evaluate the solvers we proposed
with a DART solver as discussed in Sectldn 2. Another apprdacautomate test input generation is
random testing [10, 18, BL, 29]. The ranSOL solver diffeosrfrandom testing in two important ways:
(a) random testing generates inputs for program parametargssification of good input depends on
the result of an actual execution, and (b) random testing&jly generates test sequence and data si-
multaneously. We plan to combine random sequence genefagether with random-symbolic input
generation to automate testing.

We used the Satisfiability Modulo Theories (SMI[B7], 20, 4@ver CVC3I[1], which uses built-in
theories for rationals and integer linear arithmetic (wdttme support to non-linear arithmetic). SAT
solving research of undecidable theories has focused oarthlgsis of hybrid and control systems, as
recently evidenced by the iISAT [19] and the ABSoler [7] syss. The firstintegrates the power of SMT
solvers to solve boolean constraints with the capabilityntérval Constraint Propagation (ICF) [9] to
deal with non-linear constraint systems, while the seca®s @ DPLL-based [15] algorithm to perform
the search and defers theory problems to subordinate sol&esrin hybrid and control systems, undecid-
able theories also arise in the domain of software systeimis. pper shows simple algorithms that can
be effective to solve both decidable and undecidable fragenef constraints that a concolprogram
execution generates. Another distinguishing feature osolyvers is that, in contrast to a DPLL(T)]20]
solver, they are not dependent on a background theory T. @mase the solvers this paper describes in
combination to any theory-specific solver to fully benefirfrtheir complementary nature.

There are variations to the search-based solvers presensadtio 2 which we plan to investigate.
Ru and Jianhua propose a hybrid technique which combinesr@dA&0 by creating individuals in a
new generation by crossover and mutation operations [3#tinct-based PSO adds another criterion
(the instinct) to influence a particle’s behavidl [4]. Thstinct represents the intrinsic “goodness” of
each variable of a particle’s candidate solution. We also jpb analyze how test inputs generated from
our solvers compare to those generated directly with a P§@itim whose fitness function is based on
coveragel]38].

5 Conclusions

This paper proposes and implements a plain random solvee thybrid solvers combining random
and symbolic solvers, and two heuristic search solvers. $gearandom solver and a symbolic solver
(CVC3) as baselines for comparison. We evaluate the sobretao benchmarks. One with constraints
the authors constructed and the other with constraintsatibahcolic execution generates on 8 subjects.
For the concolic execution on subjects that generated omtyddble constraints the the experiments
reveal as expected that CVC3 is superior in all but 2 case<Itimed out in these cases. For solving

8



Comparative Study of Randomized Constraint Solvers Tadiodd.

undecidable constraints, no solver subsumes anothemdests that one may not be able to predict the
heuristic that will fit best for a particular subject; it isgberable to run them all in parallel.

Next we want to analyse several open source projects to ifuéine number of constraints that
would produce undecidable constraints. We believe thisneaessary step to provide evidence for the
practical relevance of this research.
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