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ABSTRACT

Infrastructure-as-Code (IaC) is a technology that enables the man-

agement and distribution of infrastructure through code instead of

manual processes. In 2020, Palo Alto Network’s Unit 42 announced

the discovery of over 199K vulnerable IaC templates through their

“Cloud Threat” Report. This report highlights the importance of

tools to prevent vulnerabilities from reaching production. Unfortu-

nately, we observed through a comprehensive study that a security

linter for IaC scripts is not reliable yet—high false positive rates.

Our approach to tackling this problem was to leverage community

expertise to improve the precision of this tool. More precisely, we

interviewed professional developers to collect their feedback on the

root causes of imprecision of the state-of-the-art security linter for

Puppet. From that feedback, we developed a linter adjusting 7 rules

of an existing linter ruleset and adding 3 new rules. We conducted

a new study with 131 practitioners, which helped us improve the

tool’s precision significantly and achieve a final precision of 83%.

An important takeaway from this paper is that obtaining profes-

sional feedback is fundamental to improving the rules’ precision

and extending the rulesets, which is critical for the usefulness and

adoption of lightweight tools, such as IaC security linters.

CCS CONCEPTS

• Security and privacy→ Vulnerability scanners.
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1 INTRODUCTION

Software configuration management and deployment tools like

Puppet
1
, Ansible

2
, and Chef

3
became popular amongst software

development warehouses [18, 29]. The adoption of these tools has

increased with the growing movement to run software in cloud

servers. These tools help infrastructure teams increase productivity

by automating various configuration tasks (e.g., server setup). In

short, these tools describe the environment configuration in a set of

provisioning scripts that can be versioned and reused. They enable

configuration consistency between different environments and can

reduce the time required to provision and scale the infrastructure.

The process of managing and provisioning infrastructure through

configuration scripts is called Infrastructure-as-Code (IaC). IaC

tools take a script as input and create an infrastructure that typically

runs in a virtual environment as output.

As with any piece of code, IaC scripts are also prone to defects

such as security vulnerabilities [28]. For example, in 2020, Palo Alto

Network researchers reported the discovery of over 199K vulner-

able IaC templates [1]. Specifically, 42% of AWS CloudFormation

templates, 22% of Terraform templates, and 9% of Google Kuber-

netes YAML files were vulnerable. In addition, researchers found

more than 67k potential security smells in IaC scripts implemented

in Ansible, Chef, and Puppet [32] through an ad-hoc tool created

to show the presence of a new set of anti-patterns for security in

the IaC domain. These reports highlight the importance of tools to

prevent vulnerabilities from reaching production and shift security

left in the development pipeline.

Figure 1 shows an example of an Admin by default weakness

(CWE-250
4
), a potential vulnerability in a Puppet manifest in a

module of the PuppetLabs.5 The vulnerability manifests when the

developer configures a user as “admin” or “root” for an infras-

tructure component. In this example, the $grafana_user is set as

“admin” for the different services (Puppetserver, Puppetdb, Post-

gresql, Filesync) used by Grafana
6
. Therefore, any service can be

prone to a privilege escalation attack. In IaC, all the infrastructure

1
https://puppet.com/

2
https://www.ansible.com/

3
https://www.chef.io/

4
CWE-250 details available at https://cwe.mitre.org/data/definitions/250.html

5
Admin by default example available at https://github.com/puppetlabs/puppet_

operational_dashboards/blob/9eb67a407aa44c2f924f67f207edc7032f81f86a/manifests/

profile/dashboards.pp#L137 (Accessed October 13, 2022)

6
Grafana is an open-source software application for data exploration and visualization.

More information available at https://grafana.com/

https://doi.org/10.1145/3551349.3560419
https://doi.org/10.1145/3551349.3560419
https://puppet.com/
https://www.ansible.com/
https://www.chef.io/
https://cwe.mitre.org/data/definitions/250.html
https://github.com/puppetlabs/puppet_operational_dashboards/blob/9eb67a407aa44c2f924f67f207edc7032f81f86a/manifests/profile/dashboards.pp#L137
https://github.com/puppetlabs/puppet_operational_dashboards/blob/9eb67a407aa44c2f924f67f207edc7032f81f86a/manifests/profile/dashboards.pp#L137
https://github.com/puppetlabs/puppet_operational_dashboards/blob/9eb67a407aa44c2f924f67f207edc7032f81f86a/manifests/profile/dashboards.pp#L137
https://grafana.com/
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Figure 1: Simplified example of an Admin by default.

components are configured through scripts, including the access cre-

dentials. Specifying default users as administrative gives privileges

to users that only an administrator should have. Admin accounts

can be exploited to access sensitive data and execute unauthorized

code/commands. Infrastructure engineers should avoid setting ad-

min passwords and usernames to user accounts that do not need the

privileges. Detecting these issues automatically essential to make

infrastructure engineers aware of possible security problems and

to help companies build more robust infrastructures.

Problem: Puppet IaC Security Linters are not reliable yet! In

2019, Rahman et al. showed that IaC scripts—just like any piece

of code—are not immune to security vulnerabilities [28, 30]. They

focused on Puppet configuration files and listed seven anti-patterns

that could lead to security vulnerabilities. The work led to the de-

velopment of SLIC, a linter to detect those defects in Puppet scripts.

Linters are often imprecise tools [4, 8, 12, 19, 22, 34]. Therefore,

motivated by the report of very high accuracy (i.e., precision and

recall) from their paper (Table IV [28]), we decided to conduct a

reproduction study of SLIC based on a different and larger set of

projects. We asked students (co-authors of this paper) and develop-

ers to analyze the warnings that the tool reports. To validate the

students observations of low precision, we reported a sample of

the warnings of the tool to maintainers of 86 open-source projects.

From the 228 issues created, we obtained responses to 51 issues

where only 33 issues were discussed or clear. Results showed that

the tool performs differently in a new set of projects, particularly

when validated by the software owners. The precision observed

was smaller than the one reported in SLIC’s original paper (28%

instead of 99%) which indicates that security IaC linters for Puppet

are not reliable yet due to the high false positive rates.

Like many linters, SLIC uses simple rules to detect issues. Es-

sentially, it searches for string patterns in the values of tokens

(many times) regardless of their type (e.g., variable, string, etc.) and

the relationship between them. For instance, the “Usage of Crypto.

Algorithms” checker (CWE-326
7
) searches for any token whose

value includes sha1 or md5. Both are built-in Puppet functions and

SLIC fails to consider the context of usage of these algorithms,

i.e., these functions are called in Puppet manifests to encrypt data

(e.g., 𝑒𝑛𝑐𝑟𝑦𝑝𝑡_𝑘𝑒𝑦 =𝑚𝑑5(key)). Therefore, SLIC incorrectly detects

md5checksum = ’07bd73571b7028b73fc8ed19bc85226d’ as a CWE-326.

This simplicity creates much noise for developers. In this prelimi-

nary study, we observed that the rules for the current IaC security

anti-patterns must be better designed to be safely adopted by the

industry and avoid productivity disruption.

Solution: Our preliminary study revealed that (1) there is a need to

improve the precision of IaC security linters for Puppet, and that (2)

security tools can be iteratively improved and extended by incor-

porating feedback from the developer community as suggested in

previous work [34]. This paper reports on the process we followed

to iteratively and incrementally improve the precision of an IaC

linter according to user feedback. For example, the experiments

7
CWE-326 details are available at https://cwe.mitre.org/data/definitions/326.html

Figure 2: Timeline of feedback collection.

described above ignited discussions with members of the devel-

opment and security teams of Puppetlabs
8
, as well as one project

manager from Vox Pupuli
9
. The feedback collected from the team,

OSS maintainers and the Puppet community led to the creation of

a new tool, which we dubbed as InfraSecure. Later, we leveraged

the expertise of practitioners experienced in IaC tools or security

to iteratively and incrementally improve the new tool.

Figure 2 shows the timeline of feedback collection followed to

design and improve InfraSecure. To sum up, we bootstrapped the

design of InfraSecure with rules obtained from the revision of

SLIC’s ruleset, according to the feedback of the research team and

owners of OSS projects (phase 1 in Figure 2); and, incrementally

evolved the linter according to the recommendations of practition-

ers (phase 2 in Figure 2). We improved 7 rules of the SLIC ruleset and

added 3 new rules that were either recommended by practitioners

(e.g. weak password); or relevant for the infrastructure domain (e.g.

homograph attacks
10

and malicious dependencies).

Main Results: This paper performs the following contributions:

★ Study. A replication study of SLIC’s precision, including a pre-
liminary study conducted with two researchers (co-authors of

this paper) and a study with several GitHub scripts validated by

project maintainers;

★ InfraSecure. A new linter adjusting 7 rules of the original SLIC

ruleset and adding 3 new rules with a final precision of 83%.

★ Dataset. A dataset of IaC scripts with more than 1000 warnings

classified as false positives and true positives that researchers can

use to evaluate other security linters;

Take-away message: The takeaway message of this paper is that it

is feasible to tune security linters to produce acceptable precision for

important classes of warnings (confirming the findings reported in a

study at Google [34]) and that involving practitioners in discussions

is an effective way to guide the improvement of those linters.

Replication Package: All the scripts and data used in this study (in-
cluding feedback obtained from the maintainers and practitioners)

are available at: https://figshare.com/s/6b6a769b1393eae0774c.

8
GitHub PuppetLabs organization website: https://github.com/puppetlabs

9
Vox Pupuli is the organization responsible for maintaining modules and tools for the

Puppet community: https://voxpupuli.org/

10
Apple Domain Attack (2017): https://www.xudongz.com/blog/2017/idn-phishing/

https://cwe.mitre.org/data/definitions/326.html
https://figshare.com/s/6b6a769b1393eae0774c
https://github.com/puppetlabs
https://voxpupuli.org/
https://www.xudongz.com/blog/2017/idn-phishing/
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Table 1: Examples of security smells per weakness.

CWE Example

CWE-798 $username = “mariadb”

CWE-259 $password = “!TQ23Rg”

CWE-321 $key = “A67ANBD7”

CWE-319 $req = “http://www.domain.org/secret”

CWE-546 #https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=538392

CWE-326 password => md5($debian_password)

CWE-284 $bind_host = “0.0.0.0”

CWE-258 $rabbitmq_pwd = “”

CWE-250 $user = “admin”

CWE-521 pwd => “12345”

CWE-1007 $source = "http://deb.debi𝑎n.org/debi𝑎n"

CWE-829 $postgresql_version = 8.4

2 BACKGROUND

This section provides background information on Puppet and dis-

cusses security weaknesses in IaC scripts.

2.1 Puppet

Developers no longer deal with systems composed of a single ma-

chine and database. Instead, system administrators must manage

multiple diverse operating systems, databases, and virtual machines.

Perhaps most importantly, they must ensure their configurations

are consistent at any given time. Configuration management tech-

nologies have been around for over a decade—Puppet was founded

in 2005. Puppet is a solution that helps IT infrastructure manage-

ment through code by supporting software deployment, packages,

and configuration. In Puppet, programs are written using Puppet’s

declarative language. They are called manifests. More information

about the language can be found elsewhere
11
.

2.2 Security Weaknesses

This section describes in more detail the potential weaknesses in

Puppet scripts. Table 1 illustrates examples of each weakness.

Hard-coded secrets (CWE-798): This warning refers to the

practice of including sensitive information such as passwords or

cryptographic keys in code files. Table 1 shows a hard-coded pass-

word example. Rahman et al. considered 3 kinds of data as sen-

sitive: usernames, passwords, and cryptographic keys. However,

the Common Weakness Enumeration
12

list does not consider solo

hard-coded usernames as a threat. Practitioners involved in our

validation studies shared the same opinion. Therefore, we argue

that hard-coded usernames should be only reported when there

is a paired password (CWE-259) or cryptographic key (CWE-321).

More discussion on this is provided later in Section 4.2.

Use of HTTP without TLS (CWE-319): This warning refers to

the practice of using HTTP without the Transport Layer Security

(TLS) to transmit sensitive data. This means that attackers can

more efficiently exploit the communication channel as the data is

transmitted unencrypted, as cleartext
13
.

11
More about Puppet: https://puppet.com/docs/puppet/7/puppet_overview.html

12
CWE-798 description is available at https://cwe.mitre.org/data/definitions/798.html

13
This type of issues can lead to man in the middle (MITM) attacks: https://owasp.org/

www-community/attacks/Man-in-the-middle_attack

Suspicious comment (CWE-546): This warning refers to com-

ments that suggest the presence of bugs, missing security function-

alities, or weaknesses of a system. Details provided in comments

about bugs, security functionalities or weaknesses can be crucial

for hackers to exploit the infrastructure.

Use of weak cryptography algorithms (CWE-326): This

warning refers to using weak crypto algorithms. Attackers can

easily crack the encryption schemes and have access to the data [37].

Invalid IP address binding (CWE-284): This warning refers

to assigning the address 0.0.0.0 to a server. This practice allows

connections from any IP address to access that server [26]. While

mail servers have to listen on 0.0.0.0 to receivemail, database servers

should not since it can lead to critical data breaches.

Empty password (CWE-258): This warning refers to using

empty strings as passwords, which are easily guessable.

Admin by default (CWE-250): As detailed in the Introduction,

this warning refers to defining users with administrative privileges.

This can result in security weaknesses since it can disable or bypass

security checks performed by the system.
14

Weak Password (CWE-521): This warning refers to the usage

of weak passwords. Weak passwords are easily guessable and can

be bypassed to gain access to systems.

Insufficient Visual Distinction of Homoglyphs Presented

to User (CWE-1007): This warning refers to malicious actors using

homoglyphs that may cause the user to misinterpret a glyph and

perform an unintended, insecure action. The homograph attack

performed against the apple website
15

is a well-known example

of this type of weakness. Table 1 shows an example of a domain

where the character “𝑎” could be replaced by the respective homo-

glyph, as in the apple attack. This warning might be essential to

uncover malicious domains implanted by malicious open-source

contributors—typosquatting attacks.
16

Malicious Dependencies (CWE-829): This warning refers

to malicious software by nature, i.e., dependencies that integrate

known vulnerabilities (CVEs). These are the leading cause of supply

chain attacks, and one of the main challenges the security commu-

nity faces nowadays [15].

3 PRELIMINARY STUDY

This section reports on the findings of two studies—involving dif-

ferent sets of participants—to assess the performance of SLIC, a

recently-developed linter for Puppet.

3.1 Validation with Students

This section reports on a study involving two of this paper’s authors

to assess the precision of SLIC on an independent benchmark. The

study consisted in inspecting 502 warnings reported by the tool.

The warnings were validated by one senior PhD student whose

research focuses on security and static analysis and one junior PhD

student in software engineering with basic security skills.

14
Why you should not use an admin account: https://www.lbmc.com/blog/why-you-

should-not-use-an-admin-account/

15
Phishing with Unicode domains: https://www.xudongz.com/blog/2017/idn-phishing/

16
OpenSSF post on scanning OSS software for malicious behavior: https:

//openssf.org/blog/2022/04/28/introducing-package-analysis-scanning-open-

source-packages-for-malicious-behavior/

https://cwe.mitre.org/data/definitions/798.html
https://owasp.org/www-community/attacks/Man-in-the-middle_attack
https://owasp.org/www-community/attacks/Man-in-the-middle_attack
https://www.lbmc.com/blog/why-you-should-not-use-an-admin-account/
https://www.lbmc.com/blog/why-you-should-not-use-an-admin-account/
https://www.xudongz.com/blog/2017/idn-phishing/
https://openssf.org/blog/2022/04/28/introducing-package-analysis-scanning-open-source-packages-for-malicious-behavior/
https://openssf.org/blog/2022/04/28/introducing-package-analysis-scanning-open-source-packages-for-malicious-behavior/
https://openssf.org/blog/2022/04/28/introducing-package-analysis-scanning-open-source-packages-for-malicious-behavior/
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Table 2: Breakdown of warnings reported by SLIC.

Rule # %

Hard-coded secrets 22365 69.9

Use of HTTP without TLS 3757 11.7

Suspicious comments 2780 8.7

Use of Weak Crypto. Algos. 1489 4.7

Invalid IP Address Binding 769 2.4

Empty Password 684 2.1

Admin by default 146 0.5

Total 31990 100

3.1.1 Dataset. To build our dataset, we mined GitHub projects con-

taining Puppet scripts. We used three different queries to search

for repositories: 1) language:puppet is:public; 2) puppet in:readme

is:public; and, 3) devops is:public. We discarded results pointing

to forked repositories (to avoid duplicates) and discarded results

pointing to repositories without any code in Puppet scripts. Our
crawler found a total of 1419 GitHub repositories and 34574 as-

sociated Puppet scripts. SLIC scanned these scripts for the seven

sins and reported a total of 31990 security warnings involving 9144

Puppet scripts (=26.5% of the total) from 1093 repositories (=73.5%

of the total). Table 2 shows the breakdown of warnings reported

by SLIC. Column “Rule” shows the name (kind) of the warning,

column “#” shows the number of warning reports of that kind, and

column “%” shows the percentage of the total associated with that

number. This table lists the warnings in order of their prevalence.

3.1.2 Methodology. Samples. Given the high number of warnings

reported by the tool (31990) and the need for humans to analyze

each warning, we sampled a set of reported warnings. We leveraged

two popular complementary sampling strategies to that end [5].

Stratified sampling is a method to draw samples from a set by taking

into account the distribution of kinds—in our case, the distribution

of kinds of warnings. A proportional (stratified) sampler draws sam-

ples in a number proportional to the size of the sets associated with

each kind whereas an uniform (stratified) sampler draws the same

number of samples for each kind. Intuitively, a proportional sampler

values more the most prevalent kinds of warnings (as to make more

accurate measurements on those kinds) whereas an uniform sam-

pler treats every kind equally (as to avoid inaccurate measurements

on uncommon kinds). We sampled 250 warnings proportionally and

252 (=36*7) warnings uniformly. In total, we analyzed 502warnings,

which is a substantial increase when compared to the 58 warnings

analyzed in the SLIC’s paper [30].Metric.We focused on precision

to measure the reliability of the reports of the tool. Precision is

especially important for security linters. Reporting scores of false

warnings can be highly disruptive for a team’s productivity, as team

members tend to interrupt work to address high-priority tasks [13].

Developers are less willing to use linters with low rates of precision

because they find them not trustworthy and unreliable [34]. Statis-

tical Tests. Each one of the 502 warnings was manually inspected

by two co-authors. Cases where the authors found disagreement

were discussed to reach a consensus. We report on the results of a

Cohen’s Kappa analysis [10] to measure the inter-rater reliability

of human decisions.

Table 3: Performance of SLIC. (Validation with Students)

SLIC proportional uniform

Rule #TP #FP Pr. #TP #FP Pr.

Hard-coded secrets 122 52 0.70 26 10 0.72

Use of HTTP without TLS 9 20 0.31 10 26 0.28

Suspicious comments 10 12 0.45 8 28 0.22

Use of Weak Crypto. Algorithms 7 4 0.64 25 11 0.69

Invalid IP Address Binding 6 0 1.00 28 8 0.78

Empty Password 4 2 0.67 21 15 0.58

Admin by default 1 1 0.50 21 15 0.58

Total 159 91 0.64 139 113 0.55

3.1.3 Results. Table 3 shows SLIC’s results for both sampling

strategies: proportional and uniform. For each sampling strategy,

we present the number of true positives (#TP), the number of false

positives (#FP), and the Precision. Considering the results for pro-

portional sampling, the authors found a total of 159 true positives

and 91 false positives. The average precision of SLIC was 0.64 for

the proportional set. Considering the results for uniform sampling,

the authors found a total of 139 true positives and 113 false positives.

On average, SLIC’s precision was 0.55 for the uniform set.

We ran a Cohen’s Kappa analysis to measure the inter-rater reli-

ability of human decisions in classifying the warnings. The kappa

coefficient (𝑘) shows the level of agreement between the two co-

authors. The analyses yielded𝑘=0.89 and𝑘=0.94 for the proportional

and the uniform sampling sets, respectively. According toMcHugh’s

interpretation of 𝑘 [24], the reported levels of agreement are strong

and almost perfect for the proportional and uniform sampling sets,

respectively. For illustration, agreement was reached in 482 out

of 502 warnings. The two co-authors discussed the warnings that

raised disagreement. Cases where consensus was not reached were

replaced by a new one and re-evaluated. Cases where agreement

was reached were updated with the final conclusion—inferred from

the discussion between both co-authors.

Summary: Results show that the original precision of SLIC

drops considerably from 99% (reported in the original work [28]) to

below 65%when tested in a new set of puppet scripts—which might

indicate that SLIC needs to be improved. However, the lack of con-

text on the software under analysis by the co-authors may also be

the reason for a lower precision. Therefore, we conducted a new ex-

periment with the owners and maintainers of open-source software,

i.e., people with more knowledge and context of the applications.

3.2 Validation with Owners of OSS projects

Complementing the preliminary study reported in the previous

section, this section reports on the findings of a validation study

of SLIC conducted with the maintainers of open source projects.

The motivation of this study was to confirm the observations of

the previous experiment but now with open source developers,

i.e., developers with more context of the software under analysis.

GitHub issues were designed to illustrate the security smells (in-

cluding references to the corresponding CWEs
17
) and to guide the

developer towards patching the issue. We followed guidelines for

issue reporting from the literature. Issues include code samples,

links to more information and we strive to make the report message

17
CommonWeakness Enumeration (CWE) taxonomy available at http://cwe.mitre.org.

http://cwe.mitre.org
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Figure 3: Example of issue opened (based on SLIC report).

as brief and objective [6]. Figure 3 shows an example of an issue

created for a “Hard-coded Secret”. The title is “Potential vulnerabil-

ity in Puppet file: Hard-coded Secret”. The issue (1) shows where

the potential vulnerability is (code: cron_user = ’root’, script:

puppet-apt_mirror/manifests/init.pp and line: 191); (2) explains

the vulnerability and its possible implications (bypass protection

mechanism, gain privileges on applications, and access to sensitive

data); and (3) makes a recommendation to the developer on how she

can fix the vulnerability (by using a vault, in this case). We created

different templates of this message for the different warning types.

3.2.1 Dataset. The dataset used in this study was different from

the one from Section 3.1.2. We mined GitHub projects with activity

in 2020 (at least one commit) and containing Puppet scripts. We

conjectured that focusing on projects with recent activity would

increase our chances of obtaining responses. We used two different

queries to search for repositories: 1) language:puppet is:public;

and, 2) puppet in:readme is:public. We discarded results pointing

to forked repositories (to avoid duplicates), repositories without

any activity in 2020 (no commits), and repositories without any

code in Puppet per project. Our tool scanned 3740 Puppet scripts

from 287 GitHub repositories. In total, 1975 security warnings were

detected in 1147 Puppet scripts (=30.7% of the total).We issued alerts

to projects with maintainers involved in the slack of the Puppet

community. We received 51 answers to the 228 issues we submitted,

but only 33 issues were clearly validated by practitioners—which

were the ones we considered for our conclusions.

3.2.2 Methodology. This section presents the methodology fol-

lowed to submit the issues. Sample. A total of 287 GitHub reposito-

ries were scanned to this study.We ensured that the repositories had

recent activity (at least one commit in 2020) to improve the proba-

bility of obtaining responses. The total amount of scripts scanned

was 3740 —7 times the sample used in our preliminary study (Sec-

tion 3.1.1) and 28 times the sample used in Rahman et. al [28]

to evaluate the SLIC’s precision and recall. Issues. We reached

out to the software owners through the Puppet community slack

and submitted issues to projects with maintainers involved in the

slack community. All the issues followed a specific template de-

pending on the type of warning (cf. Figure 3). The issued message

not only located and explained the vulnerability but also recom-

mended an example of a patch (i.e., actionable messages to save

maintainers time). Reply Evaluation.We monitored the discus-

sion threads associated with the issues. For each response obtained,

we classified the warnings reported as true positives (TP) or false

Table 4: Performance of SLIC. (Validation with Owners)

Rule #TP #FP Precision

Hard-coded secrets 77 119 0.39

Use of HTTP without TLS 1 72 0.01

Suspicious comments 3 15 0.17

Use of Weak Crypto. Algos. 0 3 0.00

Invalid IP Address Binding 0 1 0.00

Empty Password 1 5 0.17

Admin by default 1 0 1.00

Total 83 215 0.28

positives (FP) according to the opinion of the maintainers in their

responses. Issues closed by the maintainers without any reply or

activity were discarded. Issues closed with unclear responses (e.g.,

“N/A”, “:thumbs_down”) were also discarded since they did not pro-

vide clarity on the validation of the issue. We only considered the

issues where there was some sort of discussion of the issue (e.g.,

“These todo’s shouldn’t be there, I agree ... but it’s not about de-

fects/weaknesses here. It’s just a marker to include more operating

systems in the future.”) or a clear validation of the issue (e.g., “All

false positives”, “This is not a secret.”). From the answers obtained,

two of the co-authors manually inferred the classification of each

warning. We use Cohen’s Kappa [10] to measure the inter-rater

reliability of human decisions. Metrics. We measured Precision as

described in Section 3.1.2.

3.2.3 Results. This section reports results. Issues. We reported

a total of 1975 warnings in 228 issues (9 warnings per issue, on

average). Project owners responded to 51 issues of the 228 issues we

submitted, but only 33 issues were clearly discussed or validated—

the equivalent to 298 warnings (Table 4). One issue for an “Empty

Password” warning was fixed by one of the maintainers (82c3cb7
18
);

one tagged the issue with “waiting for contribution”; another com-

mented asking to perform a pull request. Reply Evaluation.We

used the following method to determine the warning classification

(i.e., false or true positive) from the answers of project owners. We

discarded warnings related to issues closed without any response

or activity and issues that remained open or without any response

by the time of our analysis. After that stage, two of this paper’s

co-authors reviewed each of the answered issues. Each warning re-

ceived two votes. Then, we ran a Cohen’s Kappa analysis to measure

the inter-rater reliability of our choices to assess the confidence in

our classification method. The kappa coefficient (𝑘) shows the level

of agreement between the two co-authors. The analysis yielded

𝑘 = 1.0, i.e., a total agreement between both co-authors. Precision.

Table 4 shows the number of true positives (TP) and the number of

false positives (FP) per type of warning. In total, SLIC reported 83

true positives and 215 false positives for the 33 issues considered,

which resulted in an average precision of 0.28 for SLIC. Note that

the samples used for “Use of Weak Crypto. Algorithms”, “Invalid IP

Address Binding”, “Empty Password” and “Admin by default” are

relatively small, so results might not reflect the entire reality.

Summary: Results indicate that the precision of SLIC is even

lower when evaluated by maintainers—developers with more

18
Fix for “Empty password” issue: https://github.com/jtopjian/puppet-sshkeys/commit/

82c3cb7e78c16cf6517207779f79ab5b2a71b603 (Accessed October 13, 2022)

https://github.com/jtopjian/puppet-sshkeys/commit/82c3cb7e78c16cf6517207779f79ab5b2a71b603
https://github.com/jtopjian/puppet-sshkeys/commit/82c3cb7e78c16cf6517207779f79ab5b2a71b603
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knowledge and context of the applications—of the software (drops

to 28%). These results confirm our initial observations and indicate

that better security IaC linters for Puppet are needed.

4 INFRASECURE: PUPPET SECURITY LINTER

The observations described in the previous section motivated the

pursuit of a more precise security linter for Puppet scripts. The

previous experiments ignited discussions with members of the

development and security teams of PuppetLabs, as well as a project

manager from Vox Pupuli. We leveraged the feedback obtained

from the previous studies and the professional feedback to design a

new security linter for the Puppet community, which we dubbed as

InfraSecure. More precisely, we created a new linter as a result of

phase 1 (Figure 2) and incrementally evolved the linter according to

the recommendations of professionals (Figure 2, phase 2), improving

7 rules of the SLIC ruleset and adding 3 new rules. The following

sections report the new architecture (Section 4.1), design choices

(Section 4.2) and security checkers (Section 4.3) that resulted from

the feedback collection (Figure 2):

• Phase 1: feedback from the owners ofOSS projects,Puppet-

Labs and Voxpupuli Engineers (as described in Section 3)

that led to the creation of InfraSecure (v0.1.0);

• Phase 2: two cycles of feedback from thePuppet andProlific

communities (as described in Section 5) that led to two new

releases of InfraSecure (v1.0.0 and v1.1.0);

4.1 Linter Architecture

One recommendation from the PuppetLabs team (phase 1) was

to implement the set of the rules as plugins to the puppet-lint
architecture

19
, through the puppet-lint check API

20
. This API

facilitates the integration of new checkers in puppet-lintİn addi-

tion, it allows the user to suppress warnings and disable or enable

checkers—which are regarded as important features by the commu-

nity. All security checks were developed as plugins to puppet-lint
(Table 7). These checks are applied to the Abstract Syntax Tree

(AST) of a Puppet manifest which is generated by an internal

tokenizer
21
. InfraSecure was implemented in Ruby and its CLI

is available online
22
. The codebase of the linter is available at

https://github.com/TQRG/puppet-lint-infrasecure and open to fu-

ture contributions.

4.2 Design Choices

This section describes the design choices of our analysis, guided

by the distinct cycles of feedback as described in Section 3 and

Section 5; also, illustrated in Figure 2.

Variable/Attribute Assignments (VASS). From the prelimi-

nary analysis performed in Section 3, we have noticed security-

related code smells being detected in logical conditions. For instance,

if has_key($userdata, ’env’) shows a logical condition that was

incorrectly flagged as a hard-coded secret issue. Aiming to reduce

the number of incorrect predictions, we implemented a rule to

19
Puppet-lint website: http://puppet-lint.com/

20
Puppet-lint check API: http://puppet-lint.com/developer/api/

21
Puppet-lint tokenizer: http://puppet-lint.com/developer/tokens/

22
Gem is available at https://rubygems.org/gems/puppet-lint-infrasecure

search for variable and attribute assignments in Puppet manifests—

isVarAssign(token) and isAtrAssign(token) (cf. Table 7).
Reasoning about the token value (TOKVAL). Some of the

rules did not reason about token.value. For hard-coded secrets,

the linter only checks if the token value is not empty. While man-

ually validating the samples used in our studies, we found false

positives of hard-coded secrets. For instance, aws_admin_username =

downcase($::operatingsystem) which does not store any actual se-

cret. SLIC flagged this case as a hard-coded secret because the value

assigned to the variable aws_admin_username is not empty. However,

the rule needs to reason not only about the length of the right-hand

side of the variable assignment but also about the type of token

and value. InfraSecure locates variable and attribute assignments

in the AST and considers that secrets are usually stored in :STRING

and :SSTRING tokens. In addition, we defined a database of known

credentials (isUserDefault(token.value))—credentials that are
not considered secrets by the community

23
—and, invalid secrets

(invalidSecret(token.value)) which are consider as non-valid

values for hard-coded secrets. The linter ignores all the credentials

in this database. Feedback from distinct owners of OSS Projects

is what drove us to make this decision is presented below:

[User Default]: “The names of these UNIX accounts are not consid-

ered to be secret. They are published openly as part of the PE docu-

mentation: https://puppet.com/docs/pe/2019.8/what_gets_installed_

and_where.html#user_and_group_accounts_installed”

[Invalid Secret]: “This are default users and default as found in

every installed fpm package. there is most of the time a wwwrun or a

www-data user depending on the system.”

Use of HTTP without TLS is fine sometimes (SAFE). As

SLIC, InfraSecure also flags every single occurrence of http://,

i.e., it recommends to use TLS by default. For example, the tool

flags apturl => "http://deb.debian.org/debian", even though it

refers to a credible source. Our definition of credible source is a

source that can be trusted. However, different companies can have

different opinions regarding the credibility of the same source. That

is why this rule is customizable. We observed that this type of

issues (CWE-319) are prevalent in Puppet files. Applications often

use third-party libraries, which are usually configured in Puppet

files, and the links to their sources are not necessarily unsafe. Also,

depending on the context of an application, the configuration of

localhost servers as HTTP may not be a problem. If no sensitive

data is communicated, then there is probably no problem using http.

InfraSecure has a configuration file for safe domains, i.e., domains

that are cleared to be use http. Thereby, infrastructure teams can

customize their own configuration files. The feedback provided in

Section 5 from two different practitioners, which supported this

decision, is presented bellow:

[Whitelist]: “I think it is fine if localhost is used. Otherwise TLS

should be mandatory. All the big financial organizations will not use

this check because they cannot create internal certs or use letsencrypt.”

[Whitelist]: “By default, it’s unsafe to not use HTTPS. But for inter-

nal testing/development it is acceptable to me to not use HTTPS all

the time.”

23
https://puppet.com/docs/pe/2019.8/what_gets_installed_and_where.html#user_

and_group_accounts_installed

https://github.com/TQRG/puppet-lint-infrasecure
http://puppet-lint.com/
http://puppet-lint.com/developer/api/
http://puppet-lint.com/developer/tokens/
https://rubygems.org/gems/puppet-lint-infrasecure
https://puppet.com/docs/pe/2019.8/what_gets_installed_and_where.html#user_and_group_accounts_installed
https://puppet.com/docs/pe/2019.8/what_gets_installed_and_where.html#user_and_group_accounts_installed
https://puppet.com/docs/pe/2019.8/what_gets_installed_and_where.html#user_and_group_accounts_installed
https://puppet.com/docs/pe/2019.8/what_gets_installed_and_where.html#user_and_group_accounts_installed
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Hard-Coded Secret Division in different checkers (SECR).

In Section 3, we observed that the hard-coded secrets checker pro-

duces the most significant number of alerts. For instance, SLIC

assumes a secret is a key, password or username. As mentioned

previously in Section 2, the Common Weakness Enumeration list

does not consider solo hard-coded usernames as a threat. Practi-

tioners involved in our validation studies shared the same opinion.

We analyzed the distribution of the different types of hard-coded

secrets and realized that 48% of the secrets detected were user-

names. Therefore, in the final version of our tool, we decided to

separate the hard-coded secrets checker into three new checkers

(one per type of secret). This way, developers can disable the user-

name checker if they find it noisy. We did not delete the original

checker; infrastructure teams can use it if they want to collect all

the different types of secrets simultaneously. Feedback provided in

Section 5 from a practitioner supported this decision:

[Username]: “The main security issue is having the password hard-

coded. About having the user hard-coded, it is possible to allow that as

an initial setting that should be changed during the first configuration

and, in that case, it is not so much a security issue.”

4.3 Rules

InfraSecure detects 12 different security smells in Puppet mani-

fests. Table 5b presents the AST patterns that are searched in the

AST for relevant nodes/sequences of nodes; and, table 5a presents

the string patterns used to validate the information in those nodes.

Table 7 shows the syntactic pattern matching rules per weakness

which leverage the two sets of patterns mentioned before.

Hard-coded secrets (CWE-321, CWE-259, CWE-798): The

top of the Table 7 contains 4 different rules for hard-coded secrets:

one per secret; and a final one which detects all kinds of secrets

at the same time (keys, password and usernames). In addition to

the design choices, the rules consider that secret values cannot be

placeholders (!isPlaceholder(), Table 5a).

Use of HTTP without TLS (CWE-319): One of the main find-

ings of our analysis is that HTTP without TLS is not always prob-

lematic. Therefore, we created a configurable whitelist where in-

frastructure teams can add safe domains. The checker will not raise

alerts when in the presence of a safe domain (inWhitelist(), Ta-

ble 7). InfraSecure provides a default whitelist with known reliable

sources such as http://deb.debian.org/debian. However, this default

whitelist will be overwritten if the user configures a new one.

Suspicious Comments (CWE-546): This checker was contro-

versial. It was recognized that it would be valuable to alert develop-

ers about comments in their code mentioning functionalities and

weaknesses that might hint at attackers. However, keywords such

as “todo”, “later”, and “later2” were considered noisy. We changed

the list of keywords in response to the complaints and feedback

obtained from the developers (isSuspiciousWord(), Table 5a).

Usage of Weak Crypto. Algorithms (CWE-326): InfraSe-

cure searches for in calls to functions (isFunctionCall(), Table 5b)

implementing crypto algorithms such as “md5” and “sha1” in vari-

able and attribute assignments (Table 7).

24
The strong_password https://rubygems.org/gems/strong_password ruby gem is

used to determine if a password is strong or not.

Table 5: InfraSecure’s list of string and AST patterns.

Rule String Pattern

isAdmin(t.value) root|admin

isNonSecret(t.value) gpg|path|type|buff|zone|mode|tag|header|

scheme|length|guid

isPassword(t.value) pass(word|_|$)|pwd

isUser(t.value) user|usr

isKey(t.value) (pvt|priv)+.*(cert|key|rsa|secret|ssl)+

isPlaceholder(t.value) ${.*}|($)?.*::.*(::)?

hasCyrillic(t.value) ^(http(s)?://)?.*\p{Cyrillic}+

isInvalidIPBind(t.value) ^((http(s)?://)?0.0.0.0(:\d{1,5})?)$

isSuspiciousWord(t.value) hack|fixme|ticket|bug|checkme|secur|debug|

defect|weak

isWeakCrypto(t.value) ^(sha1|md5)

isCheckSum(t.value) checksum|gpg

isHTTP(t.value) ^http://.+

isUserDefault(t.value) pe-puppet|pe-webserver|pe-puppetdb|pe-

postgres|pe-console-services|pe-

orchestration-services|pe-ace-server|pe-

bolt-server

invalidSecret(t.value) undefined|unset|www-data|wwwrun|

www|no|yes|[]|undef|true|false|changeit|

changeme|none

isStrongPwd(t.value)
24

StrongPassword::StrengthChecker(t.value)

isEmptyPassword(t.value) t.value == “”

isVersion(t.value) .*_version

(a) String patterns are applied to token values.

Rule AST Pattern

isVariable(t) t.type == :VARIABLE ∨ t.type == :NAME

isString(t) t.type == :STRING ∨ t.type == :SSTRING

isVarAssign(t) isVariable(t.prev_code_token) ∧ t.type == :EQUALS ∧
isString(t.next_code_token)

isAtrAssign(t) isVariable(t.prev_code_token) ∧ t.type == :FARROW ∧
isString(t.next_code_token)

isResource(t) (t.prev_code_t.type == :NAME ∧ t.type ==

:LBRACE ∧ t.next_code_t.type == :SSTRING)
∨ (t.prev_code_t.type == :LBRACE ∧ t.type ==

:SSTRING)

isFunctionCall(t) (t.type == :NAME ∧ t.next_code_token.type ==

:LPAREN) ∨ t.type == :FUNCTION_NAME

isComment(t) t.type is in (:COMMENT, :MLCOMMENT,
:SLASH_COMMENT)

(b) Patterns applied to the Abstract Syntax Tree (AST).

Invalid IP Address Binding (CWE-284): We found cases

where the invalid IP 0.0.0.0 was in descriptions and commands.

For instance, SLIC flags description => ’Open up postgresql for

access to sensu from 0.0.0.0/0’. IPs follow a dot-decimal nota-

tion, i.e., they should not include letters. InfraSecure uses a less

naive regex than the string pattern (isInvalidIPBind(), Table 5a).

Empty Password (CWE-258): Empty passwords are located

the same way as hard-coded secrets, i.e., by focusing on variable

and attribute assignments (Table 7). The rule isEmptyPassword()

(Table 5a) verifies if the password is empty.

http://deb.debian.org/debian
https://rubygems.org/gems/strong_password
root|admin
gpg|path|type|buff|zone|mode|tag|header|scheme|length|guid
gpg|path|type|buff|zone|mode|tag|header|scheme|length|guid
pass(word|_|$)|pwd
user|usr
(pvt|priv)+.*(cert|key|rsa|secret|ssl)+
${.*}|($)?.*::.*(::)?
^(http(s)?://)?.*\p{Cyrillic}+
^((http(s)?://)?0.0.0.0(:\d{1,5})?)$
hack|fixme|ticket|bug|checkme|secur|debug|defect|weak
hack|fixme|ticket|bug|checkme|secur|debug|defect|weak
^(sha1|md5)
checksum|gpg
^http://.+
pe-puppet|pe-webserver|pe-puppetdb|pe-postgres|pe-console-services|pe-orchestration-services|pe-ace-server|pe-bolt-server
pe-puppet|pe-webserver|pe-puppetdb|pe-postgres|pe-console-services|pe-orchestration-services|pe-ace-server|pe-bolt-server
pe-puppet|pe-webserver|pe-puppetdb|pe-postgres|pe-console-services|pe-orchestration-services|pe-ace-server|pe-bolt-server
pe-puppet|pe-webserver|pe-puppetdb|pe-postgres|pe-console-services|pe-orchestration-services|pe-ace-server|pe-bolt-server
undefined|unset|www-data|wwwrun|www|no|yes|[]|undef|true|false|changeit|changeme|none
undefined|unset|www-data|wwwrun|www|no|yes|[]|undef|true|false|changeit|changeme|none
undefined|unset|www-data|wwwrun|www|no|yes|[]|undef|true|false|changeit|changeme|none
.*_version
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Table 6: Performance of InfraSecure v0.1.0.

InfraSecure v0.1.0 proportional uniform

Rule #TP #FP Pr. #TP #FP Pr.

Hard-coded secrets 118 22 0.84 24 4 0.86

Use of HTTP without TLS 8 17 0.32 9 23 0.28

Suspicious comments 5 2 0.71 6 10 0.38

Use of Weak Crypto. Algorithms 5 2 0.71 23 2 0.92

Invalid IP Address Binding 6 0 1.00 28 1 0.97

Empty Password 4 2 0.67 21 15 0.58

Admin by default 1 1 0.50 20 15 0.57

Total 147 46 0.76 131 70 0.65

Admin By Default (CWE-250): These issues are also located

by focusing on variable and attribute assignments (Table 7). The

rule isAdmin(), table 5a, verifies if the user is “admin” or “root”.

Homograph Attacks (CWE-1007): Typosquatting attacks, also

known as URL hijacking, is a social engineering attack that pur-

posely uses misspelt domains for malicious purposes; and are the

cause of many supply chain attacks [14]. This checker is important

because malicious actors can use homoglyphs to modify reliable

sources for malicious sources (hasCyrillic(), Table 5a).

Weak Password (CWE-521): InfraSecure searches for pass-

words in the same way it searches for Empty Passwords and Hard-

Coded Passwords. The only difference is the password value valida-

tion (isStrongPwd(), Table 5a) which is performed by an external

package (strong_password) that implements an adaptation of a

PHP algorithm developed by Thomas Hruska [20].

Malicious Dependencies (CWE-829): We produced a data-

base of malicious dependencies for Puppet modules by crossing

CVEs information and vulnerable products names with third-party

libraries that can be configured in Puppet manifests. We used the

National Vulnerability Database (NVD) to collect the CVEs and

respective vulnerable products—from the list of Known Affected

Software Configurations. To get the list of products used by Puppet,

we used the Forge API
25
. Our database integrates malicious depen-

dencies for 33 different packages (e.g., rabbitmq, apt, cassandra,
postgresql, etc). The checker searches for resource configurations
(isResource(), Table 5b) and verifies if the a configured version of

the software integrates our database of malicious dependencies for

Puppet (isMalicious(), Table 7).

4.4 Proof of Concept: InfraSecure v0.1.0

As a proof of concept, two of the design choices described in Sec-

tion 4.2 were implemented in the first version, InfraSecure v0.1.0,

to ascertain whether precision could be enhanced. In particular,

we focused on implementing variable and attribute assignments

(VASS) and reasoning about the token value (TOKVAL), to reduce

the number of incorrect detections.

In our preliminary analysis with students (see Section 3, Table 3),

we observed that the precision of SLIC was 64%. By implementing

the two design choices mentioned before, we increased precision

by 12 per cent points—when comparing SLIC’s precision in the

proportional set (64%) with the precision of the first version of

InfraSecure in the same dataset (76%), Table 6. As these changes

25
Forge API is available at https://forgeapi.puppet.com/

were successful w.r.t. precision, we decided to implement the other

improvements and conduct a new study with practitioners to collect

more feedback about the tool and the anti-patterns covered.

5 PRACTITIONERS EVALUATION

InfraSecure was validated with practitioners experienced in se-

curity or configuration management technologies. We built an

experiment to validate the warnings of the new tool. The ex-

periment was shared with the Puppet communities on Slack

(puppetcommunity.slack.com) and Reddit (r/puppet). We found

14 participants by this mean. Later, we leveraged Prolific
26

[33] to

gather more participants based on their experience and program-

ming knowledge. In this experiment, a total of 339 warnings were

validated by 131 practitioners. Furthermore, our improvements in-

creased the precision of the tool from 28% to 83%. As illustrated in

Figure 2, we run two cycles of feedback collection and iteratively

improve the tool with the feedback collected. This section describes

1) the methodology conducted with practitioners to validate the

InfraSecure warnings; and 2) the results obtained from running

the practitioners’ experiment.

5.1 Study Design

In this section, we detail how the validation study of InfraSecure

was designed, and the population leveraged to conduct it. InfraSe-

cure was improved based on the problems collected through the

preliminary study and the validations with the maintainers of the

software—which led to InfraSecure v0.1.0. To validate the new

tool, we surveyed practitioners with experience in security, config-

uration management tools and programming knowledge by follow-

ing recent recommendations to run studies on Prolific [33]. After

the pre-screening, the practitioners were asked to validate and give

feedback on 3 different warnings generated by InfraSecure.

Practitioners Recruitment. The participants were obtained

using two distinct routes: 1) By sharing the study with online Pup-

pet communities such as puppetcommunity.slack.com (slack) and
r/puppet (reddit); 2) By using the Prolific platform to gather prac-

titioners with experience in security, configuration management

tools and programming skills. Both communities integrate a con-

siderable amount of members: slack has over 9k members, and

Reddit has around 4.7k members. However, only 14 members par-

ticipated in our study. Therefore, we used Prolific to collect more

practitioners with experience in security and configuration manage-

ment tools outside of these two communities. Prolific participants

were monetarily compensated for answering each survey, while

the participants collected in the communities were not.

Pre-Screening. Prolific is a platform where you can find par-

ticipants to perform online research. As recommended in research

on recruiting practitioners for user studies on prolific [33], we

performed a pre-screening of the population to collect adequate

participants for this study, i.e., participants with security and con-

figuration management experience; and programming knowledge.

Prolific has filters dedicated to the industry where the participants

work or belong. We sent the pre-screening survey to prolific users

working in the following industries: “Computer and Electronics

26
Prolific Platform: https://www.prolific.co/
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Table 7: InfraSecure rules to detect security smells.

CWE Weakness Name Rule

CWE-321 Hard-coded Key (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isKey(t.prev_code_token) ∧ isNonSecret(t.prev_code_token) ∧ !isPlace-

holder(t.next_code_token)

CWE-259 Hard-coded Password (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isPassword(t.prev_code_token) ∧ isNonSecret(t.prev_code_token) ∧ !isPlace-

holder(t.next_code_token) ∧ !isUserDefault(t.next_code_token) ∧ !invalidSecret(t.next_code_token)

CWE-798 Hard-coded Usernames (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isUser(t.prev_code_token) ∧ isNonSecret(t.prev_code_token) ∧ !isPlace-

holder(t.next_code_token) ∧ !isUserDefault(t.next_code_token) ∧ !invalidSecret(t.next_code_token)

CWE-798 Hard-coded Secrets (isVarAssign(t) ∨ isAtrAssign(t)) ∧ (isKey(t.prev_code_token) ∨ isPassword(t.prev_code_token) ∨ is-

User(t.prev_code_token)) ∧ !isPlaceholder(t.next_code_token) ∧ !isUserDefault(t.next_code_token) ∧ !invalidSe-

cret(t.next_code_token)

CWE-319 Use of HTTP without TLS (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isHTTP(t.next_code_token) ∧ !inWhitelist(t.next_code_token)

CWE-546 Suspicious Comments isComment(t) ∧ isSuspiciousWord(t)

CWE-326 Use of Weak Crypto. Algo. (isVarAssign(t.prev_code_token) ∨ isAtrAssign(t.prev_code_token) ∨ isFunctionCall(t.next_code_token)) ∧ !is-

CheckSum(t.prev_code_token) ∧ isWeakCrypto(t.next_code_token)

CWE-284 Invalid IP Address Binding (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isInvalidIPBind(t.next_code_token)

CWE-258 Empty Password (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isPassword(t.prev_code_token) ∧ isEmptyPassword(t.prev_code_token)

CWE-250 Admin by default (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isNonSecret(t.prev_code_token) ∧ isUser(t.prev_code_token) ∧ !isPlace-

holder(t.next_code_token) ∧ isAdmin(t.next_code_token)

CWE-1007 Homograph Attacks (isVarAssign(t) ∨ isAtrAssign(t)) ∧ hasCyrillic(t.next_code_token)

CWE-521 Weak Password (isVarAssign(t) ∨ isAtrAssign(t)) ∧ isPassword(t.prev_code_token) ∧ isStrongPwd(t.next_code_token)

CWE-829 Malicious Dependencies isResource(t) ∧ isVersion(t.prev_code_token) ∧ isMalicious(t.next_code_token)

inWhitelist(t.value) verifies if the URL is in the list of configurable safe domains/whitelist. If the URL is in the whitelist, an alert should not be raised.

isMalicious(t.value) verifies if the software package version configured in the puppet script is in the database of malicious dependencies.

Manufacturing”, “Information Services and Data Processing”, “Prod-

uct Development”, “Research laboratories”, “Scientific or Technical

Services”, “Software”. The participants were asked to answer the

following questions: 1) Do you have any kind of experience with

configuration management tools? Choices: Puppet, Ansible, Ter-

raform, Chef, Other; 2) Experience in Security (Number of Years);

3) Experience in Infrastructure as a Service (Number of Years);

and three programming language questions about different puppet

configurations. Due to space constraints, we do not present the

questions here, but they are available in our replication package:

study/practitioners/pre-screening/puppet-study-form.pdf.

We obtained a total of 431 responses from 8 different industries.

Then, we ordered those participants by priority where priority is

the count of experience in 1) at least one configuration management

tool (𝐶𝑀𝐸𝑋𝑃 ), 2) security (𝑆𝐸𝐶𝐸𝑋𝑃 ), 3) infrastructure as a service

(𝐼𝑁 𝐹𝑅𝐴𝐸𝑋𝑃 ); and 4) score in the programming questions (𝑆𝐶𝑂𝑅𝐸).

Priority was calculated as follows 0.3 ∗ ((𝐶𝑀𝐸𝑋𝑃 + 𝑆𝐸𝐶𝐸𝑋𝑃 +
𝐼𝑁 𝐹𝑅𝐴𝐸𝑋𝑃)/3) +0.7∗ (𝑆𝐶𝑂𝑅𝐸/3) and varies between 0 to 3. A pri-

ority of 3 means the participant is adequate for the study, whereas

a priority of 0 means the participant is not adequate. For the val-

idation study, we only invited participants with priority equal to

or greater than 1.5—which represented 53% of the initial responses

(227 out of 431 participants).

Validation Form.We built a form online to share with the Pup-

pet communities and practitioners. The initial page of the form

explains the study’s goal and asks the participant for her profes-

sion/career, number of years of experience in security, and number

of years of experience in infrastructure/puppet. The goal of the

study is to validate the output of our new tool: InfraSecure. There-

fore, participants are required to validate 3 different warnings (one

at each time). For each warning, the form presents a description

of the issue and the piece of code where the issue is located (cf.

Figure 4). Participants have to evaluate the issue and provide their

validation: “Yes, I agree”, if the warning reports a security issue;

“No, I disagree”, if it reports a false security issue; or, “I’m not sure”,

when unsure. The participant can also provide additional feedback

on the problem.

Warnings Dataset. For this experiment, we validated the out-

put of 9 different rules (Table 7), where the warnings for weak

passwords and malicious dependencies were mostly validated in

the second round of feedback collection. We ran the InfraSecure

over a total of 1050 GitHub projects—collected from the dataset

used in the preliminary study (Section 3). We created a uniform

sample with 50 warnings per rule (i.e., a total of 450 warnings).

Metrics.We report the number of true positives (TPs), the num-

ber of false positives (TPs), the number of “Unsure” responses and

Precision—calculated as described in Section 3.1.2.

5.2 Results

We obtained a total of 131 participants: 74 in the first round of feed-

back; and 57 in the second round. Due to the lack of responses from

participants, we were only able to validate 342 out of the 450 initial

number of warnings. Table 8 shows the distribution of warnings

and precision obtained for the final version of InfraSecure (v1.1.0).

At the end of this study, InfraSecure reported a precision of 83%,

where 54 of the warnings were False Positives.

study/practitioners/pre-screening/puppet-study-form.pdf
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Figure 4: Example of the form presented to the practicioner

for warning validation.

Table 8: Performance of InfraSecure (v1.1.0). (Validation

with Practitioners)

Rule #TP #FP #Unsure Precision

Hard-coded secrets 28 8 3 0.78

Use of HTTP without TLS 32 3 2 0.91

Suspicious Comments 16 15 7 0.52

Use of Weak Crypto. Algo. 33 3 6 0.92

Invalid IP Address Binding 26 8 6 0.77

Empty Password 33 3 1 0.92

Admin by default 30 6 6 0.83

Malicious Dependencies 25 6 3 0.81

Weak Password 32 2 0 0.94

Total 255 54 34 0.83

Part of the feedback obtained in this experiment was documented

in Section 4.2 and 4.3. Table 9 shows the evolution of the tool’s preci-

sion with the different iterations of feedback. In contrast to Table 6,

where we report the precision of v0.1.0 for the alerts validated by

students; here, in Table 9, we report the precision of v0.1.0 based on

the practitioners’ feedback, i.e., leveraging the alerts validated by

practitioners (instead of students). It is important to note that the

implementation of v0.1.0 focused on understanding variable and

attribute assignments and reasoning about the token value to re-

duce the number of incorrect detections. These two improvements

affected all checkers. The remaining versions of the tool focused on

addressing specific false positives, extending the ruleset and adding

the safe domains feature. In the comparison provided in Table 9, we

observe an increase of precision—from 76% to 83%—by conducting

different cycles of feedback collection. In addition, feedback was

essential to extend the ruleset. This study with practitioners led

us to create 3 new rules to detect weak passwords; typosquatting

attacks; and malicious dependencies (being the last two the root

causes of many supply chain attacks [14, 15]).

Summary: Results show that working side-by-side with the

community will help the authors of the tools develop better linters,

as proposed before by a Google study [34]. Using this feedback

approach, we improved the linter’s precision and the final ruleset.

Table 9: Precision obtained in different cycles of feedback

collection for InfraSecure.

Participants version Precision

Research Team, Owners of OSS Projects, Pup-

petLabs, Voxpupuli

v0.1.0 76%

Practitioners (cycle 1) v1.0.0 79%

Practitioners (cycle 2) v1.1.0 83%

5.3 Discussion & Limitations

This paper reports our approach to improve the ruleset of an IaC

security iteratively linter in different cycles of feedback collection.

However, the tool can still be improved with more sophisticated

techniques such as data-flow analysis, which would fulfil the fol-

lowing feedback: In puppet, pre-defining a password as empty does

not mean it is empty (e.g., $ssl_password = ”). Many times these

variables are changed later. Thus, for each empty password, InfraSe-

cure verifies if the same variable was changed within the same file.

If it was, then the linter will not raise an issue..

In addition, some engineers suggested that usernames should

be only reported as hard-coded secrets when paired with a pass-

word/key. For this, we must match the different pairs of credentials

in a puppet manifest. To sum up, there are still opportunities to

improve the precision and recall of InfraSecure. We reached out

to owners of highly active GitHub projects that use Puppet report-

ing warnings detected by InfraSecure. Two owners mentioned

that since the apps are not in production, they did not consider the

issues relevant. Even after improving the linter to detect the anti-

patterns correctly, some problems are still not problematic. This

happens because the linter does not have context regarding the

software’s usage, which will always be a source of False Positives.

In the future, we will continue to search for solutions to make the

linter more context-aware since this is a known problem of linters.

6 ETHICAL STANDARDS AND COMPLIANCE

This section discusses compliance with the ACM Policy for Re-

search Involving Humans,
27

which ensures that the ethical and

legal standards are met when research has human participants.

Informed Consent. One of the principles is to ensure that par-

ticipants are informed about the fact that they are participating

in a study. In our study, consent was collected differently for each

experiment: for the first one, the research team agreed to partici-

pate in the study; for the OSS maintainers experiment, we used the

puppet community slack to communicate and discuss the investiga-

tion with the maintainers; finally, for the practitioners’ experiment,

we asked survey participants if they agreed to participate in our

different surveys at the beginning of the pre-screening phase.

Data Privacy. For all experiments, we ensured that the par-

ticipants’ private information was protected by not providing the

participants’ personal data (e.g., GitHub usernames of the OSSmain-

tainers, prolific participants’ names, ages, nationalities, etc.) in our

replication package.

Spam. As mentioned in Section 3.2, we carefully organized the

issues to minimize the amount of messages sent to maintainers [3,

27
The ACM Policy for Research Involving Humans description is available at

https://www.acm.org/publications/policies/research-involving-human-participants-

and-subjects (Accessed October 13, 2022)

https://www.acm.org/publications/policies/research-involving-human-participants-and-subjects
https://www.acm.org/publications/policies/research-involving-human-participants-and-subjects
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17]. Security smells of the same kind were all reported in a single

GitHub issue. In addition, we designed the issues to be actionable

by providing personalized fix suggestions and adding references

that document the detected problems.

Full Disclosure in Security. Fully disclosing vulnerabilities

on GitHub issues allows hackers to exploit unfixed vulnerabilities,

creating risks for software users. Ideally, vulnerability disclosure

should be performed confidentially. Yet, GitHub does not provide a

feature to report them privately. Therefore, carefully performing full

disclosure is accepted by OSS maintainers [2, 7]. Some OSS projects

adopt security mailing lists. In those cases, disclosure should be

performed through those mailing lists.

7 THREATS TO VALIDITY

This section presents potential threats to the validity of this study.

Internal Validity: As with any implementation, the scripts that

we developed to run the tools and collect the metrics reported in

the paper are potentially not bug-free. However, the scripts and

outputs are open-source for other researchers and potential users

to check the validity of the results.

Construct Validity: A potential threat is the manual analysis

of the warnings raised by SLIC in the Puppet scripts, which can

potentially be mislabeled. We tried to mitigate this by running a

kappa analysis between the two co-authors. For the experiments

with the OSS maintainers, we inferred the validations of the alerts

from their comments. Although both co-authors inferred the vali-

dations, and a kappa analysis was performed, we risk our inference

being incorrect. It is also important to mention that even though

we made an effort to collect feedback from experienced humans,

their judgement can also not be 100% accurate, which can introduce

error in the precision values reported.

External Validity: A potential threat to external validity is re-

lated to the fact that the set of Puppet scripts we have considered

in this study may not accurately represent the whole set of vulnera-

bilities that can happen during development. We attempt to reduce

the selection bias by gathering a large collection of real, openly

available (hence, reproducible) Puppet scripts. Another potential

threat is that we could have missed the latest updates to SLIC. To

mitigate this risk, we contacted the authors of SLIC to confirm that

the version available is true to the most recent one.

8 RELATEDWORK

As IaC has become popular and prevalent, researchers have dedi-

cated efforts to improve its quality. Jiang et al. conducted an em-

pirical study on Puppet scripts to gain a deep understanding of the

characteristics of such scripts and how they evolve over time [21].

Bent et al. investigated the quality and maintainability aspects of

Puppet scripts [35]. Furthermore, Rahman et al. proposed prediction

models (based on text mining) to classify defective IaC scripts [31].

Palma et al. created a catalog of software metrics for IaC scripts [11].

In addition, recent work has been developed to detect malicious

packages published on registry maintainers such as npm and ruby

gems [14]. Building and introducing linters earlier in the software

development life-cycle shift security left and decreases the proba-

bility of shipping malicious packages.

There are several linters available for security but only the sub-

ject of this paper, SLIC, focuses in IaC scripts for Puppet [28]. The

authors started by demonstrating the linter in the context of Puppet

scripts, and later, the authors reproduced the same study for Chef

and Ansible and created new tools for those technologies [30]. Ama-

jor issues with linters is their lack of precision [9, 16, 23, 25, 27, 36]:

low precision entails low reliability for developers. Previous re-

search has shown the impact of this issue on the developers’ work-

flow and stressed it is essential to create precise tools; otherwise,

the developers will not use them [4, 8, 12, 19, 22, 34]. As mentioned

before, this study aims to gain a better understanding of the current

capabilities of the only IaC security linter for Puppet and shed some

light on how to move forward.

9 CONCLUSIONS & FUTUREWORK

In this study, we observed through a comprehensive study that secu-

rity linters for IaC scripts still need to be improved to be adopted by

the industry. This paper leverages community expertise to address

the challenge of improving the precision of such linting tools. We

focused on precision as it is critically important in this domain—

false security warnings can be very disruptive. More precisely, we

interviewed professional developers of Puppet scripts to collect

their feedback on the root causes of imprecision of the state-of-the-

art security linter for Puppet. From that feedback, we developed a

linter adjusting 7 rules of an existing linter ruleset and adding 3 new

rules. We conducted a new study with 131 professional developers,

showing an increase in precision from 28% to 83%. Following the

findings of a Google study [34], we show that authors of linters

can improve their own tools if they focus on the users’ feedback.

The takeaway messages of this paper are that (i) it is feasible to

tune security linters to produce acceptable precision; and, that (ii)

involving practitioners in discussions is an effective way to guide

the improvement of those linters.

The observations that we made throughout this work pave the

way for the following future work: extend InfraSecure to detect

other security vulnerabilities, integrate the tool with methods for

automated patching, and port InfraSecure to other configuration

management tools.
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