IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 1

Delta Execution for Efficient State-Space
Exploration of Object-Oriented Programs

Marcelo d’Amorim, Steven Lauterburg, and Darko Marinov

Abstract— We present Delta Execution, a technique that speeds and Zing [3]. These model checkers have focused on efficient
up state-space exploration of object-oriented programs. tate- manipulation and representation of states/heaps for thel us

space .EX[i)loratiOI‘ll is the e?]sfence of model checking and anyrogram execution thatperates on one state/heap/e refer to
increasingly popular approach for automating test generabn. A ¢\ b tion astandard executian

key issue in exploration of object-oriented programs is hadlin . .

thg program start)e, in particulai the heap. Wg egploit the fa¢ thagt] We. present Delta Execution, referred t(,) ad-xecution a

many execution paths in state-space exploration partiallpverlap. t€chnique where program execution operag#sultaneously on

Delta Execution simultaneously operates on several statbegaps several states/heapdVhile such execution may be useful for

and shares the common parts across the executions, sepaigte several software reliability tasks—including patch vatidn,

executing only the “deltas” where the executions differ. administrative configuration validation, testing, modbkcking,
We implemented Delta Execution in two model checkers: JPF, or replica-based fault detection and recovery [51]—thipepa

a popular general-purpose model checker for Java programs,) . .
and BOX, a specialized model checker that we developed for focuses on state-space exploration of programs with heaps.

efficient exploration of sequential Java programs. The resits for ~AExecution exploits the fact that many execution paths itesta
bounded-exhaustive exploration of ten basic subject progms Space exploration partially overlaphExecution speeds up the
and one larger case study show that Delta Execution reduces state-space exploration by sharing the common parts athess
exploration time from 1.06x to 126.80x (with median 5.60x)ri executions and separately executing only the “deltas” whie
JPF and from 0.58x to 4.16x (with median 2.23x) in BOX. The executions differ. Central td Execution is arefficient representa-
results for a non-exhaustive exploration in JPF show that DB i, 4ng manipulation of sets of statesExecution is thus related
Execution reduces exploration time from 0.92x to 6.28x (wit . - .
median 4.52x). to shape analysis [2?], [38], [50], a static program analykat
checks heap properties and operates on sets of states. etpwev
Index Terms— Software/program verification, model checking, spape analysis operates on abstract states, whifecution
testing and debugging, performance, delta execution operates on concrete states.
AExecution was inspired by symbolic model checking
I. INTRODUCTION (SMC) [11], [25]. SMC enabled a breakthrough in model check-

OFTWARE testing and model checking are important aﬁng as it provided a much more efficient exploration than iexpl
Sproaches for improving software reliability. A core teciuie State model checking. Conceptually, SMC executes the anogr
for model checking isstate-space exploratioffill]: it starts ©n @ set of states and exploits the similarity among exewsitio
the program from the initial state, searches the stateshreadypical implementations of SMC represent states with Binar
able through executions resulting from non-deterministicices Decision Diagrams (BDDs) [8], data structures that suppéfit
(including thread interleavings), and prunes the searckrwih cient operations on boolean functions. However, heap tipes
encounters an already visited state. Stateful exploratoalso Prevent the direct use of BDDs for object-oriented programs
increasingly used to automate test generation, in paatidat unit Although heaps are easily translated into boolean funst[a],
testing of object-oriented programs [16], [18], [26], [4648], [47], the heap operations—including field reads and writes,
[49]. In this context, each test creates one or more objeuts gynamic object allocation, garbage collection, and comspas
invokes on them a sequence of methods. State-space eiqiorapased on heap symmetry [7], [11], [23], [28], [30]—do not
can effectively search how different method sequencestatfie translate directly into efficient BDD operations.
state of objects and can generate the test sequences tisfiy sat AExecution operates on AState, a novel representation for
certain testing criteria [16], [46], [48]. sets of states that include heaps. We describe efficienatipes

A key issue in state-space exploration is manipulating tdar manipulating AStates, which enablé\Execution to execute
program state: saving the state at non-deterministic ehpaints, Programs faster than standard execution. These operadisns
modifying the state during execution, comparing states] agnableAExecution to speed up state comparison and backtrack-
restoring the state for backtracking. For object-oriergemyrams, 1Nd. two important and costly parts of state-space exptmafhe
the main challenge is manipulating the heap, the part of tkey to these speed-ups iRExecution is that various values can
state that links dynamically allocated objects. Reseaschave D€ constant across all states in a given set, and an opecation
developed a large number of model checkers for object-mien €Xecute at once on a large number of states rather than @gcut
programs, including Bandera [12], BogorVM [37], CHESS [32]0n €ach of them individually.

CMC [31], JCAT [19], JNuke [4], JPF [44], SpecExplorer [43], We implementedAExecution in two model checkers: JPF
(from Java PathFinder) and BOX (from Bounded Object eX-
Marcelo is with the Universidade Federal de Pernambuco,trGete plorer). JPF is a popular, general-purpose model checker fo
Informética, Caixa Postal 7851, CEP 50732-970, Recife, Bizil. E- Java programs [1], [28], [44]. BOX, in contrast, is a spezéd
mail: damorim@cin.ufpe.br. Steven and Darko are with thgdbenent of ’ ’) ' L .
Computer Science, University of lllinois at Urbana-Chargpa Urbana, IL, Model checker that we developed for efficient exploration of

61801-2302, USA. E-mail{slauter2, marinoy@cs.uiuc.edu. sequential Java programs. The two implementations allouged

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 2

class BST { /1 N bounds sequence | ength and paraneter val ues
Node root; exploreStandard(N)
int size; Next = {Sinit}
Visited = {linearize(sinit)}
1: void add(int info) { for 4 = 1to N do // iterations
2 if (root == null) Current = Next; Next = {}
3 root = new Node(info); while (|Current| > 0) do
4 el se sroot = Choose a state from Current
5: for (Node temp = root; true;) foreach method m in methods do
6: if (tenp.info < info) { for v = 1to N do
7: if (temp.right == null) { Snext = €Xecute m(v) On Sroot
8 tenp.right = new Node(info); I = linearize(Sneat)
9 br eak; if (I ¢ Visited) then
10 } else temp = tenp.right; Visited = Visited U {l}
11: } else if (tenp.info > info) { Next = Next U {spext}
12: if (temp.left == null) {
ii Lfggk'_ eft = new Node(info); Fig. 2. Breadth-first exploration using standard execution
15: } else tenmp = tenp.left;
16: } else return; // no duplicates
17: Si ze++;
18 } Il. EXAMPLE
: oo We present an example that illustrates whdExecution does
void remove(int info) { ... } . .
} and how it speeds up the state-space exploration compared to
standard execution that operates on a single state at a time.
cl ass Node { . . .
Node left, right; Figure 1 shows a binary search tree class that implementt a se
int info; Node(int info) { this.info =info; } Each BST object stores the size of the tree and its root node,
} and eachNode object stores an integer value and references to

the two children. TheBST class has methods to add and remove
tree elements. A test sequence for the binary search tres cla
consists of a sequence of method calls, for exang8& t =
new BST(); t.add(1); t.renove(2).

to evaluateAExecution on model checkers that follow different The goal of state-space exploration s to explore different
sequences of method calls. A common scenario of exploration
design principles. While we found out thatExecution reduces

the overall exploration time in both model checkers, theiotidn Is to exhaustively explore all sequences qf method callstoup
. . . . : some bound [18], [46], [49]. Such exploration does not dbtua
is due to different reasons as discussed in Section V-A.

enumerate all sequences but instead uses state compaoison t
We evaluated\Execution using two types of exploration. Theprune sequences that exercise the same states [46], [48fhén
first type isbounded-exhaustive exploratiowhich explores all scenario may be to generate those sequences that result in
states that can result from sequences of method calls upmie sassertion violations.
bound on the length of the sequence and input values. Thedeca Standard exploration
type usesabstract matchinga recently proposed non-exhaustive

state-space exploration [46] that matches states basediain tquences of method calls to explore different states of aestibj

shapes. For the bounded-exhaustive exploration, we eedlu
. - - his exploration operates using standard execution, soalletc
AExecution on ten simple subject programs and one larger case

study, AODV [35]. For simple subject programsyExecution gustt)inc(:a(:g iﬁ?lggﬁni ta;tr']ngn:wih targ;;'t:tale)s(fqaéigf\j;;r the
reduces exploration time from 1.06x to 126.80x (with median J P Pty

5.60x) in JPF and from 0.58x to 4.16x (with median 2.23x) in Isequences (up to length) of the subject's methods (in our

BOX. While the main goal ofAExecution is to reduce time, it example add andr enove), with values between and N, o
Following the execution of a subject method, a linearizatio
also reduces, on average, peak memory requirement fronx 0. 46com uted for the resulting stat Linearization translates
to 11.50x (with median 1.48x) in JPF and from 0.18x to 2.71% CONPE" 7 Bie TE5L 1 & Bifent B loe e o
(with median 1.18x) in BOX. (Note that a number below 1.00x) grap 9 y rep 9 grap
canonical form; it is a common technique used to facilitate
represents that\Execution increases time or memory usage.),.. . . :
. : . fficient comparison of state that include heaps [11], [238],
For AODV, AExecution reduces exploration time from 0.88 . R . " o
. . ; 30]. If the linearization is not in the sati sit ed, it is added
to 2.04x (with median 1.72x) in JPF. For the non-exhausti
and also added to the siext for exploration during the next
exploration, AExecution reduces exploration time from 0.92x tQ
Steration. Otherwise, any sequence that results in a dtatehas
6.28x (with median 4.52x) in JPF on the four of the ten simple
already been visited is pruned from further exploration.
subject programs used previously with abstract matchir@]. [4
SO : Note that state comparison is performed only at the method
The reduction is smaller for the non-exhaustive exploratizan

for exhaustive exploration because abstract matchingcesdthe boundarles (not_ during ”.‘eth"d execution). This na_turaﬂ_yﬂp
tions an execution path into subpaths, each covering erecut
total number of states that the model checker explores.

of one method invocation. As in other related studies [146],[

The rest of this paper is organized as follows. Section liagho [49], we consider a breadth-first exploration of the statacep
an example that illustrates the key aspectsAdixecution and A bounded depth-first exploration could miss parts of théesta
how it speeds up standard execution. Section Ill preserdsti@il space since state comparison could prune a shorter sequence
the algorithms forAExecution. Section IV describes our two(that results in some state) because of a longer sequerate (th
implementations. Section V presents an evaluatioABkecution. results in the same state). For example, a depth-first extjor
Section VI reviews related work, and Section VII concludes. limited to three method calls could explore the sequeB®E t

Fig. 1. Binary search tree implementation of a set.

Figure 2 shows pseudocode that systematically generates se

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 3

/1 N bounds sequence | ength and paraneter val ues
E E ? ? exploreDelta(N)
Next = {sinit}:
@ @ @ @ @ Visited = {linearize(sinit)};
for ¢t =1to N do // iterations

AState o,o0t = merge(Next); Next = {};

foreach method m in methods do
é for v =1to N do

{o1,...,0k} = executea m(v) ON Gro0t; I/ splits
foreach ¢ € {o1,...,0,} do
foreach I € linearizea(o) do
add(4) if (I ¢ Visited) then
splits on first Visited = Visited U {l};
temp.right == null splits on second Next = Next U {state for I},

temp right == nul

Fig. 4. Breadth-first exploration usingExecution.

% with that state results in that patfror instance, the balanced tree
follows the aforementioned path.
e Q It is important to note that several states can follow theesam

path, i.e., each individual execution makes the same biagch
decisions. For example, consider the two executionadaf(4)
é on the balanced tree in the middle and the tree to its right.

Both of these executions follow the same aforementionet pat

(as they add a new node with valdeto the right of the root’s

right child). AExecution exploits this similarity to speed up state-
space exploration. While this example shows the case when tw

executions have identical pathg& Execution can also exploit
e e similarities among paths even when they are not identictieir
é é é é entirety.

merge

é C. Delta exploration
Figure 4 shows pseudocode for a state-space exploration us-
é ing AExecution. We refer to this type of exploration dslta
exploration Delta exploration is similar to standard exploration:
Fig. 3. Executions ofidd(4) on aAState. both prune the exploration based on resulting states arrduset

breadth-first exploration. However, delta exploratiorfedié from
the standard exploration in four important ways.

= new BST(); t.add(1); t.add(2): t.renmpve(1l) be- 1) AState: AExecution conceptually operates on multiple in-
fore the sequenc®ST t = new BST(): t.add(2). Since dividual states at the same time. More preciselfxecution
both sequences result in the same tree state, the latted beul Operates on a single\State that represents several standard
pruned and would miss, for instance, the sequ@®® t = new States, each corresponding to one of the individual statesdf
BST(); t.add(2); t.add(3). in a standard execution. The type of the root objegs,: in
delta exploration isAState. While standard execution invokes
add(4) separately against each standard staiExecution in-
vokes add(4) on one AState, effectively invoking it simulta-

Figure 3 shows several states that arise during a state-spaeously against a set of standard states. The top of Figure 3
exploration of the binary search tree subject fér = 4. The represents one set consisting of the five pre-states. Selttio
five trees shown at the top of the figure are all (non-equitplerB describes how to efficiently represent\sstate.
trees of size 3 with values between 1 and 3. When it comes2) Splitting: When a method is executed on/sState, the
time to executeadd(4) on these five trees, standard explorationesult can be more than on&State:oq,...,0,. Each of these
separately executesdd(4) on each pre-state, resulting in theresultingk AStates represents the subset of individual states from
five post-states shown at the bottom of the figure. We use tthee original AState thaffollow the same execution path through
termindividual stateto emphasize that exploration using standarthe methodi.e., make the same branching decisions. The total
execution operates on a single state at a time. number of individual states in this set &fStates is equal to the

We next describe how various executiomithin a method can number of individual states in the originalState the method is
have overlapping paths/traces. Each path is a trace of vétwe executed on, i.e.Zf:1 |oi| = |oroot|-
the program counter. We focus on sequential programs, se the During method executionAExecution occasionally needs to
is no thread interleaving, and the branching decisionsraéte split the AState. Consider, for example, the executions illustrated
the trace. For example, executionaafd(4) on the balanced tree in Figure 3. Foradd(4), the five pre-states at the top follow
shown in the middle results in the following trace (for pragr the same execution path until the first check efrp. ri ght ==
counter values from Figure 1): 1, 2, 4, 5, 6, 7, 10, 5, 6, 7, 8, 8ul | . At that point, AExecution splits the set of states: one subset
17, 18. We saya state follows a path iff the execution startingof two states) follows the r ue branch, and the other subset

B. Overlapping execution paths

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 4

(of three states) follows théal se branch. Note that splitting E. Reasons for speedup

enforces the invariant that all states in a set follow the esam \ye next discuss why\Execution can speed up the three major
execution path through the method. operations in state-space exploration: (i) (straigh}lieeecution,

Each split introduces a non-deterministic choice pointhia t \yhich performs a deterministic step on the subject program
execution. FOtadd(4), the.execution with two-stgtes .terminateiexecute in our algorithms); (i) backtracking, which explorad
after creating a node with valué and assigning it to the program paths created with non-deterministic choicee¢éiffely
right of the root. The figure depicts this execution with ted | corresponds to choices of methodsand valuess in our algo-
arrow. The other execution with three states splits at tlversd rithms); and (iii) (state) comparison, which prunes som¢heke
check oftenp.right == null: two (middle) states follow paths pased, for example, on isomorphism of visited statps [
the true branch, and one (rightmost) state follows thel se 23] (1inearize and lookup intoVisited in our algorithms).
branch. These two executions terminate without furtheitsspl A Execution can reducexecutiortime becaussome values are
appropriately adding the valué to the final trees. Note that constant across all states in a state.sBor example, executing
AExecution produces the same (number of) states as standarde++ on all trees shown in Figure 3 takes constant time
execution (five in our example) but may result in fewer exteaist (instead of time linear to the number of states) becauseesit
(these five states require only three different executidhga.e., have the same size. We measured the ratio of the number of
k = 3, whereas thehi | e loop from Figure 2 would be executedsccesses to constants over the total number of value asdesse
five times). binary search tree, and fo¥ = 10, it is about 25%. However, the

3) Merging: Since AExecution operates on sets of states (i.&jme savings depends not only on the ratio of accesses téaruss
a AState), a delta exploration needs to periodically combingt also on the number of states that a constant represéms: i
multiple individual states (or multiple smal\States) together et has, states, then the execution saves 1 operations when
into a singleAState. Figure 4 shows that states are combingdoperates on a constant and does not need to iterate over all
at the beginning of each iteration, using threr ge operation. states. Using the number of states to adjust the ratio ofsaese
Effectively, this operation combines all distinct statesahable 5 constants shows that about 35% of accesses are to censtant
with the method sequences of lendthinto one AState that the 5, binary search tree an® = 10. (More details on constants
iterationi +1 will explore. are available in d’Amorim’s PhD thesis [14].)

Merging is a dual operation of splitting: while splittingrtia AExecution can reduce the cost lsdicktrackingas it reduces
tions a set of states into subsets, merging combines se&igbdf the number of executions. For example, for states from Bigyr
states (or several individual states) into a larger Adixecution AExecution backtracks 2 times (for 3 executions), while déad
can, in principle, perform merging on any sets of states §t agyecution backtracks 4 times (for 5 execution&)Execution
program point. For examplehExecution could merge all three jnyroduces a backtrack point only when it needs to split an
sets of states from Figure 3 when they reathe++. However, as execution path because not all states in the current setateal
illustrated in Figure 4 our current implementation AExecution 4 branching condition to the same value. Effectively, thaei
considers only the program points that are method bourslarig, o1,...,0 from Figure 4 is 3 in this example, while the size
While splitting occurs during method executionmerging only of current from Figure 2 starts out as 5.
occursbetweenmethod executions. Section llI-F describes how A Execution also enables optimized staEmparisonbecause
to efficiently merge states. it is possible to compute a set of state linearizations onta se

4) Alinearization: Delta exploration uses theei neari zen of states simultaneously instead of one-by-one. In practicis
operation to linearize the individual states in\States all at gpaples the linearization algorithm to internally shae firefixes
once rather than one by one. This operation returns a setfine |inearization. Section IIl-E presents more details.
linearizations and can do this faster than linearizing estelte The trade-off betweer\Execution and standard execution can

individually. Section IlI-E describes this optimization. be summarized as followssExecution performs fewer executions
(avoiding separate execution of the same path shared bypiault
D. Performance states) than standard execution, but each executigdrExecution

We next discuss how the performance aExecution and (thatoperates on a set of standard states) is more expehaiven
standard execution compare. In our running exampexecution Standard execution (that operates on one standard statie}hey
requires Only three execution paths to reach all five p(mest[hat AExecution is faster or slower than standard execution fareso
add(4) creates for the five pre-states. Additionally, these thre&ploration depends on several factors, including the reunal
paths share some prefixes that can be thus executed onlyloncé€Xecution paths, the number of splits, the cost to execugepath,
contrast, standard execution requires five executiorsddf 4) , the sharing of execution prefixes, and the ratio of constdnts
one execution for each pre-state, to reach the five possstaarticular, the presence of constants (i.e., values tleathar same
Also, each of these five separate executions needs to betedec8Cross a set of states) is essential for efficient operatiowter
for the entire path. AExecution.

The experimental results from Section V show thd&Execution
is faster than standard execution for a number of subjeciranos Il. TECHNIQUE
and values for the exploration bourd. For example, for the The main idea ofAExecution is to execute a program simulta-
binary search tree example and = 10, AExecution speeds neously on a set of standard states. Figure 4 presents delvigh-
up JPF 7.11x (while taking about two times more memory thagorithm for AExecution. We first discuss some key properties
standard execution) and speeds up our model checker BOX 1.7 the algorithm. We then present more details of the algorit
(while taking about three times more memory than standafdhe central part ofAExecution isAState, a representation for
execution). a set of individual states. We describe two main operatiams o

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 5

class BST {
Del t aNode root ;
Del tal nt size;

}

cl ass Node {
Del t aNode left, right;
Deltalnt info;

}

cl ass Del taNode {
/1 maps each state index to a Node object
Node[] val ues; // conceptually

class Deltalnt {
/1 maps each state index to an integer value
int[] values; // conceptually

}

Fig. 5. Field declarations for instrument&$T andNode classes, the new

Del t aNode class and théel t al nt library class. Fig. 6. AState for the five pre-states from Figure 3.

0l?el t al nt objects, the stand-alone integers reprefeht al nt
objects that are constants, and the stand-alone arrowntgavi
he top-most rectangle represent®el t aNode object that is a
constant. In thig\State, each of the pre-states has a corresponding
state indexthat ranges from 0 to 4. Note that we could extract
each of the five pre-states by traversing tktate while indexing
. . it with the appropriate state index. For example, we canaektr
A. High-level properties the balanced tree using state index 2. Also note that somieeof t
Recall figures 2 and 4 which show the pseudocode for thelues in the examplaState are “don’t cares” (labeled witt?™)
standard exploration and delta exploration, respectividhg goal because the corresponding object is not reachable for tht s
of AExecution is to speed up standard exploratidvExecution index. For example, the firdtode object to the left of the root
does not attempt to reduce the size of the state space butmnlyas “?” in the field i nf o for the last two states (with indexes
reduce the exploration time. More precisaiyen the same value 3 and 4) because those states have the valué¢ for the field
for the boundN (and the same methode}ploreStandard and root .| eft.
exploreDelta produce the samé isited set at the end of the While each AObject conceptually represents a collection of
procedure values, the implementation does not always need to useceolle
Moreover, Visited not only contains the same values at th@ons or arrays. In particular, a value is ofteanstant across all
end of the two procedures but also contains the same valuesedévant statesi.e., the states where the value is not “don’t care”.
the beginning of the main loop, i.e., for any iteratibfrom 1 to For example, thesi ze field of the BST object has value for
N, Visited in exploreStandard has the same values &Ssited all five states, and thenf o field for each tree leaf in Figure 6
in exploreDelta. This can be shown by induction, and it implieshas a constant value (since there is only one relevant state)
thatVisited is equal at the end of the procedures. SimilaNyxt Our implementation ofAStates uses apptimized represen-
is equal in both procedures for any corresponding iteratibpom tation for constants When a field value is constant across all

AStates:splitting, which divides a set of states into subsets f
executing different program paths, anmérging which combines
several states together into a set. We also present howgonog
execution works inAExecution and howAExecution facilitates

an optimized comparison of states.

1t0N. relevant states, that field is represented in Afeétate as a single
value, as opposed to a sequence of values corresponding to
B. AState different states. This optimization is applied at mergeetiwhen

AExecution represents a set of individual standard states al itially constructing aAState, and is important both for reducing

single AState.Each AState encodes all the information from thet € memory requl(ements afStates and for improving the
original individual states. AAState includesAObjectsthat can efficiency of operations omStates.
store multiple values (either references or primitivesjt taxist o
across the multiple individual states represented ySiate. C. Splitting
Figures 5 shows the classes used to represeBtates for AExecution operates on aAState that represents a set of
the binary search tree example. We discuss here only the fistdndard statef\Execution needs teplit the set only at a branch
declarations from those classes. (The methods from thessed control point (e.g., an f statement) where some states from the
implement the operations oAState and are explained later inset evaluate to different branch outcomes (e.g., for oneetulf
the text.) Each object of the claBel t aNode stores a collection states, the branch condition evaluates to true, and for ther o
of references toNode objects, and each object of the classubset of states, it evaluates to false). We call such psipiit
Del t al nt stores a collection of primitive integer values. Theoints effectively, they introduce non-deterministic choicamns
BST and Node objects are changed such that they have fields AExecution needs to explore both outcomes. (Note that not all
that areAObjects. branch control points require a split since it is possiblat tll
Figure 6 shows the\State that represents the set of five prestates can evaluate to the same branch outcome.)
states from Figure 3. EachState consists of layers of “regular” One challenge il\Execution is to efficiently splifStates. Our
objects andAObjects. For this example, the circles represemsplution is to introduce atatemaskhat identifies the currently
Node objects, the single rectangle representBST object, active stateswithin a AState. Each statemask is a set of state
the array-like structures represent eitlided t aNode objects or indexes. At the beginning of an executiaRExecution initializes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 6

. cl ass BST {
the statemask to the set of all state indexes. For exampde, thpelt aNode root = Delt aNode. NULL;

execution ofadd(4) for the AState from Figure 6 starts with Deltalnt size = Deltalnt. new(0);

the statemask beinfp, 1,2, 3, 4}. voi d add(Del talnt info) {

At the appropriate branch pointaExecution needs to split the if (get_root().eq(DeltaNode. NULL))
set of states into two subsets. Our approach does not kplici , 35! 0t (B! tatede. _new(info));
divide a AState into twoAStates; instead, it simply changes the for (DeltaNode tenp = get_root(); true;)
statemask to reflect the splitting of the set of states. Sipalty, 'fiﬁtf?ﬁﬁggl f:?é?ﬁ I(;.(legzgzal)tgl\bde. NULL))
AExecution builds a new statemask to identify the new subset tenp. set_right(Del taNode. new(info));
of active states in the\State. It also saves the statemask for br eak;

| t =t .get_right();
the complement subset that should be explored later on. The } £| §esff (e:ne)rrp,g:tnfi ﬁ?o(—ifgt(f?ﬁo)) {

execution then proceeds with the new subset. if (tenp.get_|eft().eq(DeltaNode. NULL) {
After AExecution finishes the execution path for some (sub)set Lfe"‘;'k?et I eft (Del tanode. _new(info));

of states, itbacktracksto some unexplored split point to explore } else tenp = tenp.get_left();

the other path using the statemask saved at the split point. } else return; [/ no duplicates

Backtracking changes the statemask but restoresAtBtate to set_size(get_size().add(Del talnt._new(1)));

exactly what it was at the split point. A model checker can im-?

plement backtracking in several ways. JPF, for instanoeesand void remove(Deltalnt info) { ... }

restores state, while BOX uses program re-execution. Getd !

elaborates this discussion. class Node {

To illustrate how the statemask changes during the exatutio Del taNode Ieft = DeltaNode. NULL;
consider the example from Figure 3. The statemask is ilyitial ili:.“‘n’?e, ot 2'“: Be:)telaf ﬁ{\biﬁew‘%;
{0,1,2,3,4}. At the first split point, the execution proceeds Node(Deltalnt info) { this.info = info; }
with the statemask beind0,1}. After the first backtracking, }
the statemask is set 2, 3,4}. At the second split point, the
execution proceeds with the statemask bejag3}. After the
second backtracking, the statemask is set{4$¢ for the final

execution.

Fig. 7. Instrumented®ST and Node classes.

.. classDel t aNode that stores and manipulates the multiplede
Neferences that can exist across the multiple states AState.
Figure 9 shows the clag®el t al nt that stores and manipulates
{nultiplei nt values; this class is a part of tieExecution library
and is not generated anew for each program.

It is important to note thatAObjects are immutable from
the perspective of the instrumented code in the same way that

c;)r;stantnkul III thr? the statemask |$0,1}t. ?d:ét'oggg’ t?e. regular primitive and reference values are immutable fan-st
statemask allows the use sparse representatiorfsr JECIS: " jard execution. This allows sharing &fObjects, for example

instead of using an array to map all possiblg state indexes IrE!Iirectly assigning on®el t al nt object to another (e.gi,nt x
values,_ a spars:.ésObject.can use representathns thaap only _ y simply becomesDel tal nt x = y). Our implementation
the active state indexes into valyésereby reducing the memoryinternally mutatesAObjects to achieve higher performance, in

requirement. particular when values become constant across activesstete
) mutation handles the situations that involve shatgbjects and
D. Program execution model require a “copy-on-write” cloning.

We next discuss howhExecution executes program operations. 2) Types:The instrumentation changes all types in the original
The key is to execute each operation simultaneously on a pebtgram to their delta versions. Comparing figures 1 and ficeo
of values. AExecution uses a non-standard program executitimat the occurrences ™ode andi nt have been replaced with
that manipulates & State that represents a set of standard statéise newDel t aNode class (from Figure 8) and theel t al nt
Such non-standard execution can be implemented in two wagkass (from Figure 9), respectively. The instrumentatidso a
(i) instrumenting the code such that the regular executibn appropriately changes all definitions and uses of fieldsabbes,
the instrumented code corresponds to the non-standardi-exeand method parameters to uA®bijects.
tion [26], [45], [49] or (ii)) changing the execution enginechk 3) Field accessesThe instrumentation replaces standard ob-
that it interprets the operations in the non-standard sdosaj2], ject field reads and writes with calls to new methods that read
[16]. Our current implementation uses instrumentatioa:ghbject and write fields across multiple objects. For example, aldge

on the AState. Consider, for example, &Object that is not a
constant when all states are active. This object can termrifyora
be transformed into a constant if all its values are the same
some statemask occurring during the execution. For instanc
our running example, the value ofoot . ri ght becomes the

code is pre-processed to suppdrExecution. and writes of Node fields are replaced with calls to getter
We use parts of the instrumentation to describe the sensantimd setter methods ibel t aNode. Consider, for instance, the
of AExecution. field readtenp. | eft. In AExecution,tenp is no longer a

1) Classes:The instrumentation changes the original programeference to a singldode object but a reference tolzel t aNode
classes and generates new classesfObjects. Figure 1 shows object that tracks multiple references to possibly manfecdéht
a part of the original code for the binary search tree examplsode objects. Thel eft field of Node is now accessed via
Figures 7, 8, and 9 show the key parts of the instrumented cdtie get _| eft method inDel t aNode. This method returns a
for this example. Figure 7 shows the instrumented version D&l t aNode object that references (one or momgjde objects
the original BST and Node classes. Figure 8 shows the newhat correspond to théeft fields of all t enp objects whose

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 7

cl ass Del t aNode {
/1 maps each state index to a Node object
Node[] values; // conceptually

Del t aNode(int size) { values = new Node[size]; }
Del t aNode(Node n) { values = new Node[]{ n }; }
static DeltaNode _new(Deltalnt info) {

return new Del t aNode(new Node(info));

}
bool ean eq(Del taNode arg) {
St at eMask sm = St at eMask. get St at eMask() ;
St at eMask trueMask = new St at eMask(sm size());

St at eMask fal seMask = new St at eMask(sm si ze());

foreach (int index : sm {
if (values[index] == arg.values[index]) {
trueMask. enabl e(i ndex);
} else { fal seMask. enabl e(index); }
}
bool ean result;
if (trueMask.isEmpty()) result = false;
else if (falseMask.isEnpty()) result = true;

el se result = choose true or false /*xxx split *xx/
St at eMask. set St at eMask(result ? trueMask : fal seMask);

return result;

}
Del t aNode get _left() {
St at eMask sm = St at eMask. get St at eMask() ;
Del t aNode result = new Del taNode(sm size());
foreach (int index : sm {
Del t aNode dn = val ues[index].left;
resul t.val ues[index] = dn.val ues[i ndex];

}

return result;

}
void set_l eft(DeltaNode arg) {
St at eMask sm = St at eMask. get St at eMask() ;

I dentitySet <Node> set = new | dentitySet<Node>();

foreach (int index : sm {
Node n = val ues[i ndex];
if (set.add(n)) {
[+ true if n was added */
n.left = n.left.clone();

n.left.values[index] = arg.val ues[index];
}
}
Del t aNode get _right() { ... }
void set_right(DeltaNode arg) { ... }
Deltalnt get_info() { ... }
void set_info(Deltalnt arg) { ... }

Fig. 8. NewDel t aNode class.

class Deltalnt {
/'l maps each state index to an integer val ue
int[] values; // conceptually

Del talnt add(Deltalnt arg) {
St at eMask sm = St at eMask. get St at eMask() ;
Deltalnt result = new Del talnt(smsize());
foreach (int index : sm {
resul t.val ues[index] =
val ues[i ndex] + arg.val ues[index];
}

return result;

Fig. 9. Part ofDel t al nt library class.

states are active in the statemask. In general, this caft resn

execution split when some objectstienp arenul | .

to the active state indexes as indicated by the statemask.

Consider integer addition as an example of arithmetic epera
tions. In standard execution, addition takes two integkresaand
creates a single value. InExecution, it takes twdel t al nt
objects and creates a né®l t al nt object. Theadd method in
Del t al nt (from Figure 9) shows howAExecution conceptually
performs pairwise addition across all active state indégeshe
two Del t al nt objects. Our implementation optimizes the cases
when those objects are constant (to avoidftheeach loop and
state indexing).

Consider reference equality as an example of relationalaspe
tions. The methodq in Del t aNode (from Figure 8) performs
this operation across all active state indexes. Note tlatibthod
can create a split point in the execution if the result of the
comparison differs across the states. If sq,introduces a non-
deterministic choice that returns a boole@mnue or f al se. In
all casesgeq appropriately sets the statemask.

5) Method calls: The instrumentation replaces a standard
method call with a method call whose receiver isA®bject,
which allows making the call on several objects at once. Ntudé
each call also introduces a semantic branch point due tontigna
dispatch (i.e., different objects may have different dyitatypes)
and can result in an execution split.

E. Optimized state comparison

Heap symmetry [11], [23], [28], [30] is an important techuméq
that model checkers use to alleviate the state-space éxplos
problem. Heap symmetry detects equivalent states: when the
exploration encounters a state equivalent to some alresitgd/
state, the exploration path can be pruned. In object-aient
programs, two heaps are equivalent if they m@morphic(i.e.,
have the same structure and primitive values, while thejeatb
identities can vary) [7], [23], [30]. An efficient way to com
states for isomorphism is to uinearization(also known as seri-
alization or marshalling) that translates a heap into a eecgl of
integers such that two heaps are isomorphic iff their lirzedions
are equal.

AExecution exploits the fact that different heaps il\&tate
can share prefixes of linearization. Instead of computimgdiiza-
tions separately for each state in a set of stateBxecution
simultaneously computes a set of linearizatidos a AState.
Sharing the computation for the prefixes not only reduces the
execution time but also reduces memory requirements as it
enables sharing among the sequences used for linearization

Figure 10 shows the pseudocode for an optimized algorithm
that simultaneously linearizes all states from AfState. For
simplicity of presentation, the algorithm assumes that Hbap
contains only reference fields and of only one class. We point
out that our actual implementation handles general heafs wi
objects of different classes, primitive fields, and arraysre
details about the general case, as well as how to develop this
algorithm from a basic one that linearizes one state at a, three
available elsewhere [14], [15].

The top-level function/inearizea, takes as input an objeet

4) Operations: The instrumentation replaces (relational anevhich represents the root of/aState, and a statemask:, which
arithmetic) operations on reference and primitive valugth w represents the active states in thdbtate. It computeginSet, a

method calls tdel t aNode andDel t al nt objects. All original

set of linearizations. Each linearization is a sequencetegers

operations on values now operate ADbjects that represent setd that represents one or more states marked by the statemask
of values. More precisely, the methods AObjects do not need This function uses the helper functioh®Object andlinFields
to operate on all values but only on those values that cavresp described below. We first explain these functions for thepsm

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008

linearizea (Obj ect o, StateMask sm)

stack = enpty stack

(s, 1, tm) = linObject(o, enpty Map, sm)

linSet = {l} // all states in tm have sequence [

whil e (|stack| > 0) do
(o, f, tds, lpre, nm) = pop from stack
(- I, tm) = linFields(o, f, ids, lpre, mm)
linSet = linSet U {l}

od

return linSet,;

Il returns a triple of a Map, Lin, and StateMask
linObject(Cbj ect o, Map ids, StateMask sm)

if (o =null) then return (ids, [NULL], sm)

if (o€ids) then return (ids, [get(ids, o)], sm)

id = |ids|

return linFields(o, 0, put(ids, o, id), [id], sm)
and St at eMask

Lin I, StateMask sm)

/'l returns a triple of Map, Lin,
linFields(Object o, int f, Map ids,
if (f < numberOfFields(o)) then
(fo, em, mm) = split(getField(o,
if (Jnm| > 0) then
push (o, f, ids, I, mm) onto stack
(m, lpost, om) = linObject(fo, ids, em)
return linFields(o, f+ 1, m, append(l,
el se return (ids, l, sm)

f), sm)
lpost) ,

om)

Fig. 10. Optimized linearization of states in/sState.

case with one state, effectively considering that is a singleton

loop in linearizea Visits each pending backtracking point until
it finishes computing all linearizations.

The functionsplit in linFields takes as input &Objectdo =
getField(o, f) and a statemaskm. It returns a standard object
fo = do.values[index] for someindex in sm, a statemaskm
(which comes from “equals mask”) ahdexr values such that
do.valueslindez] = fo, and a statemaskm (which comes from
“non-equal mask”) ofndex values such thado.values|index] #
fo. At this point, linFields first pushes ontostack an entry
with the backtracking information fotm and then continues the
linearization of fo for the active states indicated imn.

F. Merging

The dual of splitting sets of states into subsetsmisrging
several sets of states into a larger set. Recall the exforat
for AExecution from Figure 4. It merges all non-visited states
from the previous iteration into a\State to be used for the
current iteration. More precisely, our current impleménta of
the merge function receives as input the set of linearizations
representing those non-visited states.

Our merging algorithm useslelinearizationto construct a
AState from the linearized representations of non-visitades.

and ignoring the variabletack. We then explain the general caseThe standard delinearization is an inverse of linearizatgiven

The functioniinObject takes a root object and produces a
sequence of integers that represent the linearizationhfoistate
reachable fromo. When o is nul | , linObject returns a one-
element sequence with the value that represeats . Wheno is
a reference to a previously linearized objelghObject returns
a one-element sequence with the integer id that the paap
associates with that object. (The mafy facilitates handling of
object aliasing [23].) Wherv is an object not yet linearized,
linObject creates a newd for it, appropriately extends the map
and linearizes all the object fields.

The functioniinFields linearizes the fields of a given object,

one linearized representation, delinearization builde teap
isomorphic to the heap that was originally linearized. Tlo-n
elty of our merging is that it operates on st of linearized
representations simultaneously and, instead of buildirggtaof
standard heaps, it builds onkState that encodes all the heaps.
It is interesting to point out that we often used in debugging
implementation the fact that linearization and delinestran are
inverses: for any set of linearizations the linearization of the

,delinearization ofs should equak.

We highlight two important aspects of the merging algorithm
First, it identifiesAObjects that should be constants (with respect

starting from the field at offsef. (Each field has an offset thatto the reachability of the nodes), which results in a moreieffit
ranges fron® to one less than the number of fields in that objectState. Such constants can occur quite often; for instamce, i

In its simplest form, this function first linearizes the st&iom the
object fo that the fieldf points to (the result is calletbost) and
then recursively linearizes the remaining fields, frgmi, after
appendingpost to the resulting sequencde(This is effectively a

our experiments (see Section V), the percentage of the anst
AODbjects in the mergedhStates ranges from 33% (foist and
N = 11) to 69% (fortreemap and N = 12). Second, the
merging algorithmgreedily shares the objects in the resulting

tail-recursive function wheré serves as the accumulator for theAState: it attempts to share the sam@®bject among as many

result.)
When there is only one state in, there are no splits in the
execution. However, the linearizations depend on the vaiuke

individual states as possible. For example, in Figure 6,Idffte
node from the root is shared among three of the five states.
Figure 11 shows the pseudocode for our merging algorithm. Fo

field, get Flield(o, f), which may differ for different states. Whensimplicity of presentation, the algorithm assumes that ltbap

there is such a difference, it is necessary to split the retzt&

contains only reference fields and of only one class. Ourahctu

into two, continue to explore one of them, and then backttack implementation handles general heaps with objects of reifite

explore the other. This is the only source of non-determinis
the linearization. (Note thdtin Ficlds andlinObject manipulate
functional objectsvap andLi n, which facilitates backtracking of
the state.) Effectively, all three functions maintain timgairiant

classes, primitive fields, and arrays. The input is an arfly o
linearizations, and the output is a root object fon&tate. The
algorithm maintains an array of maps from object ids to dctua
objects (which handles aliasing and is the duali@f used in

that the linearization prefix that they compute up to any pointlinearization in Figure 10) and an array of offsets that krac

is the same for all states in the statemask

progress through the different linearizations (since tbeynot

The stack object stores the backtracking points. Each entmyeed to go in a “lockstep”).

stores the state that needs to be restored to continue antiexec

The functioncreateObject constructsone object shared for all

from a split point: the root object, the field offset, the maystates in the given statemask and invokesate DeltaObject to

for object identifiers, the current linearization sequenaad

construct each field of the object. Note that this sharingsdoe

the statemask. Whiletack is mutable, the other structures arenot constitute aliasing in the standard semantics since omé

immutable, which makes it easy to restore the state.viftid e

reference is visible for any given state.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 9

Obj ect merge(Lin[] lin)
N = |lin| // nunber of individual states
offsets = array (size N) of 0's
maps = array (size N) of enpty maps // id—Object
sminit = {0,...,N-1} // statemask for all states
return createObject(sminit)

Obj ect createObject(St at eMask sm)
o = new (bj ect
foreach ¢ in sm do
id = lin[i][offsets[i]++]
put(mapsli], id, o)
od
foreach field f in o do o.f = createDeltaObject(sm)
return o;

Del t aCbj ect createDeltaObject(St at eMask sm)
d = new Del t aCbj ect
em = {}; [/ statemask if new object is needed
foreach ¢ in sm do
id = lin[i][offsets[i]++]
if (id = NULL) then d.values[:] = null
else if (idemaps[i]) then
d.values[i] = get(mapsli], id)
else // need to create a new object for this id
ecm = em U {i}; offsets[i]--
od
if (Jem| > 0) then
co = createObject(cm)
/1 greedily share new object across states
foreach ¢ in ecm do d.values[i] = co
if (d.values is constant with respect to sm) then
/] use constants where possible
d = new Del t aObj ect Const
return d

Fig. 11. Pseudocode for the merging algorithm.

The function createDeltaObject examines the field values
across all states in the statemask. For each state, it checks

for three possible options for the field’s object id: (i) itraees .) S X
reference, (ii) it denotes an alias, or (jii) it denotes sponding AClasses. Manual instrumentation is not particularly

gres ¢ difficult but can be time-consuming and error prone. To autem
ginstrumentation forAJPF, we developed a plug-in for Eclipse

the nul |

new object. For the first two options, the algorithm assi
value to theAObjectd as it performs the check. For the thir
option, it just records in the statemask objeet the index of the
state during the check. If the statemask is not empty after the
check across all states, the algorithm recursively invakese)

createObject to create an object that will be shared among the
states incm. Lastly, the algorithm checks if théObjectd is

semantically a constant, i.e., if it contains the same vakr®ss

(JVM) running on top of a regular, host JVM. JPF provides
operations for state-space exploration: storing statestoring
them during backtracking, and comparing them. By defa@E J
compares the entire JVM state that consists of the heayk @tac
each thread), and class-info area (that is mostly staticéntbe
modified due to dynamic class loading in Java). However, our
experiments require only the part of the heap reachable frem
root object. We therefore disabled JPF’s default state eoisgn

and instead use a specialized state comparison as done & som
previous studies with JPF [16], [46], [49].

We next discuss how we implemented each component of
AExecution in JPF. We call the resulting systexdPF. AJPF
stores theAState as part of the JPF state, which allows the use
of JPF backtracking to restore th&State at split points. We
implemented the library operations dfState (such as arithmetic
and relational operations, and field reads and writes) tclgge
on the host JVM. Effectively, the library forms an extensioin
JPF; our goal is not to model check the library itself, but the
subject code that uses the library.

We implemented splitting idMJPF on top of the existing non-
deterministic choices in JPF. It is important to point owttbur
implementation leverages JPF to restore the eftBéate but uses
statemasks to indicate the active states. Theref®d®F manages
statemasks on the host JVM, independent of the backtradaesl s
We also implemented merging to execute on the host JVM and to
create oneAState as a JPF state that encodes all the non-visited
states encountered in the previous iteration of the exyora
Recall that our experiments use breadth-first exploration.

AJPF uses instrumented code to invoke the operations that
manipulate theAState. Section IlI-D describes in detail how
instrumentation changes standard classes and introdures- ¢

version 3.2 fttp://ww. ecl i pse. org). The plug-in takes
a subject class (such as tiNede class in our binary search
tree example) and manipulates its internal AST representad
oduce an instrumented class as described in Section WD,
the plug-in generateAClasses from templates. For example, it
generates théel t aNode class in Figure 8 from information

all states denoted bym. If so, a special constant object is createcEXtracted from the origindlode class. The plug-in takes as input

For states that have aliases between objects (unlike bin

éw fields and constructors provided by the original class an

search tree), this greedy algorithm does not always promcé;enerates accessors, mutators, a method to compare ceferen

AState with the smallest number of nodes, and some alteenatfAu@lity,
algorithms could produce smaller graphs. However, suchrat
tive algorithms would require more time to search for appedp
sharing opportunities that result in smallAiStates. A detaile

example is available in d’Amorim’s PhD thesis [14].

IV. IMPLEMENTATION

and modified constructors. The template paramete
relate mostly to method names, return types, and argumpesty
For example, the plug-in creates the methyzd _| ef t () from

g @ template by replacing a field name parameter witf t

to produce the expressiomal ues[i ndex].left. The new
AClass also provides the internal representation for theoket
references tdNode objects. In Figure 8, the clad®l t aNode

We implementedA\Execution in two model checkers: JPF an@*Plicitly represents the set of references as an arrajoofe
BOX. JPF [44] is a popular model checker for Java programs;qpiects. In practice, we hide the representation in anfaterso
is general-purpose and can handle multi-threaded Javagmnsg that we can experiment with different implementations sash
For the purpose of evaluating the technique under diffeient SParse representation that only maps the active statedéadeto
plementations, we also implemented BOX (fr@oaunded Object Values (Section 1II-C).
eXplorer), a model checker specialized for sequential programs.

A. JPF

B. BOX
We developed BOX, a model checker optimized for sequential

We implementedAExecution by modifying JPF version 4 [1]. Java programs. JPF is a general-purpose model checker for
JPF is implemented as a backtrackable Java Virtual Machidava that can handle concurrent code and can store, restore,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 10

and compare the entire JVM state that consists of heap,,staakked lists [15]; fi bheap is an implementation of priority
and class-info area. However, in unit testing of objeceimiéd queues using Fibonacci heaps [46];| esyst emis based on
programs, most code is sequential and test explorationsnedte Daisy file-system code [36heaparray is an array-based
to store, restore, and compare only the heap part of the. stateplementation of priority queues [7], [494ueue is an object
Therefore, we used the existing ideas from state-spacemigh queue implemented using two stacks [18};ack is an object
research [3], [12], [20], [23], [31], [37], [43], [44] to eimeer a stack [18];treenmap is an implementation of maps using red-
high-performance model checker for such cases. black trees based on Java Collections 1.4 [4fst ack is an
BOX can store/restore/compare only a part of the prograamray-based implementation of a stack bounded in sizeingtor
heap reachable from a given root. The root corresponds to théegers without repetition [13], [34], [41]. These are dma
main object under exploration. BOX usesstateful exploration programs, ranging from 1 class (foeapar r ay andubst ack)
(by restoring the entire stategcross iterationsand stateless to 4 classes (fof i | esyst em) and from 27 (forst ack) to 301
exploration (by re-executing one method at a timé)hin an (for t r eemap) non-comment, non-blank lines of code.
iteration. BOX needs to re-execute a method within an iteration Since the primary purpose of this portion of the evaluation i
as it does not store the state of the program stack. Inst€@¥, Bto compare the efficiency akExecution and standard execution,
only keeps a list of changes performed on the heap duringgéesinwe use correct implementations of all ten basic subjects. Fo
method execution and restores the state by undoing thosgeba instance, the original code for the Daisyl esyst emhad seeded
For efficient manipulation of the changes, BOX requires thafrors, but we use a corrected version provided by Darga and
code under exploration be instrumented. (This instruniemtas Boyapati [18]. (In contrast, the AODV case study described i
required even for standard, ndn-exploration.) Section V-C uses code with errors that violate a safety ptgpe
We refer to theAExecution implementation in BOX asBOX. For each subject described above, we wrote for both standard
ABOX needs to backtrack theé\State in order to explore execution and forAExecutiontest drivers[45], small programs
a method for various statemasks. In order to do tH8OX whose executions on JPF and BOX correspond to the state-spac
restores the state to the beginning of the method executigxplorations shown in figures 2 and 4. The drivers exercise th
by undoing any changes performed on the heap, and f&en main mutator methods for each subject. For data structtines,
executeghe method from the beginning to reach the latest splifrivers add and remove elements. Foil esyst em the drivers
point. While re-execution is seemingly slow, it can actya¥ork create and remove directories, create and remove files, atel w
extremely well in many situations. For example, Verisofl][B a to and read from files.
well-known model checker that effectively employs re-exem. Table | shows the experimental results for exhaustive explo
ABOX implements the components dfExecution as pre- ration. For each subject and several bounds (on the sequence
sented in Section HIABOX repl’esents AState as a I‘egular JaVa|ength and parameter Size, as in the pseudocode shown iasfigur
state that contains bothObjects and objects of the instrumentedynd 4), we tabulate the overall exploration time and peak angm
classesABOX uses instrumented code to perform the operatioQgage with and without\Execution in both JPF and BOX. The
on the AState. Instrumentation of code fa&xBOX (as well as cells marked “*” indicate that the experiment either ran ofit

for BOX itself) is mostly manual at this time, though it could] 8GB of memory or exceeded the 1 hour time limit.
be automated in a fashion similar to that used foIPF. Like The columns labeled “std” show the improvements that

AJPF,ABOX merges states between iterations of the breadtReyecution provides over standard execution for the tencbasi
first exploration. subjects. Note that the numbers are ratios and not perees)thoy

example, forbi nheap and N = 7, the ratio of times is 10.82x,
V. EVALUATION which corresponds to about a 90% decrease. For JPF, theugpeed

We next present an experimental evaluation/dExecution, '@nges from 1.06x (fof il esystemand N =) to 126.80x
We first discuss the improvements thaExecution provides for (for heaparray and N = 9), with median 5.60x. For BOX,
an exhaustive exploration of ten basic subject programsoth b (e speedup ranges from 0.58x (for| esystemand N = 3,
JPF and BOX. We then present the results of performing 4lich actually represents almost a 2x slowdown) to 4.16x (fo
non-exhaustive exploration usin§Execution in JPF. Finally, we dueue andN = 7), with median 2.23x. Note that the ratio less
present the improvements thatExecution provides on a larger than 1.00x means thakExecution ran slower (or required more
case study, an implementation of the AODV routing protoai][memory) th.an standard. execution, for exampleffor esyst em
in the J-Sim network simulator [24]. and N = 3 in BOX. While this can happen for smaller bounds,

We performed all experiments on a Pentium 4 3.4GHz WorléExecutlon consgtently runs faster than standard exetdto
station running RedHat Enterprise Linux 4. We used Sun's Jvifnportant cases with larger bounds.

1.5.007, limiting each run to 1.8GB of memory and 1 hour of AExecution provides these significant improvements because
elapsed time. it exploits the overlap among executions in the state-sgaee

ploration. Table | also shows the information about theestat
.) spaces explored in the experiments. Note that the number of
A. Exhaustive exploration explored states is the same with and with@uExecution. This
To evaluate the performance @ Execution for exhaustive is as expectedAExecution focuses on improving the exploration
exploration we used ten basic subject programs taken fromtime and does not change the exploration itself. (We used the
variety of sourcesbi nheap is an implementation of priority difference in the number of states to debug our implemematof
gueues using binomial heaps [4@)st is our running example AExecution.) However, the numbers of executions with ant-wit
that implements a set using binary search trees [7], [d®kue out AExecution do differ, and the column labeled “gid/shows
is our implementation of a double-ended queue using doulilye ratio of the numbers of executions. The ratio ranges ftom

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 11

TABLE |
OVERALL TIME AND MEMORY FOR EXHAUSTIVE EXPLORATION AND CHARACTERISTICS OF THE EXPLORED STATESPACES “*” INDICATES
EXPERIMENTS THAT RAN OUT OF EITHER MEMORY OR TIME “-” INDICATES UNRELIABLE MEASUREMENT OF MEMORY DUE TO SHORT RUNING TIME.

JPF results BOX results state-space characteristics
experiment time (sec) mem. time (sec) mem. || # states # executions

subject | N std | A [stdA std/A std [A [stdA | stdA || std&A std | A] stdA
7 24.87 230 | 10.82x | 1.16x 0.78 0.35| 2.23x | 2.71x 16864 236096 401 588
binheap | 8 458.81 | 11.92| 38.50x| 1.03x 11.63 3.38 | 3.44x | 1.08x 250083 4001328 863 4636
9 * * * * || 106.54| 32.74| 3.25x | 1.04x || 1353196 | 24357528| 1069 | 22785

9 44.02 7.86 5.60x [0.70x 2.42 153 [1.59x | 0.77x 46960 845280 [10846 77
bst 10 214.06 | 30.13 7.11x | 0.46x 12.55 751 | 1.67x | 0.30x 206395 4127900 | 22688 181
11 * * * * 67.64 | 49.62| 1.36x | 0.18x 915641 | 20144102 46731 431
8 54.70 413 | 13.25x | 1.50x 2.20 0.77 | 2.86x | 1.54x 69281 1108496 576 1924
deque 9 552.11| 28.84 | 19.14x | 1.48x 22.38 7.48 | 2.99x | 1.14x 623530 | 11223540 810 | 13856
10 * * * * || 281.84| 99.77 | 2.82x | 1.18x || 6235301 | 124706020 1100 | 113369
6 3.18 1.46 2.17x | 0.98x 0.22 0.16 | 1.40x - 3003 21021 82 256
fibheap 7 25.09 2.82 8.90x | 2.13x 1.16 0.66 | 1.76x | 1.24x 36730 293840 130 2260
8 400.84 | 2159 | 18.57x| 0.88x 16.77 9.75 | 1.72x | 0.68x 544659 4901931 209 | 23454

3 1.98 1.88 1.06x | 0.97x 0.14 0.25 | 0.58x - 58 6264 576 10
filesystem | 4 17.18 3.08 5.59x | 11.50x 1.18 0.71 | 1.67x | 1.72x 1353 194832 | 1568 124
5 * * * * 37.43| 30.04| 1.25x | 0.97x 64576 | 11623680| 3940 2950
8 104.96 3.61 | 29.09x | 2.31x 121 0.88 | 1.37x | 1.24x 97092 873828 258 3386
heaparray| 9 2,724.63| 2149 | 126.80x | 1.22x 11.92 8.91| 1.34x | 0.53x 804809 8048090 359 | 22418
10 * * * * || 127.10| 110.26| 1.15x | 0.58x || 8722946 | 95952406 488 | 196623
6 6.46 1.46 4.42x | 2.64x 0.37 0.16 | 2.25x - 10057 70399 45 1564
queue 7 84.42 5.08 | 16.63x | 1.77x 3.87 0.93 | 4.16x | 1.44x 147995 1183960 60 19732
8 * * * * 78.62 | 25.36| 3.10x | 1.00x || 2578641 | 23207769 77 | 301399
6 5.00 141 3.55x [1.0Ix 0.31 0.12 | 2.55x - 9331 65317 42 1555
stack 7 59.70 414 | 1443x | 1.31x 2.92 0.71 | 4.09x | 1.87x 137257 1098056 56 19608
8 * * * * 59.98 | 17.81| 3.37x | 1.31x || 2396745| 21570705 72 | 299593

12 27426 | 53.40 5.14x | 3.44x 32.88 9.12 | 3.61x | 1.34x 96401 2313624 | 7774 297

treemap | 13 871.16 | 160.75 5.42x | 3.90x || 102.85| 29.02 | 3.54x | 1.48x 282532 7345832 | 11105 661
14 || 2,860.23| 562.70 5.08x | 4.41x || 365.54 | 104.09 | 3.51x | 2.48x 844655 | 23650340| 15178 1558
8 61.52 460 13.37x| 1.57x 2.26 1.28 | 1.77x | 1.30x 109681 987129 595 1659
ubstack | 9 1,502.24| 3254 | 46.17x | 1.48x 22.60 | 13.52| 1.67x | 0.66x 991189 9911890 931 | 10646
10 * * * * || 265.49| 174.96 | 1.52x | 0.62x || 9922641 | 109149051| 1414 | 77191

median - - - 5.60x | 1.48x - - | 2.23x | 1.18x - - - -

to 301399x. While this ratio effectively enablésExecution to up for the longer execution time. Note that the number ofestat
provide the speedup, there is no strict correlation betvleenatio and state comparisons is the same in both standard exeeuribn
and the speedup. The overall exploration time depends @ralev AExecution, but the optimized state comparison is only fbssi
factors, including the number of execution paths, the nunadbe for AExecution, which usea States that enable the simultaneous
splits, the cost to execute one path, the frequency of cotssia comparison of a set of states.
AStates, and the sharing of execution prefixes. 2) Memory: Table | also provides a comparison of memory
1) Time: We next discuss in more detail where state-space exsage. Specifically, the columns labeled “mem. Astdshow
ploration spends time and specifically whex&xecution reduces the ratio of peak memory usage for standard execution and
time. Each state-space exploration, both standardfgridcludes AExecution. Our experimental setup uses Sun& at [42]
three components: (i) (straightline) execution, (ii) baakking, monitoring tool to record the peak usage of garbage-ceitbct
and (iii) (state) comparisonAExecution additionally includes heap in the JVM running an experiment. Although this paféicu
(iv) merging. Table Il shows the breakdown of the overalneasurement does not include the entire memory used by the
exploration time on these four components for JPF and BOX. JVM process, it does represent the most relevant amount used
In JPF, AExecution significantly reduces the time for coddy a model checker. The cells marked “-” represent experisnen
execution and state backtracking. For examplepfatheap and where the running time is so short thjagt at does not provide
N = 7, AExecution reduces the execution time from 17.62sccurate memory usage.
to 0.59s and the backtracking time from 6.71s to 1.12s. TheseFor JPF, standard execution uses more memory than
savings are big enough to make the times for merging and statExecution for most experiments. The results show that
comparison irrelevant. As mentioned earlier, JPF is a @génerAExecution reduces memory use from 0.46x to 11.50x (with
purpose model checker that stores and restores the entiee Jaedian 1.48x). Note that\Execution occasionally uses more
state and thus has a high execution and backtracking owkrheanemory, for example fobst. In BOX, AExecution reduces
In BOX, AExecution sometimes results in a higher codememory from 0.18x to 2.71x (with median 1.18x). Note that the
execution time, yet still has a smaller overall exploratione. median of memory use in BOX has a lower value than in JPF
The reason is thahExecution achieves significant savings in théndicating thatAExecution consumes more memory relative to the
state comparison using the optimized algorithm from Sediie standard execution. This is due to the fact that Afexecution
E. For example, fobst and N = 11, AExecution increases theimplementation in JPF partially uses native state. Thisesin
execution time from 3.26s to 7.96s. However, it reduces thiees managed by the host JVM, which has better memory management
comparison time from 57.19s to 20.35s, which more than makésan the JPF JVM. In contrast, in standard execution, ordyJ&F

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 12

TABLE Il
TIME BREAKDOWN FORJPFAND BOX EXPERIMENTS

experiment standard JPF time (sec) AJPF time (sec) standard BOX time (sec ABOX time (sec)
subject | N exec [comp [back exec | comp [back | merg exec | comp [back exec | comp [back [merg
7 17.62 0.54 6.71 0.59 0.26 | 1.12 0.34 0.22 0.37 0.12 0.10 0.13 | 0.00 0.06
binheap | 8 364.45 4.90 89.46 3.99 221 | 1.24 4.48 4.57 3.74 2.78 1.01 1.43 | 0.01 0.87
9 * * * * * * * 21.46 67.74 | 15.03 4.70 21.77 | 0.01 6.27
9 20.44 4.20 19.39 2.25 240 | 194 1.27 0.23 1.90 0.18 0.47 0.73 | 0.01 0.29
bst 10 103.39 21.04 89.62 7.18 12.85| 3.98 6.12 0.52 10.60 0.91 1.78 3.78 | 0.01 1.86
11 * * * * * * * 3.26 57.19 4.42 7.96 20.35| 0.02 | 21.14
8 25.50 3.45 25.75 0.72 1.08 | 1.18 1.14 0.32 1.50 0.33 0.15 0.39 | 0.00 0.19
deque 9 267.42 | 38.31 246.38 6.37 12.19 | 1.26 9.02 2.30 16.26 3.17 1.36 4.46 | 0.00 1.57
10 * * * * * * * 21.95| 214.30| 31.48 || 16.48 59.01 | 0.01 | 23.87
6 1.25 0.11 1.81 0.18 0.08 | 1.08 0.13 0.06 0.08 0.03 0.05 0.04 | 0.00 0.03
fibheap | 7 14.69 0.86 9.53 0.42 0.31| 1.20 0.89 0.31 0.51 0.29 0.21 0.24 | 0.00 0.18
8 256.79 8.02 136.03 4.07 449 | 1.41 | 11.63 4.70 7.94 3.90 2.77 3.76 | 0.00 3.18
3 0.24 0.05 1.69 0.20 0.15| 1.46 0.07 0.02 0.09 0.01 0.04 0.06 | 0.00 0.03
filesystem 4 4.67 0.46 12.04 0.60 0.69 | 1.59 0.20 0.06 0.99 0.06 0.16 0.38 | 0.01 0.06
5 * * * * * * * 3.30 30.35 1.70 || 16.74 10.45 | 0.02 2.59
8 15.10 1.72 88.13 1.10 0.38 | 1.13 1.00 0.12 0.88 0.12 0.38 0.35 | 0.00 0.10
heaparray 9 160.36 17.38 | 2546.90 8.85 440 | 1.36 6.87 1.17 9.25 1.06 3.73 4.05 | 0.00 1.03
10 * * * * * * * 11.47 98.01 | 10.46 || 44.85 46.36 | 0.01 | 18.52
6 3.07 0.15 3.24 0.04 0.07 | 1.11 0.24 0.05 0.19 0.10 0.03 0.05 | 0.00 0.04
queue 7 48.30 1.52 34.60 0.18 0.70 | 1.10 3.09 0.80 1.85 1.09 0.07 0.45 | 0.00 0.39
8 * * * * * * * 13.71 42.80 | 21.38 0.94 9.77 | 0.00 | 14.57
6 1.77 0.10 3.13 0.02 0.06 | 1.13 0.20 0.04 0.16 0.08 0.02 0.04 | 0.00 0.03
stack 7 28.38 1.85 29.46 0.02 0.49 | 1.18 2.44 0.40 1.54 0.94 0.02 0.34 | 0.00 0.29
8 * * * * * * * 7.04 34.77 | 16.58 0.02 7.54 | 0.00 | 10.21
12 191.51 26.06 56.70 5.05 43.52 | 2.00 2.83 1.44 29.60 1.26 1.55 6.74 | 0.02 0.66
treemap | 13 622.58 81.12 167.46 || 13.11 | 137.08 | 2.10 8.46 4.23 94.53 4.05 4.39 22.04 | 0.02 2.42
14 || 2031.64 | 283.39| 54519 | 38.45| 49499 | 2.47 | 26.78 || 13.48 | 333.97 | 13.08 || 13.43 | 81.55| 0.04 9.13
8 31.95 2.58 26.99 1.34 0.97 | 1.13 1.15 0.22 1.68 0.24 0.36 0.70 | 0.00 0.16
ubstack | 9 357.06 30.19 | 1114.99 | 14.09 9.06 | 1.37 8.02 2.64 16.96 1.62 3.94 7.96 | 0.00 1.54
10 * * * * * * * 33.77 | 203.66 | 16.28 || 50.82 | 100.10 | 0.00 | 22.12

JVM handles the memory management. matching is to compare states based on tkhape abstractian

Many factors, already mentioned for exploration time, catwo states that have the same shape are considered equivalen
also influence memory usage, but a key factor is the numbmren if they have different values in fields. For example, all
of constantAObjects in the merged state, i.e., in theState. binary search trees of size one are considered equivalémt. T
AExecution uses these objects to represent values that are gkploration is pruned whenever it reaches a state equivalen
same across all states infsState. We measured the percentage some previously explored state, which means that albstrac
of all AObjects in merged states that are actually constant, acrosatching can miss some portions of the state space.

an entire exploration. For example, if we run an experiment f \ye chose to evaluatExecution for abstract matching because
2 iterations and find:; constants out of; AObjects in the first o JpF experiments done by Visser et al. [46] showed that
iteration andz out of y» in the second, thefw: +x2)/(y1+y2) apstract matching achieves better code coverage than fie ot
would be the percentage of constants. We found that theregig|oration techniques, including exhaustive exploratiandom,
a relatively strong positive correlation between the pef@ge 5.4 symbolic execution. (The experiments did not consider
of constantAObjects and the memory ratio for an experlm_en;,\,hether higher code coverage results in finding more bugst) O
For example,bst and N = 11 has a poor memory ratio, gyajyation uses the same four subjects used to evaluataetbst
and the percentage of constant objectsAiBtates is 33%, the matching in JPF-bi nheap, bst, fi bheap, andt r eemap—
lowest of all subjects. Forreemap and N = 12, on the other n4 e also ran each subject for sequence bounds Bp-t30
hand,AExecution uses less memory than standard execution, gl the experiment reached the time bound of 1 hour. Viéelus
the percentage of constant objects is 69%. Note that this rafe same test drivers as for exhaustive exploration, batoraized
of constants is “static” (measured during merging) z‘;}nde@;ff_ the order in which methods and argument values were chosen
from the ratios discussed in Section II-E which are “dyndmicyng ysed 10 different random seeds; Visser et al. use the same
(measuring number of accesses during execution). The s#id yperimental setup to minimize the bias that a fixed order of
better reflects the memory usage. method/value choices could have when combined with atistrac
matching.

B. Non-exhaustive exploration Table Il shows the results for abstract matching with and
We next evaluate\Execution for a different state-space explowithout AExecution.AExecution significantly reduces the overall
ration. While exhaustive exploration is the most commordged) exploration time for two subject®$t andt r eemap) and slightly
there are several others such as random [13], [34] or symbaieduces or increases the time for the other two subjéctsheap
execution [2], [16], [26], [49]. Recently, Visser et al. [46ave andfi bheap). AExecution provides a smaller speedup for the
proposedabstract matchinga technique for non-exhaustive statebounds explored for abstract matching (Table Ill) than foe t
space exploration of data structures. The main idea of atistrbounds explored for exhaustive exploration (Table 1). Ttds

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 13

TABLE Il
OVERALL TIME FOR NON-EXHAUSTIVE EXPLORATION IN JPF.

experiment standard JPF results AJPF results time
subject [N time (sec) [#states| #exec. time (sec) | #states | #exec. || stdiA
28 4.33 28 15680 4.12 28 956 1.05x

binheap | 29 4.42 29 16820 4.16 29 958 1.06x
30 4.58 30 18000 4.27 30 1040 || 1.07x

20 549.85 | 166064 | 10168360 90.86 | 150192 | 49645 || 6.05x

bst 21 1,237.36 | 381535 | 22466178 246.28 | 416946 | 77951 || 5.02x
22 2,389.23 | 677848 | 43605496 380.42 | 626555 | 83569 || 6.28x

28 18.68 881 182323 20.40 1041 7810 || 0.92x
fibheap | 29 19.15 961 184320 20.35 1157 7269 || 0.94x
30 28.68 1144 289571 28.56 1354 | 10981 || 1.00x
20 195.50 | 11879 | 1492080 43.28 | 11952 | 39131 || 4.52x
treemap | 21 385.33| 22455 | 2893212 65.82 | 20590 | 48974 || 5.85x
22 661.17 | 38126 | 4918100 107.33 | 36550 | 59693 || 6.16x

be attributed to the reduced number of states and executi@msJPF. The resulting instrumented code consisted of 143&ka
in abstract matching compared to exhaustive exploratiar. Fwith over 9500 lines of code. We did not try this case study
example, forbst , abstract matching folv = 20 explores fewer in BOX since it currently requires much more manual work for
states and executions (166,064 and 10,168,360, resdgrtiven instrumentation (for both standard add=xecution).
exhaustive exploration foN = 11 (915,641 and 20,144,102). In We used for this case study the test driver previously deeslo
addition, there is less similarity across states and eimwitin for AODV [40]. Like the drivers used for exhaustive expldooat,
abstract matching than in exhaustive exploration. Indabdfract the AODV driver invokes various methods that simulate proto
matching selects the states such that they differ in shapge (actions: sending messages, receiving messages, droppEsg m
peculiarity ofbi nheap is that it has only one possible shape fosages, etc. Unlike those drivers, the AODV driver also @)udes
any given size.) guards that ensure that an action is taken only if its preitiond
Note that abstract matching can explore a different number are satisfied and (ii) includes a procedure that checks wheth
states and executions with and withaNExecution. The reason the resulting protocol state satisfies the safety propezsciibed
is that standard execution ansExecution explore the states inabove. In this experiment, when a violation is encountetiedl
a different order: while standard execution explores edekes state/path is pruned, but the overall exploration consnue
index in order,AExecution explores at once various subsets of We ran experiments on three variations of the AODV imple-
state indexes based on the splits during the execution., These mentation, each containing an error that leads to a viglaiiche
executions can encounter in different order states that liae safety property [40]. Table IV shows the results of experitae
same shape, and only the first encountered of those states get one variation. Since the property was first violated in the
explored. The randomization of non-deterministic methaldle ninth iteration for all three variations, the results foe tbther
choices, which is necessary for abstract matching, alsowides two variations were similar, and we do not present them here.
the effect that different orders could introduce foExecution and Table IV also includes the breakdown of time for the AODV
standard execution. As Table Il show&Execution can explore experiments. Note that most of the timeAdexecution goes to the
more states (for example fdrst and N = 21) or fewer states execution operation indicating that AODV is much more campl
(for example forbst and N = 20) than standard execution, code than the ten basic subjects.
but AExecution speeds up exploration whenever the shapes havéve implemented two optimizations in the evaluation of AODV.
similarities. The first introduces a special treatment for pre- and post-
conditions of methods that implement AODV actions. The seco
takes advantage of domain-specific knowledge about AODV:
C. AQDV case study some data structures in the AODV state are semantically sets
We also evaluatechExecution on a larger application, namelye.g., it does not matter in which order a routing tables for an
the implementation of the Ad-Hoc On-Demand Distance Vect®ODV node stores its entries.
(AODV) routing protocol [35] in the J-Sim network simula- 1) Pre- and post-conditionsThe evaluation of method pre-
tor [24]. This application was previously used to evaluateSim and post-conditions can split the executionAiExecution, effec-
model checker [40] and a technique that improves execuiioa t tively leading a model checker to exercise an AODV methog, (sa
in explicit-state model checkers [17]. dropping a message) more than once in a given iteration, with
AODV is a routing protocol for ad-hoc wireless networks. Eacdifferent statemasks. This reduces the potentiahBikecution to
of the nodes in the network contains a routing table thatrileec take advantage of the similarity across states and pathen(wh
where a message should be delivered next, depending on $hpétting on pre-conditions) and results in a less efficimetrging
target. The safety property we check expresses that alesoufwhen splitting on post-conditions). However, it is unnesay
from a source to a destination should be free of cycles,n@., to exercise an AODV method differently for different paths o
have the same node appear more than once in the route [40].executions through pre- and post-conditions: the onlylrebat
The implementation of AODV, including the required J-Sim li matters is the boolean value of the conditions, not how thaeva
brary classes, consists of 43 classes with over 3500 nomemity is obtained. To speed up the exploration, we changed tha delt
non-blank lines of code. We instrumented this code using oexploration for AODV to merge the statemasks after evahgati
Eclipse plug-in that automates instrumentation foExecution the pre-conditions and before evaluation of the post-diom.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008 14

TABLE IV
EXPLORATION OF AODV IN JPF.

experiment standard JPF time (sec) AJPF time (sec) time mem # states

subject [N total [exec | comp [back total | exec | comp [back | merg || std/A || std/A |[std & A
6 6.87 3.21 0.20 3.46 7.81 4.82 0.54 1.93 0.53 0.88x 0.53x 1061
7 21.44 11.48 0.64 9.32 16.97 11.79 1.96 2.28 0.94 1.26x 0.56x 3796

aodv 8 7431 | 41.72| 247 | 30.11 43.10 | 29.57 7.76 | 3.39| 238 1.72x || 0.52x 13195
9 262.20 | 148.06 9.51 | 104.63 || 128.60 85.88 29.68 6.00 7.04 2.04x 0.58x 44735
10 || 926.60 | 522.49 | 36.18 | 367.92 || 485.14 | 337.67 | 110.65| 14.46 | 22.36 || 1.91x || 0.51x 147805

This way, for instance, the model checker executes a methiyd oof these problems [9], [21], [39]. Conceptually, both synibo
once (in a given iteration) against all states that evalttaepre- execution andAExecution operate on a set of states. While
condition to true. This is a general optimization that caplap symbolic execution can represent an unbounded numbertefsta
to any subject where method pre- and post-conditions aeglgle AExecution uses an efficient representation for a boundedfset
identified. concrete states. The use of concrete states alldlsecution to

2) Special data structures:Some data structures that theovercome some of the problems that symbolic execution hts wi
AODV implementation uses are sets implemented with lisssaA representing dynamically allocated data (heap).
result of comparing states at the implementation level ntioelel Shape analysis [27], [38], [50] is a static program analysis
checker can explore more states than necessary. For iastafigat verifies programs that manipulate dynamically alledat
two states can differ in the order of the elements in the listiata. Shape analysis uses abstraction to represent irgitieof
although they represent the same set. The routing table & a koncrete heaps and performs operations on these setgjimglu
data structure in AODV, so we changed the implementation éperations similar to splitting and merging &Execution. Shape
keep the routing tables as sorted lists. This change comiés Winalysis computes overapproximations of the reachabke afet
the cost of sorting the table when it is updated. Howeveestilts states and loses precision to obtain tractability. In @stir
in fewer explored states—because the model checker finds maiExecution operates precisely on sets of concrete statesabut

states equivalent—in both standard akExecution. explore only bounded executions.
Offutt et al. [33] proposed DDR, a technique for test-input
VI. RELATED WORK generation where the values of variables are ranges of etncr

Handling state is the central issue in explicit-state mod¥plues. DDR uses symbolic execution (on ranges) to generate
checkers [22], [23], [28], [30]. For example, JPF [44] implents inputs. Intuitively, DDR can be efficiently implemented n
techniques such as efficient encoding of Java program state & SPlits the ranges when it adds constraints to the system.
symmetry reductions to help reduce the state-space side [28DR requires inputs to be given as ranges, implements a lossy
Our AExecution uses the same state comparison, based ahgtraction (to reduce the size of the state space in favor of
losif's depth-first heap linearization [23]. HowevekExecution Mmore efficient decision procedures), and does not suppgetbb
leverages the fact thatStates can be explored simultaneously t§raphs AExecution focuses on object graphs and does not require
produce a set of linearizations. Musuvathi and Dill progbae iNPuts to be ranges. However, the use of ranges as a special
algorithm for incremental state hashing based on a brefasth- representation i\ States could likely imprové\Execution even
heap linearization [30]. We plan to implement this algoritin More, so we plan to investigate this in the future.

JPF and to usé\Execution to optimize it. In the introduction, we discussed the relationship betvssen-

Darga and Boyapati proposed glass-box model checking [1®lic model checking [11], [25] and\Execution. AExecution is
for pruning search. They use a static analysis that can esduiaspired by symbolic model checking and conceptually penfo
state space without sacrificing coverage. Glass-box exipbor the same exploration but handles states that involve h&ipSs
represents the search space as a BDD and identifies parte ofafe typically used as an implementation tool for symboliadeio
state space that would not lead to more coverage. Howewss-gl checking. Predicate abstraction in model checking [S]r¢6luces
box exploration requires the definition of executable ifamts in the checking of general programs into boolean programs that
order to guarantee soundness. In contradixecution does not are efficiently handled by BDDs. While predicate abstractias
require any additional annotation on the code. shown great results in many applications, it does not hawele

Symbolic execution [26], [45], [49] is a special kind ofcomplex data structures and heaps. BDDs have been also used
execution that operates on symbolic values. The statedaslu for efficient program analysis [29], [47] to represent asaly
symbolic variables (which represent a set of concrete silugnformation as sets and relations. These techniques engjtlogr
and a path condition that encodes constraints on the syembdlata [29] or control abstraction [47] to reduce the domaihs o
variables. Symbolic execution has recently gained popylaith ~ problems and make them tractable. It remains to investigate
the availability of fast constraint solvers and has beeriegto it is possible to leverage on a symbolic representationh s
test-input generation of object-oriented programs [2§][345], BDDs, to represent sets of concrete heaps to efficientlyuteec
[49]. Common problems in symbolic execution include thatre programs inAExecution mode.
ment of arrays, object graphs, loops (and recursion), dusnaf We previously proposed a technique, called Mixed Execu-
unbounded size, libraries, and native code. CBMC [10] esfdre tion, for speeding up straightline execution in JPF [17]xddi
these problems using paths of bounded length and finite infgEecution considers only one state and uses an existing JPF
domains. The recent techniques combining symbolic exatutimechanism to execute code parts outside of the JPF baadktiack
and random execution show good promise in addressing sostate, improving the exploration time up to 37%Execution

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008

considers multiple states, improving the exploration tiopeto
two orders of magnitude.

(4

VII. CONCLUSIONS (5]

We presented\Execution, a novel technigue that significantly
speeds up state-space exploration of object-orientedramg
State-space exploration is an important element of modetich
ing and automated test generatioAExecution executes the
program simultaneously on a set of standard states, shdreng [7]
common parts across the executions and separately exgoutin
the “deltas” where the executions differ. The key to efficienf (8]
AExecution isAState, a representation of a set of states that
permits efficient operations on the set. The experimente don [9]
two model checkers, JPF and BOX, and with two different kinds
of exploration show thahExecution can reduce the time for state-
space exploration from two times to over an order of mageitudoj
while taking on average less memory in JPF and roughly thesam
amount of memory in BOX.

In the future, we plan to apply the ideas frotExecution [11]
in more domains. First, we plan to manually transform some
important algorithms to work in the “delta mode”, as we did12]
for the optimized comparison of states. For instance, daing
for the merging ofAStates would further improve the speedup
of AExecution. Second, we plan to explore the applicability gfi3]
AExecution for multi-threaded programs. For instance, iy ipa
possible to efficiently execute code sections for multipieead [14]
interleavings at the same time usinyExecution. Third, we
plan to evaluate automatidExecution outside of state-space
exploration. In regression testing, for example, the old #me [19]
new versions of a program can run in the “delta mode” which
would allow a detailed comparison of the states from the two
versions. We believe thakExecution can also provide significant[16]
benefits in these new domains.

(6]

ACKNOWLEDGMENT

17
We would like to thank Corina Pasareanu and Willem \ﬁssér
for helping us with JPF, Chandra Boyapati and Paul Darga for
providing us with the subjects from their study [18], Ahmecﬂ
Sobeih for helping us with the AODV case study, and Brett
Daniel, Kely Garcia, and Traian Serbanuta for their comment
on an earlier draft of this paper. We also thank Ryan Lefever,
William Sanders, Joe Tucek, Yuanyuan Zhou, and Craig Ziles (19]
our collaborators on the larger Delta Execution projec{{5fbr
their comments on this work. This work was partially suppdrt [20]
by NSF grants CNS 0613665 and CNS 0615372 and by a CAPES
fellowship under grant #15021917. We also acknowledge Mpp[21]
from Microsoft Research. We also thank the anonymous reriew
of our ISSTA 2007 paper [15] and this journal article for thei
comments that helped us improve the presentation. [22]

REFERENCES (23]

[1] JPF webpageht t p: //j avapat hfi nder. sour cef or ge. net .

[2] S. Anand, C. S. Pasareanu, and W. Visser. JPF-SE: A sycnsacution
extension to Java PathFinder. Proceedings of the International [24]
Conference on Tools and Algorithms for Construction andlysia of [25]
Systems (TACASpages 134-138, 2007.

[3] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xding:
A model checker for concurrent software. roceedings of the
International Conference on Computer Aided Verificatio®; pages
484-487, 2004.

[26]

15

C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and#&eimdiller.
JNuke: Efficient dynamic analysis for Java. Rroceedings of the
International Conference on Computer Aided Verificatio\{; pages
462-465, 2004.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. famatic
predicate abstraction of C programs. Rroceedings of the ACM
SIGPLAN Conference on Programming Language Design andekmpl
mentation (PLDI) pages 203-213, 2001.

T. Ball and S. K. Rajamani. Bebop: A symbolic model checker
boolean programs. IRroceedings of the International SPIN Workshop
on Model Checking of Software (SPINjages 113-130, 2000.

C. Boyapati, S. Khurshid, and D. Marinov. Korat: Autoredttesting
based on Java predicates.Rroceedings of the International Symposium
on Software Testing and Analysis (ISSTpgges 123-133, 2002.

R. E. Bryant. Symbolic boolean manipulation with ordrbinary-
decision diagramsACM Computing Survey®4(3):293-318, 1992.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. Radter.
EXE: Automatically generating inputs of death. Bioceedings of the
ACM Conference on Computer and Communications SecurityS§CC
pages 322-335, 2006.

E. Clarke, D. Kroening, and F. Lerda. A tool for checkid®dNSI-

C programs. InProceedings of the Tools and Algorithms for the
Construction and Analysis of Systems (TACABSume 2988 ofLNCS
pages 168-176, 2004.

E. M. Clarke, O. Grumberg, and D. A. Peledlodel Checking The
MIT Press, Cambridge, MA, 1999.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. Basareanu,
Robby, and H. Zheng. Bandera: Extracting finite-state neftem Java
source code. IProceedings of the International Conference on Software
Engineering (ICSE)pages 439-448, 2000.

C. Csallner and Y. Smaragdakis. JCrasher: An automatiustness
tester for Java. Software - Practice and Experienc84:1025-1050,
2004.

M. d’Amorim. Efficient Explicit-State Model Checking of Programs with
Dynamically Allocated Data Ph.D., University of lllinois at Urbana-
Champaign, Urbana, IL, Oct. 2007.

M. d’Amorim, S. Lauterburg, and D. Marinov. Delta ex¢ion for effi-
cient state-space exploration of object-oriented progrdmProceedings
of the ACM SIGSOFT International Symposium on Softwarengeand
Analysis (ISSTA)pages 50-60, New York, NY, USA, 2007. ACM Press.
M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. Bmn
An empirical comparison of automated generation and dleason
techniques for object-oriented unit testing. Rmoceedings of the IEEE
International Conference on Automated Software Engimee(ASE)
pages 59-68, 2006.

1 M. d’Amorim, A. Sobeih, and D. Marinov. Optimized exdimn of

deterministic blocks in Java PathFinder.Rroceedings of International
Conference on Formal Methods and Software Engineering EKJ;
volume 4260, pages 549-567, 2006.

18] P. T. Darga and C. Boyapati. Efficient software modelosireg of data

structure properties. IRroceedings of the ACM SIGPLAN Sonference
on Object-Oriented Programming Systems, Languages, apticafions
(OOPSLA) pages 363-382, 2006.

C. DeMartini, R. losif, and R. Sisto. A deadlock deteati tool
for concurrent Java programsSoftware - Practice and Experience
29(7):577-603, 1999.

P. Godefroid. Model checking for programming languagesing
Verisoft. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (PORppges 174-186, 1997.
P. Godefroid, N. Klarlund, and K. Sen. DART: Directedt@mated
random testing. IrProcedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLid)ume 40,
pages 213-223, New York, NY, USA, 2005. ACM Press.

G. J. Holzmann. The model checker SPINEEE Transactions on
Software Engineering23(5):279-295, 1997.

R. losif. Exploiting heap symmetries in explicit-stamodel checking
of software. InProceedings of the IEEE International Conference on
Automated Software Engineering (ASPRrge 254, Washington, DC,
USA, 2001. IEEE Computer Society.

J-Sim.http://ww. j-simorg/.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and 1. Hwang.
Symbolic Model Checking102° States and Beyond. IRroceedings
of the IEEE Symposium on Logic in Computer Science (LI@&jes
1-33, Washington, D.C., 1990. IEEE Computer Society Press.

S. Khurshid, C. S. Pasareanu, and W. Visser. Genedal&enbolic
execution for model checking and testing. Rroceedings of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 99, NO. 9MONTH 2008

International Conference on Tools and Algorithms for then§tauction
and Analysis of Systems (TACABages 553-568, April 2003.

[27] V. Kuncak, P. Lam, and M. Rinard. Role analysis. Rmoceedings of [49]
the ACM SIGPLAN-SIGACT Symposium on Principles of Progriagm
Languages (POPL)pages 17-32, 2002.

[28] F. Lerda and W. Visser. Addressing dynamic issues ofjznm model
checking. InProceedings of the international SPIN workshop on Model
checking of software (SPINpages 80-102, Toronto, Canada, 2001. [50]

[29] O. Lhotak and L. Hendren. Jedd: a BDD-based relationdéresion
of Java. InProceedings of the ACM SIGPLAN 2004 conference on
Programming Language Design and Implementation (PLpdpes 158—

169, New York, NY, USA, 2004. ACM Press. [51]

[30] M. Musuvathi and D. L. Dill. An incremental heap canaalization
algorithm. InProceedings of the International SPIN Workshop on Model
Checking of Software (SPINpages 28—-42, 2005.

[31] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. IDEMC: A
pragmatic approach to model checking real codePrioceedings of the
Symposium on Operating Systems Design and Implement&hisblj,
pages 75-88, December 2002.

[32] M. Musuvathi and S. Qadeer. lterative context boundimgsystematic
testing of multithreaded programs. Rroceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementat
(PLDI), pages 446-455, New York, NY, USA, 2007. ACM Press.

[33] A.J. Offutt, Z. Jin, and J. Pan. The dynamic domain réidacprocedure
for test data generatiorSoftware - Practice and Experienc29(2):167—
193, 1999.

[34] C. Pacheco and M. D. Ernst. Eclat: Automatic generatonl clas-
sification of test inputs. IrProceedings of the European Conference
on Object-Oriented Programming (ECOQR)ages 504-527, Glasgow,
Scotland, July 2005.

[35] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distaveetor
routing. In Proceedings of the IEEE Workshop on Mobile Computing
Systems and Applications (WMCSApges 90-100. IEEE Computer
Society Press, 1999.)

[36] S. Qadeer. Daisy File System. Joint CAV/ISSTA Speciakri on
Specification, Verification, and Testing of Concurrent @afie. 2004.

[37] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensband highly-
modular software model checking framework. MPmoceedings of the
European Software Engineering Conference and SIGSOFinktienal
Symposium on Foundations of Software Engineering (ESHEE)/fp&ges
267-276, 2003.

[38] R. Rugina. Shape analysis quantitative shape analysi®roceedings
of the Static Analysis Symposium (SA&ges 228-245, 2004.

[39] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit tiag
engine for C. InProceedings of the European Software Engineerin
Conference and the International Symposium on FoundatbB8eftware
Engineering (ESEC/FSEpages 263-272, Sept. 2005.

[40] A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou. d#ilg bugs in
network protocols using simulation code and protocol-gjgelseuristics.
In Proceedings of the International Conference on Formal Begiing
Methods (ICFEM) pages 235-250, 2005.

[41] D. Stotts, M. Lindsey, and A. Antley. An informal formahethod for
systematic JUnit test case generation. Pimceedings of the XP/Agile

16

International Conference on Automated Software Engimee(ASE)
pages 196-205, Sept. 2004.

T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:flamework
for generating object-oriented unit tests using symbokecation. In
Proceedings of the International Conference on Tools amgb#thms
for Construction and Analysis of Systems (TAGASYyes 365-381, Apr.
2005.

G. Yorsh, T. W. Reps, and S. Sagiv. Symbolically compuitmost-
precise abstract operations for shape analysis.Priceedings of the
International Conference on Tools and Algorithms for then§tauction
and Analysis of Systems (TACABages 530-545, 2004.

Y. Zhou, D. Marinov, W. Sanders, C. Zilles, M. d’Amoring. Lauter-
burg, R. M. Lefever, and J. Tucek. Delta execution for sofeveelia-
bility. In Workshop on Hot Topics in System Dependability (HotDep)
Edinburgh, UK, June 2007.

Marcelo d’Amorim received his PhD degree from
the University of lllinois at Urbana-Champaign,
USA, in October 2007. He is currently a post-
doctorate research fellow in the Software Productiv-
ity Group at the Universidade Federal de Pernam-
buco, Brazil. His research interest is on productivity
in software engineering, focusing on the study of
automated techniques for testing and debugging.
More information is available ahttp://cin.

uf pe. br/ ~danorim

Steven Lauterburg received his BS degree in Com-
puter Science in 1985 from the University of llli-
nois at Urbana-Champaign and his MS degree in
Computer Science in 2004 from DePaul University
in Chicago. He has extensive software industry and
process improvement experience, accumulated while
working at Accenture for over 17 years. Steven
is currently a PhD student at the University of
lllinois at Urbana-Champaign. His research inter-
ests include software testing, model checking, and
program analysis. More information is available at

Universe Conferencepages 131-143, 2002. http://mr.cs. uiuc. edu/ ~sl aut er 2.

[42] Sun Microsystems. jstat: Java Virtual Machine Statistics Mon-
itoring Tool. http://java. sun.com j2se/ 1.5. 0/ docs/
t ool docs/share/jstat. htm .

[43] M. Veanes, C. Campbell, W. Schulte, and N. Tillmann. i@mltesting
with model programs. InProceedings of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSiages 273-282, New
York, NY, 2005. ACM Press.

[44] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.d&lacchecking
programs. Automated Software Engineerint0(2):203-232, April 2003.

[45] W. Visser, C. S. Pasareanu, and S. Khurshid. Test inpuegtion
with Java PathFinder. IRroceedings of the International Symposium
on Software Testing and Analysis (ISSTpgges 97-107, 2004.

[46] W. Visser, C. S. Pasareanu, and R. Pelanek. Test inpuérggon
for Java containers using state matching. Pimceedings of the ACM
SIGSOFT International Symposium on Software Testing aralysis
(ISSTA) pages 37-48, 2006.

[47] J. Whaley and M. S. Lam. Cloning-based context-semsifointer
alias analysis using binary decision diagrams. Pimceedings of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI)pages 131-144, 2004.

[48] T. Xie, D. Marinov, and D. Notkin. Rostra: A frameworkrfdetecting
redundant object-oriented unit tests. Pmoceedings of the IEEE/ACM

Darko Marinov is an Assistant Professor in the
Department of Computer Science at the University
of lllinois at Urbana-Champaign. He received his

in Computer Science from MIT. His main research
interests are in software engineering, with an empha-
sis on improving software reliability, using software
testing and model checking. More information is
available atht t p: / / ww\«+ facul ty. cs. ui uc.
edu/ ~mari nov.

‘. A PhD degree in 2005 and SM degree in 2000, both
\

