
XML Digital Signature System Independent of Existing Applications

Toshiro Takase and Naohiko Uramoto
IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi, Kanagawa, Japan
fE30809juramotog@jp.ibm.com

Kunimori Baba
Yamato Software Laboratory, IBM Japan

1623-14, Shimotsuruma, Yamato-shi, Kanagawa, Japan
kbaba@jp.ibm.com

Abstract

This paper describes a turnkey solution to add a
XML digital signature capability withoutmodifying existing
XML-based B2B systems. The signature proxy between ap-
plicationswatches for XML messages exchanged on the net-
work. Outboundmessages are received by the proxy and au-
tomatically signed and by a signature server implemented
as a Web service. Inbound messages are also verified by
using the proxy and the signature server. The existing ap-
plications do not care about handling of digital signatures.
The signature server can also provide (1) content-based key
selection and (2) logging of signed documents with fine-
grain access control. The system introduced in this paper is
called the XML Security Services Suite (XS-Cube), a set of
security-related Web services including digital signatures.

1. Introduction

Today, the Internet is widely used in business-to-
business (B2B) transactions and security is one of the most
important issues. SSL is widely used for transport-level se-
curity but is inadequate to assure non-repudiation, since it
lacks digital signatures.

On April 1st, 2001, “The Digital Signature Law” [4]
went into effect in Japan. In the United States, a similar law
has been in effective on June 2000 in the United Status. This
law states that a document which has a proper digital signa-
ture has the same legal status as a paper document with a
signature. A digitally signed document should be preserved
in an appropriate way with an audit trail equivalent to a pa-
per document. Transport-level encryption or a transport-
level signature is inadequate, but a digital signature within
the document itself has become important to provide a “pa-

perless” environment that dramatically reduces companies’
costs.

XML has become widely used as a first class format for
data description and exchange in B2B systems. Compared
to HTML, XML can describe business data with complex
data structures and data types. Therefore, digital signatures
for XML documents are receiving more attention. Cur-
rently, standardization activities for XML digital signatures
are proceeding at W3C and IETF. AtW3C, the specification
for XML signatures was published as ProposedRecommen-
dation [3] and at IETF, as RFC 3075.

We assume that a B2B system exchanges business data
as XML documents (Figure 1). When this system receives
an XML document such as purchase orders, this system pro-
cesses the information in a back-end application and returns
a result in XML format as confirmation. Figure 1 shows a
typical configuration of an XML-based B2B system.

If XML digital signatures are required, a simple solution
is to modify the system itself. When confirmation XML
documents are generated, a digital signature library is called
and the library signs the XML document. Although this is
a typical solution, the existing system must be modified,
and there are risks that the modified part contains a security
hole.

In this paper, we introduce a turnkey solution to sign
XML documents without modifying the existing applica-
tions. This system consists of a signature proxy and a sig-
nature server. The signature proxy is placed between the
applications that exchange XML documents. The signature
proxy watches for XML documents on the network and the
signature proxy sends the document to the signature server
or verification server according to the content of the XML
document. Because the signature and verification processes
are done through the proxy, the actual applications do not
have to be modified.

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

Figure 1. The existing B2B system

The signature server also provides a way to select ap-
propriate keys for signing according to the content of the
document by using key selection rules in XML format. Fur-
thermore, the signed documents can be stored in a database
where access to the documents is restricted by element-wise
access control.

Recently, theWeb Services model has attracted the atten-
tion of many companies. Web Services use XML as an in-
terface to define business functions that are loosely coupled
and dynamically bound. By using SOAP [1], a specification
for lightweight Remote Procedure Calls (RPC) using XML
documents, we can combine applications independently of
specific platforms.

We define functions for signing and verifying Web Ser-
vices using SOAP as the message format. Because SOAP
is independent of the transport layer, we can easily use
HTTP(S), Message Queuing, etc., for transport for the
SOAP-based messaging . This capability is very important,
since many companies have their own network and secu-
rity policies, and requirements from them depend on their
network configuration.

The signature proxy approach makes it easy. It is appli-
cable for existing XML-based B2B systems without modi-
fying them. Our system has been installed at a customer in
Japan, and is running as a part of a real system.

To make Web Services more secure and safe, various
kinds of security-related Web Services are required. We are
currentlyworkingon the “XML Security Service Suite (XS-
Cube)” that contains security-related Web Services such as

digital signatures, encryption, key management, access con-
trol, and so on. The signature server is a one of the XS-Cube
offerings.

In this paper, we describe basic idea of this system in
Section 2. Sections 3 and 4 cover the signature proxy and
the signature server, respectively. We introduce a core set
for security Web Services in Section 5, and we offer con-
clusions in Section 6.

2. Basic Idea

The basic idea of the proxy approach is very simple. The
structure of the system is shown in Figure 2. A proxy server
is placed between each application and the Internet to exam-
ine the XML messages exchanged by the applications. The
proxy calls the security service of the signature/verification
server according to the content of the message. For exam-
ple, the following sequence is the process of sending an or-
der sheet from Application A to Application B. (The sig-
nature server and the verification server may be the same
component.)

� Application A in Company A sends the order docu-
ment to Company B’s application.

� As the order document goes through Proxy A, the doc-
ument is sent to the signature server and signed before
the document is sent to Company B.

� In Company B, Proxy B receives the signed document

2

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

and sends it to the verification server. The verification
server verifies the signed document.

� The result of verification is returned to Proxy B. If the
signature is valid, Proxy B removes the signature part
from the document and sends the document to Appli-
cation B. It is possible to keep the signature informa-
tion if the application wants to know about the signa-
ture (e.g., the distinguished name of signer)

� Application B receive the document. After processing,
Application B generates a reply document and sends it
to Company A.

� As the reply document goes through Proxy B, the doc-
ument is sent to the signature server where it is signed
using B’s private key and is then sent to Company A
as the signed document.

� In Company A, Proxy A directs the message to the ver-
ification server. If the signature is valid, the signature
part is removed from the document and the document
is sent to Application A.

Since the signature proxy checks the XML messages on
the network and decides whether the message should be
signed or verified, Applications A and B do not have to
know about signatures and verification. Therefore, the ex-
isting applications do not have to be modified.

This feature is important from the following two points
of view.

� In real-world systems, security functions are often
added after the systems have already been developed.

� The addition of security functions to existing systems
may create security holes. Therefore, it is desirable
that security functions and the applications performing
the business functions are designed and implemented
independently.

3. The signature proxy

The signature proxy is the component that checks XML
documents exchanged by applications and calls the signa-
ture/verification services. The proxy can be transparently
implemented in hardware such as a Layer 4 switch, or the
proxy can be implemented as software such as a servlet. As
shown in Figure 2 the signature proxy is used as the gate-
way which can function as HTTP reverse and transparent
proxies.

Figure 3 shows the structure of the signature proxy. Each
signature proxy performs the following steps:

Figure 3. Composition of the signature proxy

1. The Content Checker parses the XMLmessage and de-
cides whether a signature or verification is required.
The decision whether or not to sign the document is
made by examining the DTD or list of root elements
of the XML documents which require a signature. Be-
cause signed XML documents which are compliant
with the W3C/IETF specification must have a <Signa-
ture> element, the proxy calls the verification service
if this element exists in the document.

2. The signature server receives and returns a SOAP for-
matted XML document because the signature server
is a Web Service. If the existing B2B system does
not support SOAP but instead exchanges (raw) XML
messages directly, the proxy transforms the XMLmes-
sages to a SOAP format (in the SOAP Wrapper mod-
ule) and also transforms the returned SOAP formatted
message back to a (raw) XML message (in the SOAP
Unwrapper module). If the existing system is exchang-
ing SOAP-formatted message, these transformations
are not necessary.

3. The signature proxy and the signature server exchange
SOAP messages (refer to the next section about the
syntax). Although SOAP was originally developed as
an XML-based RPC, SOAP can be regarded as an en-
velope wrapping any XML documents. Using SOAP,
messages can be exchanged independent of the trans-
port layer. In our system, Apache SOAP [2] is used
as the middleware for SOAP message exchange. Also,
we extended the system for the IBM Message Queue
(MQ).

3

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

Figure 2. The signature proxy and the signature server

4. The signature/verification server

4.1. Composition

The signature/verification server is a Web Service ac-
cepting objects to be signed or verified. Because the inter-
face is a SOAP XMLmessage, the services can be provided
by various transport protocols. Figure 4 shows the structure
of the signature/verification server. The signature server se-
lects the signature key according to the content of the SOAP
requests. The server uses the XML Security Suite for Java
(xss4j) [5] as the XML digital signature library. The signed
XML documents are stored in a database and then returned
to the signature proxy.

Figure 5 shows an example of a request document sent
to the signature server. The root element in this XML mes-
sage is an <Envelope> element. The SOAP-ENV pre-
fix represents the namespace for SOAP as defined in the
W3C specification. The <Envelope> element consists of a
<Header> element (there is no <Header> element in the
example shown in Figure 5) and a <Body> element. The
<Header> element has the address of the message or the in-
formation which should be interpreted by the intermediary.
The <Body> element has the data for the final destination.
The <Sign> element, which is the child of the <Body>
element, represents the content of the request which has the
following information.

� The scope of the signature. The XML message to be

Figure 4. Composition of the signa-
ture/verification server

4

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

signed can be included in the request message as the
child element of the <Target> element. Otherwise,
the URI of the object XML can be specified in the URI
attribute.

� The format of the result (signed) document. The for-
mat can be included in the request message as the child
element of the <Template> element. Otherwise, the
URI of the template can be specified in the URI at-
tribute.

Each service requester can change the format of the
signed document. Although the signature block is repre-
sented as a <Signature> element, the format depends on
the applications. One application may require a signa-
ture block embedded in an XML document as a child el-
ement. Another application may like a document in which
the <Signature> element is the root element. In order to
support to such requests flexibly, the signature server pro-
vides a customizable template that specifies the format of a
response message.

Figure 6 shows an example of a template file. This exam-
ple is a template for the “enveloping signature” that means
the<Signature>contains a document to be signed. The sig-
nature service parses the template and finds the algorithms
for the canonicalization and signing processes. Then the
service signs the target (element) in the request message
(Figure 5) and stores the signature result in the <Signa-
tureValue> element (the <SignatureValue> element is an
empty element in the template). From this point, the ser-
vice uses the <valueOfTarget> element in the template as
a macro and replaces the <valueOfTarget> element with
the target document. We can use the following macros in
the template.

� <valueOfTarget> , replaced with the target element to
be signed.

� <valueOfTimestamp> , replaced with the signature
timestamp.

� <valueOfNonce> , replaced with a unique number
generated by the signature service.

4.2. Key selection by the contents

The signature/verification server manages the signature
keys and selects the appropriate key according to the content
of the object to be signed. Here is an example:

� The key for the order documents for Company A and
B must be different.

� If the amount of money is greater than one million yen,
the manager’s signature is required. Otherwise the as-
signee’s signature is required.

� Every day from 9 AM to 5 PM the primary key is used,
and another key is used at other times.

Our system can change the signature keys (private keys)
in the Java2 key store according to the content of the XML
document. An example of a key selection configuration file
is shown in Figure 7. The configuration file consists of a
<keys> element and a <rules> element. The <keys> el-
ements have the key information and the<rules> elements
are the key selection rules. A <key> element has informa-
tion about a single key (key aliases, keystore password, and
so on). A <rule> element has one rule for the key selec-
tion. The <rule> element includes the condition for selec-
tion (<condition> element) and the action if the condition
is satisfied (<action> element). The condition is a Boolean
formula consisting of several built-in predicates. Table 1
shows the list of built-in predicates.

During key selection, the condition in each of the
<rule> elements is evaluated one after the other. The ac-
tion corresponding to the first condition that is satisfied is
executed. In our implementation, an <action> element in-
cludes a link to the key information, which is defined in the
<keys> element. Using this information, the appropriate
key is selected. If no conditions are satisfied, the default
rule is applied.

4.3. Logging signed documents and access control

Documents that are signed and verified by the signa-
ture/verification servers are stored in a database. Since ac-
cording to the digital signature law, a document having a
digital signature is as valid as a paper document, the trans-
action records can be preserved as digital documents. Of
course, the digital documents should be managed properly.
Also, a digital document is subject to auditing, just like a
paper document.

In our implemented system, signed and verified docu-
ments are automatically stored in a database. The relational
database used is IBM DB2 UDB. The complete documents
are stored as BLOB data and the text nodes and their asso-
ciated XPaths are stored in a table so that effective searches
are possible.

Element-wise access control to the stored XML docu-
ments uses the XMLAccess ControlLanguage (XACL) [6].
For example, a XACL access policy can describe the fol-
lowing permissions.

� Only managers can see the <price> element.

� Users belonging to the business division can see the
element for <businessPartner> .

The role assigned to each user can be managed by the
Tivoli Policy Director or by our own original module. We

5

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

<SOAP-ENV:Body>
<Sign xmlns="urn:X-WEBSRV:DSIG">

<Request>
<Target>

<m:BookOrder xmlns:m="Some-URI">
<m:buyer>Naohiko Uramoto</m:buyer>
<m:item isbn="0-201-48543-5">XML and Java</m:item>

</m:BookOrder>
</Target>
<Template URI="http://www.schema.org/enveloping.tmpl">

</Request>
<Respond>

<element>Signature</element>
</Respond>

</Sign>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5. a example of the request document passed to the signature services

developed a GUI to reference the stored documents. At lo-
gin time, the roles corresponding to that user are activated.
As the user browses XML documents, only permitted ele-
ments are displayed.

5. XML Security Services Suite

In Section 4, we described a Web Service for signing
and verifying XML documents. Now we are working on
developing a complete “XML Security Services Suite” that
provides security for Web Services such as:

� Digital signature

� Encryption/Decryption

� Key management (XKMS [7])

� Access control (XACL/XACML)

� Logging/Notary functions

It is possible to build a complex Web Service by com-
bining the services. For example, the signature server in-
troduced in Section 4 can be built by combining the digital
signature, key management, and logging services. These
services are very generic and it can provide services to var-
ious components. For example, services can be called from
middleware such as the Apache SOAP engine or by an ap-
plication server, Java Servlet, EJB, or others.

6. Conclusion

In this paper, we have described a XML digital signa-
ture proxy server usable without modification of existing
applications. Because this system is implemented as a Web
Service, this system can be flexibly applied to various net-
work environments. Also, we have described key selection
according to the XML document’s content, function for log-
ging documents, and controlling the access to these docu-
ments. Our future work involves developing a core set of
security Web services that broadly support systems that use
Web Services in a very flexible and secure manner.

References

[1] “Simple Object Access Protocol (SOAP) 1.1,”
W3C Note, http://www.w3.org/TR/SOAP

[2] “Apache SOAP,” http://xml.apache.org

[3] “XML-Signature Syntax and Processing,”
W3C Proposed Recommendation,
http://www.w3.org/TR/xmldsig-core/

[4] “The Signature Law”,
http://www.mpt.go.jp/top/ninshou-law/
law-index.html (in Japanese), 2001

[5] XML Security Suite for Java,
http://www.alphaworks.ibm.com/
tech/xmlsecuritysuite

6

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

<dsig:Signature xmlns:dsig=http://www.w3.org/2000/09/xmldsig#
xmlns="urn:X-WEBSRV:DSIG">

<dsig:SignedInfo Id="sig">
<dsig:CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
<dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

</dsig:SignedInfo>
<dsig:SignatureValue></dsig:SignatureValue>
<dsig:Object>

<valueOfTarget/>
</dsig:Object>

</dsig:Signature>

Figure 6. A example of template file

<?xml version="1.0"?> <config xmlns="http://www.ibm.com/foak/dsig/keyconfig">
<keys>

<keyInfo id="key1" keyName="key1" keyPass="key1" storePass="key1"/>
<keyInfo id="key2" keyName="key2" keyPass="key2" storePass="key2"/>

</keys>
<rules>

<rule>
<condition>

<and>
<predicate name="equal">

<parameter type="xpath">/Order/ID</parameter>
<parameter type="string">01</parameter>

</predicate>
<predicate name="lessThan">

<parameter type="xpath">//amount</parameter>
<parameter type="int">10000</parameter>

</predicate>
</and>

</condition>
<action>

<select href="key1"/>
</action>

</rule>
<default>

<action>
<select href="key2"/>

</action>
</default>

</rules>
</config>

Figure 7. A example of key selection configuration file

7

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

Table 1. built-in predicate
predicate name explanation example
exist true if a certain element

exist in the document
<predicate name=”exist”>
<parameter type=”xpath”>/Order</parameter>
</predicate>

equal true if content of a cer-
tain element correspond
with a certain string

<predicate name=”equal”>
<parameter type=”xpath”>/Order/ID</parameter>
<parameter type=”string”>041</parameter>
</predicate>

intime true if the signing time
is in a certain time pe-
riod

<predicate>name=”intime”¿
<parameter type=”time”>08:00:00</parameter>
<parameter type=”time”>20:00:00</parameter>
</predicate>

indate true if the signing time
is within a certain range
of dates

<predicate name=”indate”>
<parameter type=”date”>2001:01:01:08:00:00</parameter>
<parameter type=”date”>2001:01:16:14:00:00</parameter>
</predicate>

greaterThan true if the content of the
element is greater than a
given constant

<predicate name=”greaterThan”>
<parameter type=”xpath”>//amount</parameter>
<parameter type=”int”>10000</parameter>
</predicate>

lessThan true if the content of the
element is less than a
given constant

<predicate name=”lessThan”>
<parameter type=”xpath”>//amount</parameter>
<parameter type=”int”>10000</parameter>
</predicate>

isValidSchema true if the document is
valid according to a cer-
tain DTD or schema

<predicate name=”isValidSchema”>
<parameter type=”string”>file:///dtd/po.dtd</parameter>
</predicate>

[6] Michiharu Kudo and Satoshi Hada,
“XML Document Security based on Provisional Au-
thorization”, ACM CCS, 2000

[7] XML Key Management Specification (XKMS),
W3C Note 30 March 2001,
http://www.w3.org/TR/xkms/

[8] eXtensible Access Control Markup Language, OA-
SIS, http://www.oasis-open.org/committees/xacml/

8

Proceedings of the 2002 Symposium on Applications and the Internet (SAINT�02w)
0-7695-1450-2/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

