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Abstract. For some time now, we have been interested in using Haskell
to program inexpensive embedded processors, such as those in SUN’s new
Java family. This paper describes our first attempt to produce a Haskell
to Java Virtual Machine code compiler, based on a mapping between the
G-machine and the Java Virtual Machine. Although this mapping looks
good, it is not perfect, and our first results suggest that the compiled
Java Virtual Machine code may be rather larger and slower than one
might hope.

1 Introduction

For some time now, we have been interested in the efficient implementation of
lazy functional programming languages on very small computers, such as those
found in consumer electronics devices. So far, all of our implementations have
assumed that next-generation products will be controlled by previous-generation
RISC processors [Wak95]. But Java processors, with their compact instruction
encoding, are an attractive alternative [SUN97]. This paper investigates whether
these processors could successfully run lazy functional programs.

The paper has two parts. The first part points out the similarity between
the virtual machine usually used to implement Java [LY96] and the Chalmers
G-machine [Pey87], a virtual machine often used to implement lazy functional
languages. Section 2 gives a quick tour of the Java Virtual Machine, Section 3
gives a quick tour of the G-machine, and Section 4 describes a mapping between
the two virtual machines that can serve as the basis of a lazy functional language
implementation. The second part assesses the effectiveness of the mapping, and
suggests how it could be improved. Section 5 presents some benchmark figures,
Section 6 discusses these figures, and Section 7 has some ideas for future im-
provements. Section 8 mentions some related work, and Section 9 concludes.

2 The Java Virtual Machine

In principle, Java could be compiled for any machine, but in practice it is usu-
ally compiled for a standard virtual machine. This section gives a quick tour
of the Java Virtual Machine; more detail can be found in [LY96]. Throughout
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Fig. 1. The Java Virtual Machine.

this paper, Java source code and Java Virtual Machine code will be written in
typewriter font.

As Figure 1 shows, the Java Virtual Machine is a stack-based virtual machine
which works with methods and constant pools, objects, and two stacks.

2.1 Methods and Constant Pools

A Java program is organised into classes, each of which may have some methods
(or functions) for performing computation. For every class, the Java Virtual
Machine stores the virtual machine code for each method, and a constant pool
of literals, such as numbers and strings, used by the methods. To ensure the
binary portability of Java programs, the layout and byte-order of the stored
form 1s precisely specified. Nevertheless, before the Java Virtual Machine runs
any untrusted code it verifies it in an attempt to ensure that it is well-behaved.

2.2 Objects

As well as providing methods, classes also describe the structure of objects. An
object is a record whose fields may be either scalar values, methods or references
to other objects. There are virtual machine instructions for allocating a new
object, for setting and getting the value of a field, and for invoking a method.
But there is no instruction for disposing of an object. A garbage collector is
assumed to run from time-to-time to recover the memory occupied by objects
that are no longer in use.
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Fig. 2. The G-machine.

2.3 Stacks

The Java Virtual Machine stack is divided into frames, each of which stores the
local state of a method invocation. In order to simplify our exposition, we have
chosen to separate this stack into a wvariable stack from which space for actual
parameters and local variables is allocated, and an operand stack from which
space for the intermediate results of expression evaluations is allocated.

3 The G-machine

Many of the most successful lazy functional language implementations are based
on some variant of the Chalmers G-machine. This section gives a quick tour
of the G-machine; more detail can be found in [Pey87]. Throughout this paper,
G-machine instructions will be written in upper-case SANS SERIF font.

As Figure 2 shows, the G-machine is a stack-based virtual machine which
works with graph nodes, reduction rules and two stacks.

3.1 Graph Nodes

A lazy functional program is executed by evaluating an expression to normal
form, printing the result as it becomes available. The G-machine represents the
expression by a graph, and it evaluates it by graph reduction. As the graph is
reduced, new nodes are attached to it and existing nodes are detached from
it. From time-to-time, a garbage collector recovers the memory occupied by de-
tached nodes.



3.2 Reduction Rules

Each function or primitive operation serves as a reduction rule for the graph.
By way of example, Figure 3 describes simple functional programs as a set of
reduction rules of varying arity. The body of each rule is an expression which
can be either a function, an argument, an integer, an addition, a conditional, or
an application. Continuing with the example, Figure 4 shows how the reduction
rules can be compiled into G-machine code. Executing the G-machine code for
a rule reduces the graph in the manner required by that rule.
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Fig. 3. Program syntax.

3.3 Stacks

In order to make garbage collection easier, the G-machine stores the local state of
a function application on two stacks, both of which can be divided into frames.
The pointer stack stores pointers to argument and intermediate graph nodes,
and the value stack stores unboxed constants.

4 A Mapping Between Virtual Machines

Figures 1 and 2 and the accompanying text are intended to suggest the mapping
between the G-machine and the Java Virtual Machine discussed below.

4.1 Mapping Graph Nodes to Objects

The mapping of the G-machine’s graph nodes to the Java Virtual Machine’s
objects is largely straightforward. It is natural to represent general graph nodes
by a class, N, and particular graph nodes by subclasses of that class. Figure 5
shows the abstract class, N. Here, the ev method returns a node representing this
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abstract public class N {
public abstract N ev();
public abstract void uw();
public abstract int gt();
public abstract N rn();
public abstract void ud(N g);

Fig. 5. The abstract graph node class, N.




node in normal form; the uw method initiates a further reduction if this node is
not in normal form; the gt method returns the tag of this node; the rn method
runs the code associated with this (function) node; and the ud method updates
this (application) node with a node representing its normal form. Usually, an
update involves overwriting the node with either a copy of the normal form
node, or with an indirection node that points to it. Sadly, the Java Virtual
Machine does not provide a way to copy one object over another, so one must
update by indirection. Thus, each updatable node is represented by an object
with an extra indirection field. The indirection field 1s initially null, and the
update method sets it to reference a normal form node object. During graph
reduction, the indirection field of a node must be followed if it is not null. As
an example, Figure 6 gives Java code for the application node class AP.

Constant Applicative Forms (or CAFs) can also sometimes be a source of
trouble for functional language implementors, but here they give no difficulty.
There is a class for each CAF, and these classes are all subclasses of the graph
node class. Like other updatable nodes, a CAF node object has an indirection
field that is initially null, and is later set to reference a normal form node object.
However, in this case the indirection field is a class variable shared between all
instances of the CAF class, so that when one is evaluated, the others “feel the
benefits”.

For a while, we represented graph nodes by a more elaborate class structure.
There were subclasses of the node class gathering together constant nodes, func-
tion nodes, updatable nodes, and so on. The intention was to gain security by
using the Java Virtual Machine’s type-checking to trap errors in the implemen-
tation of graph reduction, and to save space by having the methods for graph
node operations in just the classes where they were needed. This did not work
out, well, however, because many extra Java Virtual Machine instructions were
needed for type-checking. An update, for example, can only take place once it
has been checked that the node to be updated is in the subclass of updatable
nodes. In a correct implementation, of course, it always is.

4.2 Mapping Reduction Rules to Methods and Constant Pools

Figure 7 shows how G-machine instructions are mapped onto Java Virtual Ma-
chine instructions. For a rule of arity n whose G-machine code is gs, T [ gs ] n
gives the Java Virtual Machine code for the rn method. As well as producing
Java Virtual Machine instructions, some mappings add new entries to the class
constant pool, seen here as a map between integers and entries.

4.3 Mapping the Stacks

The G-machine’s value stack is easily mapped onto the Java Virtual Machine’s
operand stack. However, mapping the G-machine’s pointer stack onto the Java
Virtual Machine’s variable stack is a bit harder. The rn method supposes that
once an application spine has been unwound and rearranged, its arguments can



final public class AP extends N {
N ind, £, a;

public AP(N £, N a) {
this.ind = null;
this.f f;
this.a a;

}

public N ev() {
if (this.ind == null) {
return this.ind = RT.APev(this);
} else {
return this.ind.ev();

public void uw() {
if (this.ind == null) {
RT.APuw (this) ;
} else {
this.ind.uw();
¥
¥

public N rn() {
RT.Stop("A.tn()");
return null;

}
public void ud(N g) {

this.ind = g;
}

Fig. 6. The application node class AP.

be efficiently accessed as local variables (see Figure 8). This is achieved by un-
winding the spine onto a stack array in the run-time system, and then having
some prologue code at the start of the rn method do the rearrangement whilst
transferring the arguments from the stack array to the local variables. Figure 9
gives the methods for evaluating and unwinding an application spine.



T [ ADD.gs ] sp =iadd; T [gs] sp
T [ EVAL.gs ] sp aload sp; invokevirtual ¢; astore sp; 7 [ gs ] sp
pool + [ i — MethodRef N ev ()N ]
T [GET.gs] sp = aload sp; invokevirtuali; 7 [ gs ] (sp— 1)
pool + [ i — MethodRef N gt ()I]
T [ JFALSE l.gs ] sp ifeql; T [ gs] sp
TI[IMPl.gs] sp gotol; T [ gs] sp
T [ MKAP.gs ] sp = new 1; dup; aload sp; aload (sp — 1);
invokespecial j; astore (sp—1); T [ gs ] (sp — 1)
pool + [ 1 — Class AP,
j +> MethodRef AP <init> (NN)V]
T [ MKINT.gs ] sp = new 1; dup; dup2_x1; pop2;
invokespecial j; astore (sp+1); T [ gs ] (sp+ 1)
pool + [ i+ Class INT,
j +> MethodRef INT <init> (I)V]

T [ POP n.gs ] sp =T [gs] (sp—n)

T [ PUSH n.gs ] sp = aload (sp — n); astore (sp + 1);
Tlgsl(sp+1)

T [ PUSHBASIC i.gs ]| sp = sipushs; T [ gs ] sp

7 [ PUSHGLOBAL f.gs ]| sp = new 1; dup; invokespecial j; astore (sp + 1);
TLos] (sp+1)
pool + [ i+ Class f, j +> MethodRef i <init> ()V ]
T [ PUSHINT i.gs ] sp — T [ PUSHBASIC i.MKINT..gs ] sp
T [ UPDATE n.gs ] sp = aload (sp — n); aload sp; invokevirtual i;
Tlgsl(sp—1)
pool + [ i — MethodRef N ud (N)V]
T [ UNWIND.gs ] sp = aload sp; invokevirtuali; 7 [ gs | sp
pool + [ i — MethodRef N uw (N)V]

Fig. 7. Instruction translation scheme.

Fig.8. Argument access via local variables.




public static N APev(AP a) {
APuw(a) ;
return S[ sp++ 1;

}
public static void APuw (AP a) {

S[--sp 1 = a;
a.f.uw();

Fig. 9. Application node methods.

4.4 Tail Calls

A tail call occurs when the result of one function is given by a call to another
function with exactly the right number of arguments supplied. In this case, an
efficient implementation discards the frame of the first function before allocating
that for the second. Unfortunately, the Java Virtual Machine is not required to
implement tail calls like this, and so we must use a well-known trick to achieve the
proper behaviour. The trick is a variant of the “UUQO handler” invented for the
Rabbit Scheme compiler [Ste78] and later popularised as the “tiny interpreter”
by the Glasgow Haskell compiler [Jon92]. A tail call is made by returning a
function node object whose rn is to be invoked, rather than by invoking this
method directly. Execution is then controlled by the one-line tiny interpreter:

while (f !'= null) £ = f.rn();

The UNWIND instruction eventually encounters a normal form, which it leaves
on the top of the stack array and returns a null object. This implementation of
tail calls looks costly because a temporary function node object must be created
for each tail call. It can be avoided in the important special case when a function
makes a tail-call to itself; here a goto instruction suffices. But in general it seems
to be the best that can be done, given that there are no function pointers in the
Java Virtual Machine.

5 Benchmarks

A compiler from Haskell to Java Virtual Machine code has been constructed
using the ideas described above, based on version 0.9999.3 of the Chalmers HBC
compiler. This compiler has been used to compile seven benchmark programs:
nfib30, the unfashionable benchmarking function with type Int -> Int and
argument 30; calendar, a program that formats 7 calendars; clausify, which
converts propositional formulae to clausal form; soda, which performs a word
search in a 20 x 30 grid; infer, a type-checker written in the monadic style;



parser, a Haskell parser; and prolog, a logic programming system solving the
Towers of Hanoi problem for six discs.

All of the benchmark figures reported here were recorded on a SUN Ultra 140
workstation with 64Mbytes of memory, running the Solaris 2.5.1 operating sys-
tem. The machine was running version 1.1.3 of the SUN Java Developer’s Kit,
which performs “just-in-time” compilation of Java Virtual Machine code to na-
tive code. Tables 1 and 2 compare three implementations: our compiler, an un-
modified version 0.9999.3 Chalmers HBC compiler, and the Nottingham Hugs
interpreter. For our compiler, program sizes are obtained by adding up the sizes
of all the generated “.class” files; for the HBC compiler, they are as measured by
the size command; for the Hugs interpreter, no program size figures are given
because the G-machine code that it interprets cannot easily be extracted from
the interactive environment. None of the sizes includes type classes and func-
tions from the standard prelude, or support routines from the run-time system.
It is not easy to pick-out bits of the prelude, and in any case none of the imple-
mentations treat it significantly differently from other Haskell code. Since our
compiler has only a minimal run-time system, comparisons of run-time system
size would not be fair. For our compiler and the HBC compiler, the timings are
an average of those for five consecutive runs after an initial “warm up” run; for
Hugs they are an average of five runs, each made immediately after starting the
interpreter.

Benchmark|Our compiler| Hugs HBC
Time (s) |Time (s)|Time (s)
nfib30 50.0| 106.7 1.5
calendars 9.6 4.8 0.1
clausify 14.2 7.4 0.5
soda 8.0 2.7 0.2
infer 35.7 8.2 0.9
parser 61.5 8.8 0.9
prolog 76.2 9.9 1.3

Table 1. Execution times.

6 Discussion

These benchmark results are disappointing. OQur compiler produces programs
that are between half and three quarters of the size of those produced by the or-
dinary HBC compiler, but run between 30 and 60 times more slowly. Indeed, the
programs run between 2 and 9 times more slowly than with the Hugs interpreter.

From the point-of-view of embedded applications, the program size is the real
concern because a hardware implementation of the Java Virtual Machine can
(only) improve program speed. So why are programs so large? Mostly because



Benchmark|Our compiler Hugs HBC
Size (bytes) |Size (bytes)|Size (bytes)
nfib30 2,729 — 2,545
calendars 28,517 — 46,540
clausify 24,152 — 33,693
soda 12,574 — 24,497
infer 204,807 — 222,335
parser 254,007 — 339,192
prolog 99,081 — 124,923

Table 2. Program sizes.

of the way that tail-calls are implemented. Recall that a tail-call is made by
returning a function node object to the tiny interpreter. For each such object,
there must be a class, and for each such class, there must be a “.class” file. This
amounts to a “.class” file for every function and CAF in the program. Each of
these has its own methods and constant pool, with no sharing possible between
them. In typical programs, we have found that the byte code for Java Virtual
Machine instructions accounts for only 40% of the space.

It would be unreasonable, of course, to expect the SUN Java Virtual Machine
to run the programs that our compiler produces as fast as the SUN SPARC
processor can run the programs that HBC produces. But it is reasonable to
expect 1t to run them as fast as the Hugs interpreter does, because the G-
machine used by our compiler is much more sophisticated than the one used
by Hugs (for example, it has n-ary application nodes instead of just binary
ones). So why are programs so slow? Consider the small program in Figure 10.
Figure 10). Tts result is the character 'a’, the last of a list of 50,000. Computing

main = putChar (last legion)

legion = take 50000 (repeat ’a’)

Fig. 10. A small, allocation-intensive benchmark.

this result involves (lazily) allocating 50,000 “cons” nodes to represent the list,
and 50,000 application nodes to represent suspended applications of take. In
addition, 50,000 function nodes are returned to the tiny interpreter. VSD runs
the program in 41.4 seconds, and Hugs in just 3.1 seconds. Even allowing that
Hugs does not have to return function nodes to a tiny interpreter, it seems that
memory allocation/reclamation is an order of magnitude more expensive in the
Java Virtual Machine than in the Hugs run-time system. A more sophisticated G-
machine can get back some, but not all of this. Other small, allocation-intensive
benchmarks give similar results.



Garbage collection is also a problem. Both the stack array and the local
variables are potential sources of space-leaks because the Java Virtual Machine
garbage collector cannot know that they are being used as a stack. Thus, it holds
onto everything referenced from the array and variables, regardless of where the
stack pointer is. This is serious. The input to the larger programs has had to be
made smaller to avoid running out of memory because of space-leaks.

Three other points are worth mentioning. Firstly, the Java Virtual Machine
uses dynamic linking: at the start of each program run, method references are
resolved to memory addresses by loading files from disk. This costs, but not much
because the computer’s operating system caches “.class” files in memory during
the “warm-up” run, and then does not have to access the disk again. Next, the
Java Virtual Machine performs/requires run-time checks that are unnecessary
for a strongly-typed functional language, such as Haskell. Although memory is
never accessed through anull pointer, and the pattern-matching code that splits
apart a pair never gets anything else, these things are checked anyway. Omitting
check instructions can make programs upto 5% faster, but the Java Virtual
Machine code is no longer verifiable. Finally, there are the run-time support
routines. In the Hugs implementation they are written in C and compiled; in
our implementation they are written in Java and interpreted. Compiled code, of
course, runs much faster than interpreted code.

7 Future Work

One problem with our implementation is the mapping of the G-machine’s pointer
stack to a Java array in the run-time system and the Java Virtual Machine’s
local variables. Pointers must constantly be moved between the array and local
variables, and space-leaks occur because the garbage collector cannot know that
both are being used as a stack. To some extent, the garbage collection problem
could be solved by mapping the pointer stack to a linked-list of frames instead
of an array. Taking this idea further, the movement of pointers could also be
avoided by using the (v,G)-machine [AJ89], where stack space is allocated as
part of the graph nodes, instead of the ordinary G-machine. We have just built
such an implementation, and it looks more promising.

Another problem is with SUN’s implementation of the Java Virtual Machine.
The high cost of memory allocation/reclamation is quite surprising, and tail calls
are not dealt with properly by discarding the frame for one method invocation
before allocating a frame for the next. Of course, one can hope that better
commercial implementations will appear in future, but in the meantime it it
might be interesting to fit out one of the free ones with more efficient storage
management — perhaps using semispaces instead of mark/sweep — and a proper
treatment of tail-calls.



8 Related Work

The instant success of Java has attracted the attention of others in the func-
tional programming community, notably Odersky and Wadler [OW97]. Their
Pizza implementation extends Java with parametric polymorphism, higher-order
functions and algebraic data types in order to make these ideas more widely
accessible. Pizza can be used as a functional programming language, and object-
oriented programming language, or something in between.

Compilers for many other programming languages to Java Virtual Machine
code are either available now, or are on the way. For example, Cygnus Support
have a compiler called Kawa for Scheme, INRIA-Lorraine have a compiler called
SmallEiffel for Eiffel, and Intermetrics have a compiler called Ada Magic for
Ada 95.

9 Conclusions

In this paper we have investigated whether Java processors could be programmed
with lazy functional languages in the context of embedded applications. Our work
is based on a mapping between the G-machine and the Java Virtual Machine.
In principle, the mapping is a good one, but in practice programs are not nearly
as small or as fast as one might hope. This is largely due to the high cost of
memory allocation/reclamation, and the difficulty of implementing tail-calls in
the Java Virtual Machine. Despite our disappointing early results, we are not
downhearted, and intend to continue developing a Haskell compiler for the Java
Virtual Machine.
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