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Abstract

In the last few years many language researchers have moved to the JVM as the
delivery vehicle for their languages. Although the JVM is a great target for the
JavaTM programming language, it is not necessarily a good platform for other lan-
guages, especially languages that require semantic features that do not appear in
JavaTM . In this paper we compare the JVM with the new Microsoft .NET Common
Language Infrastructure (CLI), which has been designed from the ground up to be
a multi-language platform.

1 Introduction

The ideas of virtual machines, intermediate languages and language indepen-
dent execution platforms have fascinated language researchers for a long time.
Well known examples include UNCOL [6], UCSD P-code [22], ANDF [20],
AS-400 [24], hardware emulators such as VMWare, Transmeta CrusoeTM [28],
binary translation [25], the JVM [19], and most recently Microsoft’s Common
Language Infrastructure (CLI) [2].

There are several reasons why people are looking at alternative implementation
paths for native compilers:

Portability By using an intermediate language, you need only n+m transla-
tors instead of n∗m translators, to implement n languages on m platforms.

Compactness Intermediate code is often much more compact than the orig-
inal source. This was an important property back in the days when memory
was a limited resource, and has recently regained importance in the context
of dynamically downloaded code.
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Efficiency By delaying the commitment to a specific native platform as much
as possible, you can make optimal use of the knowledge of the underlying
machine, or even adapt to the dynamic behavior of the program.

Security High-level intermediate code is more amenable to deployment and
runtime enforcement of security and typing constraints than low level bina-
ries.

Interoperability By sharing a common type system and high-level execu-
tion environment (that provides services such as a common garbage collected
heap, threading, security, etc), interoperability between different languages
becomes easier than binary interoperability. Easy interoperability is a pre-
requisite for multi-language library design and software component reuse.

Flexibility Combining high level intermediate code with metadata enables
the construction of (typesafe) metaprogramming concepts such as reflection,
dynamic code generation, serialization, type browsing etc.

Attracted by the high-level runtime support and the wide availability of the
JVM, and the rich set of libraries on the JavaTM platform, quite a number
of language implementers have recently turned to the JVM as the execution
environment for their language [27,7].

The JVM is a great target for JavaTM , but even though the JVM designers
hope to attract implementers of other languages [19, Chapter 1.2], we will
argue that the JVM is essentially a suboptimal multi-language platform.

For a start, the JVM provides no way of encoding type-unsafe features of typ-
ical programming languages, such as pointers, immediate descriptors (tagged
pointers), and unsafe type conversions. Furthermore, in many cases the JVM
lacks the primitives to implement language features that are not found in
JavaTM , but are present in other languages. Examples of such features in-
clude unboxed structures and unions (records and variant records), reference
parameters, varargs, multiple return values, function pointers, overflow sen-
sitive arithmetic, lexical closures, tail calls, fully dynamic dispatch, generics,
structural type equivalence etc [17,18,13,9,11,10,23].

The CLI has been designed from the ground up as a target for multiple lan-
guages, and explicitly addresses many of the issues mentioned above that are
needed to efficiently compile a wide variety of languages. To ensure this,
from early on in the development process of the CLI, Microsoft has worked
closely with a large number of language implementers (both commercial and
academic, for an up to date list see www.gotdotnet.com). For instance, the
tail call instruction was added as a direct result of feedback from language re-
searchers; tail calls are a necessary condition for efficiency in many declarative
languages that use recursion as their sole way of expressing repetition.
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It would be unfair to state that the CLI as it is now, is already the per-
fect multi-language platform. It currently has good support for imperative
(COBOL, C, Pascal, Fortran) and statically typed OO languages (such as
C], Eiffel, Oberon, Component Pascal). Microsoft continues to work with
language implementers and researchers to improve support for languages in
non-standard paradigms [16].

In the remainder of this paper, we give a quick overview of the architecture,
instruction set and type system of the CLI and point out specific points where
we think the CLI is a better multi-language execution environment than the
JVM.

2 Architecture of the Common Language Infrastruc-
ture (CLI)

The CLI manages multiple concurrent threads of control (which are not nec-
essarily native OS threads). A thread can be viewed as a singly linked list
of stack frames [12,3], where a frame is created and linked back to the cur-
rent frame by a method call instruction, and removed when the method call
completes (either by a normal return, a tailcall, or by an exception).

An instruction pointer (IP) which points to the next CLI instruction to
be executed by the CLI in the present method.

An evaluation stack which contains intermediate values of the computation
performed by the executing method (the operand stack in JVM terminol-
ogy).

A (zero-based) array of local variables A local variable may hold any
data type. However, a particular variable must be used in a type-consistent
way (in the JVM, a local variable can contain an integer at one point in
time and a float at another).

A (zero-based) array of incoming arguments Unlike the JVM the ar-
gument array and the local variable array are not the same.

A methodInfohandle which contains information about the method, such
as its signature, the types of its local variables, and data about its exception
handlers.

A local memory pool The CLI includes instructions for dynamic allocation
of objects from the local memory pool (e.g. [3, Chapter 7.3, page 408].

A return state handle which is used to restore the method state on return
from the current method. This corresponds to what in conventional compiler
terminology would be the dynamic link.
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A security descriptor which is used by the CLI security system to record
security overrides (assert, permit-only, and deny). This descriptor is not
directly accessible to managed code. Although extremely important and
interesting, the security mechanism of the CLI is outside the scope of this
paper.

In contrast to the JVM where all storage locations (local variables, stack slots,
arguments) are 4 bytes wide, storage locations in the CLI are polymorphic, in
the sense that they might be 4 bytes (such as a 32 bit integer) or hundreds of
bytes (such as a user-defined value type), but their type is fixed for lifetime of
the frame.

3 Assemblies

Every execution environment has a notion of “software component” [26]. An
assembly is a set of files (modules) containing MSIL code and metadata, that
serves as the primary unit of a software component in the CLI. Security,
versioning, type resolution, processes (application domains) all work on a per
assembly basis. In JVM terms an assembly could roughly be compared to a
JAR file.

An assembly manifest describes information about the assembly itself, such
as its version, which files make up the assembly, which types are exported
from this assembly, and optionally a digital signature and public key of the
manifest itself. Here is an example manifest for an assembly using ILASM
syntax [2]:

.assembly HelloWorld {}

.assembly extern mscorlib {

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 1:0:2411:0

}

Inside an assembly or module we can define reference types such as classes,
interfaces, arrays, delegates) (see section 7) and value types such as structs,
enums (see section 6), and nested types. In contrast to the JVM, the CLI
allows top-level methods and fields. All these declarations are included in the
assembly’s metadata. A unique feature of the CLI is that it’s metadata is user
extensible via the notion of custom attributes.
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4 Type System

In this section we give an informal overview of the CLI type system, a more
formal introduction is given by Gordon and Syme [8].

In addition to user defined types (section 6 and section 7), the CLI supports
the following set of primitive types :

• object, shorthand for System.Object, string, shorthand for
System.String, void, void return type.

• bool, 8-bit 2’s complement signed value, char, 16-bit Unicode character.

• int8, unsigned int8, int16, unsigned int16, int32, unsigned int32,
int64, unsigned int64, unsigned and 2’s complement signed integers of
respective width; native int, unsigned native int, machine dependent
unsigned and 2’s complement signed value.

• float32, float64, IEEE-754 floating point value of respective width;
native float, machine dependent floating point number (not user visi-
ble).

• typed reference, an opaque descriptor of a pair of a pointer and a type,
used for type safe varargs.

Primitive types can be combined into composite types using the following set
of type constructors :

• valuetype typeref , class typeref , reference to value or reference type.

• type pinned, prevents the object at which local variable points from being
moved by GC. This is outside the scope of this paper.

• type [bounds ], (multi-dimensional) array. This is outside the scope of this
paper, suffice to note that in constrast to the JVM, the CLI does support
true multi-dimensional arrays.

• method callConv type *(parameters ), function pointer. This is outside
the scope of this paper.

• type &, managed pointer.

• type *, transient pointer (not user declarable).

The natural-size, or generic, types (primitive types native int, unsigned

native int, object, and the two type constructors &, *) are a mechanism
in the CLI for deferring the choice of a value’s size. The CLI maps each to
the natural size for a specific processor at JIT- or run-time. For example, a
native int would map to int32 on a Pentium processor, but to int64 on an
IA64 processor.
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The object type represents an object reference that is managed by the CLI. A
managed pointer & is similar to the object type, but points to the interior of
an object. Managed pointers are not interchangeable with object references.
Transient pointers * are intermediate between managed and unmanaged point-
ers. When a transient pointer is passed as an argument, returned as a value, or
stored into a user-visible location it is converted either to a managed pointer
or an unmanaged pointer depending on the type specified for the destination.

Natural sized types offer a significant advantage over the JVM which pre-
maturely commits all storage locations to be 32 bits wide. This implies for
example that values of type long or double occupy two locations, which makes
things unnecessarily hard for compiler writers.

A more important weakness of the JVM as a target for multiple language is
the fact that its type system lumps together all pointers into one reference

type, closing the door for languages or compilers that do need a more fine-
grained level of detail. We will expand on the usefulness of the CLI pointer
types in more detail in section 9.

5 Base Instruction set

The CLI has about 220 instructions, so obviously we do not have space to
cover all of them in this paper, instead we will highlight a few representative
instructions from each group below 1 .

When comparing to JVM instructions, you will notice that unlike the JVM
where most instructions have the types of their arguments hard-coded in the
instruction (which makes it easier to interpret JVM byte code, but puts a bur-
den on every compiler that generates JVM byte codes), the CLI instruction
set is much more polymorphic and usually only requires explicit type infor-
mation for the result of an instruction (which makes it easier for compilers to
generate MSIL code, but requires more work from the JIT).

5.1 Constants, arguments, local variables, and pointers

The CLI provides a number of instructions for transferring values to and from
the evaluation stack. Instructions that push values on the evaluation stack are
called “loads”, and instructions that pop elements from the stack into local
variables are called “stores”.

1 Many of the CLI instruction also have short forms, that allow more compact representa-
tion in certain special cases. We will not discuss these variants here
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The simplest load instruction is ldc.t v , that pushes the value v of type T 2

on the evaluation stack. The ldnull pushes a null reference (of type object)
on the stack.

The ldarg n instruction pushes the contents of the n -th argument on the
evaluation stack. The ldarga n instruction pushes the address (as a transient
pointer of type T *) of the n argument on the evaluation stack. The starg n

instruction pops a value from the stack and stores it in the n -th argument.
In each case, the JIT knows the type of the value from the signature of the
method.

The ldloc n instruction pushes the contents of the n -th local variable onto
the evaluation stack, and ldloca n pushes the address of the n -th local vari-
able on the evaluation stack. The stloc n instruction pops a value from the
stack and stores it in the n -th argument. Again, the JIT can figure out the
types of these values from the context.

The ldind.t instruction expects an address (which can be a raw pointer, a
managed, or a transient pointer) on the stack, dereferences that pointer and
puts the value on the stack. The stind.t v instruction stores a value v of
type T at address found at the top of the stack. In both cases, the type t

is needed because the JIT cannot always infer what the type of the resulting
value is.

The other load and store instructions include ldfld, ldsfld, stfld, stsfld,
and ldflda and ldsflda to manipulate instance and static fields, and a similar
family of instructions for arrays.

5.1.1 Example: reference arguments

The ability to load the address of local variables, and to dereference pointers
to indirectly get the value they point at allows compiler writers to efficiently
implement languages that support passing arguments by reference. For ex-
ample, here is the MSIL version of the Swap function that swaps the values of
two variables:

.method static void Swap(int32& xa, int32& ya) {

.maxstack 2

.locals (int32 z)

ldarg xa; ldind.i4; stloc z

ldarg xa; ldarg ya; ldind.i4; stind.i4

ldarg ya; ldloc z; stind.i4

ret

2 Here T ∈ {int32, int64, float32, float64} and t is the short form of T . The short form
of types is used in all instructions that have a type index.
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}

To call this function (see section 8), we just pass the addresses of the local
variables as arguments to function Swap:

.locals (int32 x, int32 y)

// initialize x and y

ldloca x

ldloca y

call void Swap(int32&, int32&)

In the JVM there is a separate load (and store) instruction for each type, i.e.
iload n pushes the integer content of the n -th local variable on the stack, and
similarly for aload n (reference), dload n (double, so it will moved as two 32
bit values), fload n (float), and lload n (long, again, moves two items will
be moved).

The JVM does not allow compilers to take the address of local variables,
hence it is impossible to implement byref arguments directly. Instead com-
piler writers have to resort to tricks such as passing one-element arrays, or
by introducing explicit box classes (the JVM does not support boxing and
unboxing either). Gough [11] gives a detailed overview of the intricate design
space of implementing reference arguments on the JVM.

5.2 Arithmetic

The add instruction adds the two topmost values on the stack together (and
similarly for other arithmetic instructions). Overflow is not normally detected
for integral operations unless you specify .ovf (signed) or ovf.un (unsigned);
floating-point overflow returns +∞ or −∞.

The JVM never indicates overflow during operations on integer data types,
which means that the time penalty may be significant for procedures which
perform intensive arithmetic in languages (such as Ada95 [1] or SML [21])
that require overflow detection. A minor issue in this context, is that there
is a separate add instruction for each type (and similar for other arithmetic
instructions), just as is the case for load and store.

5.3 Simple control flow

The CLI supports the usual variety of (conditional) branch instructions (such
as br, beq, bge etc.). There is no analogy of the JVM “jump subroutine”
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instruction. Also the CLI does not limit the length of branches to 64K as the
JVM does (which might not be a big deal for humans programming in Java,
but it is a real problem for compilers generating JVM byte code).

6 Value Types

A value type is similar to a struct in C or record in Pascal, i.e. a sequence
of named fields of various types. In contrast to reference types, which are
always allocated on the GC heap, value types are allocated “in place”. In the
CLI, value types can also contain (static, virtual, or instance) methods [2],
the details of which are outside the scope of this paper.

6.1 Structures

Here is the definition of a simple Point structure that contains two fields x

and y (which the CLI may store in any order):

.class value Point {

.field public int x

.field public int y

}

6.2 Unions

The CLI also supports sequential and explicit layout control of fields. The
latter is needed to implement C-style union types (or variant records in Pas-
cal), a structure where the fields may overlap. For example the following value
class defines a union that may hold either a float or an int:

.class value explicit FloatOrInt {

.field [0] public float32 f

.field [0] public int32 n

}

6.3 Enums

Besides structures, there is another kind of value type, enumerations, which
correspond to C-style enums. Enumerations provide a type safe way to as-
sociate names with integer values. For example the following enum defines a
new value type Shape with two constants RECTANGLE and CIRCLE:

.class enum Shape {
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.field public static valuetype Shape RECTANGLE = int32(0)

.field public static valuetype Shape CIRCLE = int32(1)

}

The CLI also allows you to specify enum details such as the internal storage
type or indicating that the enumeration is a collection of bits, for more details
see [2].

6.4 Initializing valuetypes

Except for boxing and the .locals directive, the CLI does not have special
mechanisms or instructions to explicitly allocate memory for a valuetype. The
initobj T instruction expects the address of a valuetype T on the stack, and
initializes all the fields of the valuetype to either null or a 0 of the appropriate
primitive type (this is a nice example of a polytypic instruction). For example
to initialize the example Point struct that we introduced in section 6.1, we
would load the address of the local variable p of type Point on the stack and
call initobj Point:

.locals (valuetype Point p)

ldloca p

initobj Point

It should be obvious that having value types is essential for compiling Pascal
or C-like languages that have enums, record and union types. Compiling such
languages to the JVM is inefficient to start with, as you need to represent
enums and structs by classes and unions by class hierarchies [4, Chapter5].
A much more serious consequence is that it is impossible to support the full
semantics of such languages, as it is impossible to implement the common
(type unsafe) trick where you store a a float in an FloatOrInt union type,
and read it as an int:

.locals (valuetype FloatOrInt fi, int32 n)

// fi.f = 3.14

ldloca fi

ldc.r4 3.14

stfld float32 FloatOrInt::f

// n = fi.n

ldloca fi

ldfld int32 FloatOrInt::n
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7 Reference types

The CLI supports types such as classes, interfaces, arrays, delegates. Because
of lack of space, we will restrict our attention to classes. Classes can contain
methods and fields; but yet again, to support as many languages as possible,
besides virtual and static methods (as in Eiffel, and JavaTM), the CLI also
support instance methods (as in C++).

For example, here are two classes Foo and Bar that both define an instance
method f, and a virtual method g:

.class public Foo {

.method public virtual void f() { ... }

.method public instance void g () { ... }

.method public static void h () { ... }

.method public specialname void .ctor() { ... }

}

.class public Bar extends Foo {

.method public virtual void f() { ... }

.method public instance void g () { ... }

.method public static void h () { ... }

.method public specialname void .ctor() { ... }

}

Constructors always are names .ctor and have to be marked as specialname.

7.1 Instantiating Reference types

The newobj c instruction allocates a new instance of the class associated with
constructor c and initializes all the fields in the new instance. It then calls the
constructor with the given arguments along with the newly created instance.

For example, we can create an instance f with static type Foo of our class Foo,
and an instance b with static type Foo of our class Bar using the following
instruction sequence:

.locals (class Foo f, class Foo b)

newobj void Foo::.ctor(); stloc f

newobj void Bar::.ctor(); stloc b

To create an instance of a class c in the JVM, you always have to use the se-
quence new c ; dup; invokespecial c.<init>()V (and similarly for using
a constructor that takes arguments) and the JavaTM verifier must do a com-
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plex dataflow analysis to ensure that no object is used before it is properly
initialized or that it is initialized more than once [19, Chapter 4.9.4]. It seems
much simpler to avoid all the complexity to start with and just do allocation
and initialization in a single instruction.

8 Invoking methods

The CLI has two call instructions for directly invoking methods and interfaces.
A third call instruction calli allows indirect calls on a function pointer, but
this is outside the scope of this paper.

The call m instruction is normally used to call a static method m (i.e. it is
comparable to the callstatic instruction in the JVM). For example, to call
method Foo::h(), we just write:

call void Foo::h()

It is legal to call a virtual or instance method using call instance (rather
than callvirt); in which case method lookup is done statically, in other
words, you will get an early bound call (i.e. the effect is comparable to a
invokespecial on the JVM). Assuming that bar is a local variable that
contains an instance of class Bar, the following call would actually execute
method Foo::f():

ldloc bar;

call instance void Foo::f()

The instance calling convention indicates that Foo::f() expects an addi-
tional “this” parameter.

The callvirt m instruction makes a late bound call to a virtual method m , in
other words, the actual method that is invoked depends on the dynamic type of
the “this” parameter (the JVM has two separate instructions, invokevirtual
and invokeinterface for this purpose, which once again makes life harder for
compiler writers). So in the example below, the method that will be invoked
is Bar::f() since the this parameter passed to the call has static type class

Foo, but dynamic type class Bar:

ldloc bar;

callvirt void Foo::f()

For instance methods, callvirt will still result in an early bound call.
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8.1 Tailcalls

Some people find it hard to believe, but there are programming languages
where recursion is the only way of expressing repetition (examples include
Haskell, Scheme, Mercury). For these languages, it is essential that the un-
derlying execution environment supports tailcalls. The tail. prefix instructs
the JIT compiler to discard the caller’s stack frame prior to making the call,
which means that the following method will indeed loop forever instead of
throwing a stack overflow exception:

.method public static void Bottom() {

.maxstack 8

tail. call void Bottom(); ret

}

If the call is from untrusted code to trusted code the frame cannot be fully
discarded for security reasons.

Since the JVM does not support tailcalls, compiler writers are forced to use
tricks like trampolines to artificially force the JVM to discard stack frames
[5,15,14,18].

9 Interaction between value and reference types

If you have both valuetypes and reference types, programmers will want to use
valuetypes in contexts where reference types are required (for instance to store
a Point in a collection). The same problem occurs in dynamic languages like
Scheme and statically typed polymorphic functional languages like Haskell and
SML where polymorphic functions expect a uniform argument representation.

To support these scenarios, it is essential to have efficient support from the
execution environment to move between the worlds of value- and reference
types. Having to create an instance of a class every time you want to pass a
valuetype as a reference type has too much performance overhead. Moreover,
this would also force you to define a new class for every valuetype, or introduce
many unnecessary casts.

The CLR provides built-in support for boxing and unboxing. A valuetype T

can be turned into reference type object using the box T instruction, and
back into a valuetype using the unbox T instruction.
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10 Conclusions and future work

In the previous sections we have argued that the CLI is already strictly more
powerful than the JVM as a multi-language platform. Microsoft Research
and the .NET product group continue to work with language inplementors to
improve support a wide variety of language paradigms.

We explictly solicit language implementors (including those who now target
the JVM) to try to target the CLI and provide us with feedback on how we
can make the CLI even better than it is today.
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