
From i* Requirements Models to Conceptual Models of

a Model Driven Development Process

Fernanda Alencar1,2, Beatriz Marín1, Giovanni Giachetti1, Oscar Pastor1,
Jaelson Castro2, João Henrique Pimentel2

1 Universidad Politécnica de Valencia, Camino de Vera s/n, CP:46022, Valencia, Spain

{fribeiro, bmarin, ggiachetti, opastor}@dsic.upv.es,
2 Universidade Federal de Pernambuco, Av. Prof. Luiz Freire s/n, 50740-540, Recife, Brazil

fmra@ufpe.br, {jbc, jhcp}@cin.ufpe.br

Abstract. A good understanding of the systems requirements has a high impact
in the successful development of software products. Therefore, an appropriate
requirements model must provide a comprehensive structure for what must be
elicited, evaluated, specified, consolidated, and modified, instead of just provid-
ing facilities for software specifications. Since there is a well-known gap be-
tween requirements specifications and final software products, we propose the
integration of Goal-Oriented Requirements Engineering (GORE) and Model-
Driven Development (MDD) to solve this gap. The core of our proposal is
comprised by a set of guidelines to automate the process of going from an ini-
tial i* model to a final software product by means of a precise model transfor-
mation process. Finally, we use a case study that is based on a photographic
agency system in order to illustrate our approach.

Keywords: Goal-Oriented Requirements Engineering, i*, Requirements Inte-
gration, Object Oriented Method, Model-Driven Development.

1 Introduction

The success of computer applications increasingly depends on a good understanding
of the system requirements. Currently, a requirements specification should include, in
addition to software specifications, business models, domain models and other kinds
of information that describe the context in which the intended system will operate.
During early stages of requirements engineering, it is necessary to identify and speci-
fy how the intended system meets the organizational goals, why the system is needed,
what alternatives were considered, what the implications of the alternatives are for the
stakeholders, and how the stakeholders’ interests and concerns might be addressed.

Hence, Goal-Oriented Requirements Engineering (GORE) stood out because it is
mainly concerned with the stakeholders intentions and their rationales. Several works
on GORE have being proposed: KAOS [6], i* framework [18], MAPS [15], Non-
Functional Requirements (NFR) framework [5]. In all of them, requirements model-
ing appears to be a core process. However, how to go from requirements models to
the corresponding software product is still an open question. To answer this question,

we advocate the use of GORE with Model-Driven Development (MDD) [17], two
complementary model-based approaches.

Thus, we need a requirements model with such a structure that facilitates the speci-
fication of model transformations for the automatic generation of conceptual models
used in MDD approaches. In this context, since present-day technologies (such as
ATL or QVT) propose the specification of model transformations driven by metamo-
dels, the use of GORE approaches is a suitable alternative, given that they have an
abstract syntax formalized by a metamodel specification [3][11]. Among these GORE
approaches, we selected the *i framework [18] because it is a consolidated modeling
technique [8] with good tools support [10].

In this paper we propose guidelines to generate, from an i* requirements model, a
conceptual model that is used as input of a MDD process for software products gener-
ation. This MDD process is based on the OO-Method approach [14]. We have chosen
OO-Method as a reference MDD technology because it allows the complete genera-
tion of the final application from a conceptual model, and it has been successfully
applied to industrial software development by means of the OlivaNova tools [4].

Therefore, this work proposes the generation of an OO-Method conceptual model
from an i* requirements model based on a set of transformation guidelines, aiming to
improve the quality of the models used on the development of information systems,
and consequently to obtain better software products. To illustrate these guidelines, we
have selected a real problem that was solved in the context of the PROS Research
Center [12]: a Photography Agency. The main contribution of our work is to present
an approach that provides a solution for filling the gap between GORE proposals and
MDD proposals. The approach presented in this paper is part of a wider effort, which
investigates the use of MDD techniques to define a full software process that covers
the long path that goes from requirements modeling to the corresponding final soft-
ware product.

This paper is organized as follows: Section 2 briefly describes the background con-
sidered in our proposal. Section 3 outlines the transformation process and a set of
guidelines to perform it. Section 4 describes some relevant related works. Finally,
Section 5 summarizes our work and points out open issues.

2 Background

This section starts with the presentation of an illustrative case study used as example
across the paper to clarify the involved concepts. Later, the main features of the par-
ticipant technologies (i* and OO-Method) are presented.

2.1 The Case Study

The photography agency is dedicated to the management of photo reports and their
distribution to publishing houses. This agency operates with freelance photographers,
which must present a request to the production department of the photography agen-
cy. This request contains: the photographer personal information, a description about
the owned equipment, a brief curriculum, and a book with the performed photograph-
ic reports. An accepted photographer is classified in one of three possible levels for

which minimum photography equipment is required. For this, the technical depart-
ment creates a new record for the photographer, and saves it in the photographer’s
file. For each photo report presented by a photographer a new record with a sequential
code is created. This record has the price that the publishing houses must pay to the
agency, which is established according to the number of photos and level of the pho-
tographer. Furthermore, this record has a descriptive annotation about the content of
the report. The commercial department establishes according to the level of photo-
graphers, the price that will be paid to the photographers and the price that will be
charged to the publishing house for each photo.

2.2 The i* Goal-Oriented Requirements Framework Overview

The goal-oriented modeling has proved to be an efficient means of capturing the
‘Whys’ and establishing a close relationship with the ‘Whats’ [10][16]. GORE is con-
cerned with the use of goals for eliciting, elaborating, structuring, specifying, analyz-
ing, negotiating, documenting, and modifying requirements.

The i* framework [18] captures the intentional requirements using strategic rela-
tionships among actors. The term actor is used to generically refer to any unit for
which intentional dependencies can be ascribed. Actors are intentional, in a sense that
they do not simply carry out activities and produce entities, but also they have desires
and needs. Actors are also strategic, since they are not merely focused on meet their
immediate goals, but also they are concerned about longer-term implications of their
structural relationships with other actors, for instance, opportunities and vulnerabili-
ties.

The i* framework offers two congruous models: the Strategic Dependency (SD)
model and Strategic Rationale (SR) model. The SD model is focused on external
relationships among actors. It includes a set of nodes and connecting links, where
nodes represent actors (depender and dependee) and each link indicates a dependency
(dependum) between two actors. In the SD model, the internal goals, knowhow, and
resources of an actor are not explicitly modeled. In this model, we distinguish among
four types of dependency links, based on the type of dependum: goal, resource, task,
and softgoal dependencies. A goal in the i* context is a condition or state of concerns
that the actor would like to obtain. A resource is a physical or informational entity
that must be available for an actor. A task specifies a particular way of doing some-
thing, which can be decomposed in small sub-tasks. Finally, a softgoal is a condition
that the actor would like to achieve, but some criteria are not well-defined. In general,
the softgoal is associated to non-functional requirements.

The SR model (such as the example i* model presented in Fig. 1) expands the de-
scription of a given actor and all rationales involved on its intentions, providing sup-
port for modeling the reasoning of each actor about its intentional relationships. In
addition to the dependencies present in the SD model, three new type of relationships
are incorporated in the SR model: (i) task-decomposition links, which describe what
should be done to perform a certain task (e.g. To process a work request task); (ii)
means-end links, which suggest that a task (e.g. To process a work request task) is a
means to achieve a goal (A photographer´s work request be processed goal); (iii)
contributions links, which suggest how a model element can contribute to satisfy a
softgoal. In particular, in our example, we do not have this last link. With the SR

model (Fig. 1), we capture some of the rationales involved in a photographer´s work
request approval. For instance, a photographer must present a work request to the
Production Department in order to have a work opportunity. In Fig. 1, this is
represented by the resource dependency link between the Photographer actor and the
Production Dep actor. To achieve this goal, the photographer must compose a work
request that contains: a description of his/her equipment, a brief curriculum, and a
book with his/her photographic reports. Finally, this request is processed by the Pro-

duction Dep. actor.

Fig. 1. The SR model of the Photographer work request

Despite an empirical evaluation has indicated that there are some problems with
the i* framework [7], this framework is considered to be efficient enough to deal with
complex actors, their organizational environment, and all rationales involved in their
relationships. It allows the clear and simple statement of actors, their goals and the
dependencies among them. Therefore, with the i* intentional views, we can obtain a
rich model. However, the problem still remains: from the requirements model, how
can we obtain the corresponding software product? For this, we propose the use of
models transformations to integrate i* and Model-Driven Development approaches.

2.3 The OO-Method Model-Driven Development Approach Overview

Models help to understand a complex problem and its potential solutions through
abstraction [17]. Thus, MDD methods have been created to take advantage of models
in development processes, by using concepts that are much less bound to the underly-
ing implementation technology and are much closer to the problem domain. This
makes it easier to specify, understand, and maintain software systems. Besides, with
MDD methods it is possible to achieve the automatic generation of the final products

by means of models transformations. Among different MDD approaches, we have
selected the OO-Method approach as the reference MDD approach for our proposal.

The OO-Method MDD approach separates the application and business logic from
the platform technology, allowing the automatic code generation from the conceptual
representation of the software systems [14]. The OO-Method production process
(Fig.2) is comprised of four models: the Requirements Model, the Conceptual Model,
the Execution Model, and the Implementation Model.

i* Model

Class

Model

Functional

Model

Dynamic

Model

Presentation

Model

OASIS Formal Language

Persistence (SQL Server, ORACLE, DB2, MySQL)

Business Logic (EJB, COM, .NET)

Graphical User Interface (JSP, ASP, VB, .NET)

Model to Model

Transformation

Model to Model

Transformation

Model to Code

Transformation

Conceptual Model

Requirements Model Execution Model

Implementation Model

Fig. 2. The OO-Method Software Production Process with i*

In our proposal, we consider to use the i* framework as the OO-Method Require-
ment Model in order to capture the organizational context and the actors intentions.
Next, from the defined i* model, an initial OO-Method Conceptual Model is inferred,
which is used for the generation of the final software product. At this point, it is im-
portant to mention that the main modeling constructs provided by OO-Method Con-
ceptual Model are the same as UML provides [17]. This situation also occurs in sev-
eral object-oriented MDD approaches. Therefore, the results presented in this paper
can be generalized to other MDD approaches based on the use of UML-like models.

The OO-Method Conceptual Model captures the static and dynamic properties of
the functional requirements of the system in a Class Model, a Dynamic Model, and a
Functional Model. The conceptual model also allows the specification of the user
interfaces in an abstract way through the Presentation Model. These four models
represent the different views of the whole conceptual model that has all the details
needed for the generation of the corresponding software application. The complete
definition of the elements of the OO-Method Conceptual Model is described in detail
in [14]. From the models that comprise the OO-Method conceptual model, the class
model is the most important, and the other models are defined (or derived) from this
central model. Fig. 3 shows the original class model of the case study presented in
section 2.1. In this model, the classes with their respective attributes and relationships,
including all the necessary details, are introduced.

Fig. 3. The conceptual class model of the Photographic Agency System

In the OO-Method Conceptual Model, certain classes can access properties and in-
voke services provided by other classes (or by the same class). The permissions that a
class has over other classes are defined by agent relationships (see dashed lines in

Fig. 3). In OO-Method, the associations are binary, i.e., they only have one or two
participant classes (one class in the case of recursive associations).

With the OO-Method Execution Model, it is possible to perform the transition
from the problem space (represented by the conceptual model) to the solution space
(the corresponding software product).

Finally, the Implementation Model fixes the mappings between the conceptual
constructs and their corresponding software representations in a target implementation
platform, for instance C# or Java. The OO-Method approach has been successfully
applied to the software industry with a MDD tool created by the enterprise CARE-
Technologies [4]: OlivaNova The Programming Machine.

3 From i* Requirements Models to Conceptual Models

We propose a transformation process to make it possible the transformation of the i*
models into a preliminary conceptual model for the OO-Method approach, presented
in Fig. 4 with the Business Process Modeling Notation (BPMN). For lack of space,
we only use the i* SR model.

Fig. 4. The transformation process modeled with BPMN

Initially, we analyze the goals defined in the SR model (see Fig.1) to capture the
organizational processes that we want to automate. Then, we highlight the intentional
elements that are related to these processes (goals and tasks in the i* model). Those
elements will be related with the information and/or entities to be stored by the in-
tended system. From the list of identified intentional elements we obtain an initial
conceptual model through model transformation rules, based on nine guidelines.

3.1 The i* Model´s Analysis

According to the transformation process (Fig. 4), this phase is comprised by the fol-
lowing activities: (i) identification of processes to be automated in the intended in-
formation system from the i* SR model; and (ii) highlighting of the essential issues
that must be stored at the intended system.

Identification of the process to be automated. In this activity, we deal with the goals
in the i* SR model. We seek for processes (tasks in a means-end link) that operatio-
nalize the intended goal, making it reachable. Therefore, in our case study, we recog-
nize the following goals: Work opportunity for the Photographer actor; and, A photo-

grapher´s work request be processed by the Production Dep. actor. There are
processes as means to reach those ends, respectively: To present a work request; and
To process a work request. From these, we decided to automate the last process,

Highlighting the essential elements. For each process to be automated, we analyze
the respective task-decomposition tree inside the actor boundary(e.g. the task – To

process a work request). Through this analysis we highlight all essential elements that
must be stored in the intended system, at the considered process (see Fig. 5). These
selected elements are all those related with the process to be automated. Then, the
selected elements from the i* model will be translated to elements of the Class Model
using the transformation guidelines presented below.

Fig. 5. The highlighted SR model of the Photographer work request

3.2 The Transformation Guidelines

In this phase, the guidelines to construct the OO-Method Conceptual Model from the
i* model are presented. These guidelines are grouped in four activities: (i) the class
identification; (ii) the attributes identification; (iii) the services identification; and (iv)
the relationships identification. We have selected the class model as target because it
is the core model of the OO-Method Conceptual Model.

Identification of classes. This activity deals with the identification of the main classes
that should be in the class model. Indeed, in this step we are looking for the actors and
the resource elements at the i* models. We do this because, by definition [18], an
actor is an active entity that carries out actions to achieve goals by using its capabili-
ties, while a resource is an entity (physical or informational), a finished product of
some deliberation-action process. Therefore, both are related with the class concept.

Guideline 1.1: Related to actors of the i* model
We have two options to make the transformation from the i* actors to the class model.
(i) Looking for the actors whose data must be captured and maintained at the in-

tended system. In this case, the actor is transformed into a class in the class
model. For instance, in Fig. 5 we found Cand. Employee (Candidate Employee),
Photographer, Production Dep. and Commercial Dep. actors, which are trans-
formed in classes (see Fig. 6).

(ii) Actors that do not satisfy the previous statements are not transformed into ele-
ments of the class model. For instance, there is no need to save any information
of the Board Administrator actor (see Fig. 5).

Guideline 1.2: Related to resources of the i* model
In relation to the resources elements, and considering the dependencies between ac-
tors, we propose the following transformation:
(i) Resources representing a physical entity that must be maintained in the system.

In this case, the resource is transformed into a class. For instance, in our case
study we have the following resources: Photog. work request, Photog. work re-

quest (refusal), Photog. work request (Acceptance), Proceedings Manual and
Assigned level. These elements are transformed in the classes WorkReqPhoto,
ReqRefused, ReqAccepted, ProcManual and Level, respectively (see Fig. 6).

The identification of attributes of classes. For each class obtained by the transforma-
tion of an i* actor or resource, their attributes must be identified. To do this, the main
branch related to the process to be automated is analyzed. Usually, this branch corres-
ponds to the means task that satisfies the intended goal (means-end link at i* models).
Therefore, the resources that represent an informational entity will be our main target
because they represent the attributes of the related class. These resources are trans-
formed into attributes of the previously generated classes. To do this, we analyze the
actor boundary. For instance, in the case study (see Fig. 5) we select the class Produc-

tionDep using the Guideline 1.1 (item i) and the class WorkReqPhoto (Guideline 1.2).
To ask for a job (means task for the goal Work opportunity) the photographer must
compose the corresponding work request. Thus, in order to define the attributes of a
class obtained by a resource mapping, we must also look for the task related with this
resource.

Guideline 2.1: Related to classes generated from actors of the i* model
The following elements must be analyzed to obtain the attributes of the classes gener-
ated from actors of the i* model:
(i) A resource (informational entity) inside of the transformed actor. If this resource

expresses information about the actor, then it is transformed into an attribute of
the class. For instance, in Fig. 5, the actor Photographer (transformed into the
class Photographer) must inform his/her personal data. Therefore, the resource

personal data will be transformed into attributes of the class Photographer. Fi-
nally, the details of personal data are the attributes of the target class: DNI,
name photographer, address, city, telephone, and brief curriculum.

(ii) A resource outside the transformed actor (a resource dependency where the
mapped actor is the dependee actor). This resource is transformed into an
attribute of the mapped dependee actor. For instance, the dependency resource
personal data (DNI, name_photographer, address, etc.) that will be available by
the actor Photographer (the dependee actor in this dependency).

Guideline 2.2: Related to classes generated from resources of the i* model
For each resource that was transformed into a class, it must be considered if the re-
source is an internal element (it is inside of the actor boundary) or if the resource is
related to a resource dependency link.
(i) If the resource is inside of an actor boundary (see in Fig. 5), then the attributes

are inferred (according to the analyst experience) from the task that produces
this resource or a sub-task (of another task) that produces informational entities
related to the state of the analyzed class. In our case study (Fig. 5) we have the
resource Proceedings Manual as an example for this case.

(ii) If the resource is a dependum element (it is outside of the actor boundary, in a
resource dependency link), then both sides of this dependency must be analyzed
to capture any informational entity (attribute) about the involved resource. This
will be done by analyzing the tasks inside of the graphs of the depender and de-

pendee actors. The task that produces the resource (inside of the dependee actor)
and the tasks that need the resource (inside of the depender actor). For instance,
in the case study, the class WorkReqPhoto (Fig. 6) is related with a resource de-
pendency between the actors Photographer and Production Dep. (see Fig. 5).
From the side of the dependee actor (Photographer), the graph with the task To

present a work request as root is analyzed. A deep search is performed to find
resources (leafs of the searched graph) related with the analyzed resource. From
this search, we find the resources Brief curriculum, a description about photo

equipment and a book with his/her photographic reports which will be trans-
formed into attributes of the class WorkReqPhoto (the dependum element at Fig.
5). From the side of the depender actor (Production Dep.), we do the same.
Thus, by analyzing the task To receive a work request, the resources submission

date and a serial number are found. These resources are also transformed into
attributes of the class WorkReqPhoto. However, the task To receive a work re-

quest is a sub-task of another task. Therefore, we must rise a level in our quest,
and make the deep search in other branches of the graph. By the analysis of the
task To change the status of a work request the resource Photog. work request

status is found. This resource is also transformed into an attribute of the class
WorkReqPhoto.

Fig. 6 shows all the attributes obtained after applying these transformation guide-
lines on all the classes that were derived from resources of the i* model (Fig. 5).

The identification of services of classes. At this point, the tasks of the i* SR model
and their possible decompositions are inspected (deep search). In the i* framework, a
task specify a particular way of doing something. When a task is described as a sub-
component of a (higher) task, in a hierarchy of tasks, this restricts the higher task to

that particular course of action (a task-decomposition link at the SR model). Moreo-
ver, from the practical experience, a task in the i* model generally is responsible for a
goal’s satisfaction and/or for the resource’s production. We must remember that a
service describes a specific behavior of the objects of a class, and, in the OO-Method
approach, a service can be atomic (Event) or a composition of other services (Trans-

action). The events related to creation, deletion, and modification of class instances
are always created by default in the Olivanova tool. Thus, to identify the other servic-
es of a class, we propose the following guidelines:

Guideline 3.1: Identification of services of a class generated from an actor
The internal sub-graphs must be analyzed, which generally are a routine responsible
for the satisfaction of a goal of the corresponding actor. From these sub-graphs, only
must be considered the tasks that must be stored at the intended information system.
(i) If the task represents a change in the state of an object that occurs instantly, then

this task is transformed into an event of the generated class. In Fig. 5, we do not
find this situation because atomic services are not represented according to the
considered abstraction level in the i* model.

(ii) If the task represents a service that groups other services, then this task is trans-
formed into a transaction of the generated class.

Guideline 3.2: Identification of services of a class generated from a resource
In this case, we are looking for tasks that are used or produced by the transformed
resource, and identifying if the resource is inside or outside an actor.
(i) If the task represents an instantaneous change in the state of an object, then this

task is transformed into an event of the generated class. For instance, for the re-
source Photog. work request, inside of the depender actor (see Production Dep.
in Fig. 5), there is a task called To create a work request in the system. This task
is transformed into an event of the class WorkReqPhoto. In addition, the gener-
ated event allows the generation of new instances of the class. On the other side,
at the dependee actor (Photographer), the task To present a work request is also
transformed into an event of the class WorkReqPhoto.

(ii) If the task represents a service that groups other services, then this task is trans-
formed into a transaction of the generated class. For instance, in the Photograph-
ic Agency example (see Fig. 1), an accepted work request must be processed ac-
cording to the task To process the accepted work request. This task is decom-
posed on three sub-tasks: To register the photographer, To assign the level to the

accepted work request, and To change the status of a work request. Therefore, a
new transaction must be created in the class WorkReqPhoto to represent the ex-
ecution of these three tasks.

These two guidelines must be applied to all classes generated from the i* model.

The identification of relationships between classes. In this point, the three basics
relationships of object-oriented approaches are considered: generalization / specializa-
tion, association, and aggregation. However, it is important to remark that i* mainly
focuses on representing strategic concerns by means of intentional elements and their
relationships. Therefore, the information of each relationship of the i* model must be
analyzed to derivate the kind of relationships among the generated classes.

Guideline 4.1: Identification of Generalization/Specialization relationships

among generated classes

We must considerer two possibilities:
(i) If the class is derived from an actor and there is an inheritance relationship be-

tween actors of the i* model (the is-a relationship), then this relationship is au-
tomatically transformed into a generalization in the class model. For instance
(see Fig.5), we found the is-a relationship between the actors Candidate Em-

ployee and Photographer. This relationship is represented as a generalization be-
tween the corresponding generated classes of the class model (Fig. 6).

(ii) If the class is derived from a resource and the inheritance relationship is not
explicit at the i* models, then we must analyze the processes (tasks) involved in
the production of this resource. For instance, from the resource dependencies be-
tween the actors Production Dep. and Board Administrator, we can observe that
a work request may be accepted or refused. These work requests were trans-
formed into the classes WorkReqPhoto, ReqRefused and ReqAccepted. Since
ReqRefused (refused photographer’s work request) and ReqAccepted (accepted
photographer’s work request are a WorkReqPhoto, then we generate an inherit-
ance relationship between these classes (see Fig. 6).

Guideline 4.2: Identification of Association relationships among generated
classes
We must considerer the following possibilities:
(i) For two classes generated from i* actors, if there is any dependency link be-

tween the two transformed actors, then an association between the correspond-
ing classes is automatically generated in the class diagram. For instance, the ac-
tor ProductionDep was transformed into a class and it must also be associated
with the service of other class. The Photographers present their request to the
production department (class ProductionDep). Therefore, an association is gen-
erated between these two classes (Fig. 6).

(ii) If there exists a resource dependency link where the dependum, the depender
and dependee actors were transformed into classes, then associations are auto-
matically generated between these classes. However, if there is any generaliza-
tion relationship between one of these classes (resulting from the actors trans-
formations), then the association is defined with the corresponding father class.
For instance, for the class Photographer (from the actor Photographer) it must
be defined an association to the class WorkReqPhot (from the dependum re-
source Photog work request). However, since there is a generalization between
the classes Photographer and CandidateEmp, then the involved association is
defined between CandidateEmp and WorkReqPhoto (Fig. 6). The same occurs
for the association defined between the classes WorkReqPhoto and Production-

Dept.
(iii) For a resource dependency link where the dependum is transformed into a class

attribute and the depender and dependee actors are transformed into classes, an
association is generated among the classes generated from actors and the class
that has the attribute generated from the involved resource. For instance, in the
Fig. 5 there is a resource dependency link (The prices for each level resource)
between the actors Production Dep. and Commercial Dep. The respective re-
source was transformed into an attribute of the class Level. Thus, an association
is generated between the classes CommercialDep and Level, and between the
classes Level and ProductionDep (Fig. 6).

(iv) For a class resulting from the transformation of an internal resource, an associa-
tion is created between this resource class and the class resulting from the trans-
formation of the respective actor boundary (the one that contains the resource).
For instance in Fig. 5, inside the actor Production Dep. there is a resource (Pro-

ceedings Manual) that was transformed into a class. Therefore, an association is
generated between the respective classes into the class diagram (Fig. 6).

Guideline 4.3: Aggregation relationship between generated classes
We must considerer two possibilities:
(i) If the class is generated from an actor and there is an aggregation relationship

between actors of the i* model (the is-part-of relationship), then this relationship
is automatically transformed into an aggregation in the class model.

(ii) If the class is generated from a resource and the aggregation relationship is not
explicit at the i* models, then the internal behavior of the actor that is directly
associated with a resource that was transformed into a class must be analyzed.

CandidateEmp
Photographer

DNI : string
dateAccept : string

WorkReqPhoto

presNumber : auto
presDate : date
state : string

ReqRefused ReqAccepted

Level

id : auto

minEqupment : text
pricePayPhot : real
priceChargePub : real

DNI : string
namePhotographer : string
address : string

city : string
telephone : string
descEquipment : text

refCurriculum : text
refBook : text

CommercialDep

DNI : string
name : string

ProductionDep

DNI : string

name : string

ProcManual

Fig. 6. The class model obtained from the application of the proposed guidelines

3.3 Discussion

In this paper, we have presented nine guidelines that are used to go from i* require-
ment models to the class model of a MDD approach. These guidelines were systemat-
ically designed in accordance with the i* framework [10]. To illustrate the application
of the guidelines, we have manually applied the guidelines to a Photography Agency
case study. Even though the guidelines have been designed in the OO-Method MDD
context, many conceptual constructs of the OO-Method class model are similar to the
constructs of the other object-oriented methods. For this reason, the proposed guide-
lines can be generalized to allow the application to other MDD methods.

With respect to the automation of the guidelines, we classified the guidelines as au-

tomatic (it is not necessary any intervention of the analyst), semi-automatic (some
decisions of the analyst are required), and manual (they application completely de-
pends of the analyst expertise). Thus, the guidelines 1.1, 4.1i, 4.2, and 4.3i are auto-
matic, the guidelines 1.2, 2.1, 2.2, 3.1 and 3.2 are semi-automatics, and finally, the
guidelines 4.1ii and 4.3.ii are manuals.

Analyzing the Photography Agency case study, we can state, through a comparison
between the class model originally constructed for the case study (Fig. 3) and the
class model generated by the application of the proposed guidelines (Fig. 6), that
some elements were incorrectly represented in the original class model (Fig. 3). For
example, a photographer was considered as a request, which is incorrect because
these are different objects. Furthermore, the class TechnicalDep (Fig. 3) was merged

with the class ProductionDep because during the specification of the i* model (Fig.1)
we identify that both roles have common tasks from the organizational viewpoint, so
that we decide to merge all the tasks in the actor Production Dep. (ProductionDep in
the generated class model – Fig. 6). A new generalization/specialization relationship
with two new classes (ReqRefused and ReqAccepted classes) was created for the class
WorkReqPhoto. While in the original class model, there was only one attribute in the
class WorkReqPhoto to indicate whether the proposal was rejected or accepted. With
the representation obtained in the generated class model, it is possible to define spe-
cific attributes related to accepted and refused requests, which is not possible in the
original class model. Hence, we may conclude that GORE approaches, as the i*
framework, are very rich in terms of intentions and their rationales, which must be
reflected in later development stages. Thus, taking GORE approaches as starting point
of the software development process, and using MDD techniques to reach the final
software product, an improved solution for software development is obtained.

It is important to note that in our proposal the quality of the GORE models directly
affects the generation of correct conceptual models of the MDD approach. This quali-
ty mainly depends of the experience of the analyst in the problem domain and in the
usage of the modeling technique. The abstraction level is also dependant of the view-
points and the focus of the analyst. In this proposal, we assume that the i* models are
correct, complete, and that do not present defects (omissions, inconsistency, errone-
ous facts, ambiguous, etc.). Therefore, applying the proposed guidelines, we can infer
the basis of the conceptual model without introducing any modeling defect. We know
that this assumption is unrealistic. For this reason, we are also working in proposals to
evaluate the quality of the i* models in order to improve the application of our pro-
posal in MDD environments.

Despite of the positive and important aspect of our work that concludes that it is
possible to incorporate goal concepts in a MDD approach we also highlighted some
other points which are being investigated: (i) the i* framework is more expressive at a
high abstraction level than the OO-Method conceptual model, consequently, the
guidelines only consider a subset of the i* framework; (ii) some important concepts
for the OO-Method Conceptual Model are not captured by the i* models, since the
abstraction levels are different into these approaches (for instance, additional relation-
ships information such as roles or cardinality), therefore, additional information is
required to correctly infer the corresponding OO-Method concepts; (iii) since certain
guidelines are not automatic, the transformation cannot be fully automated; (iv) the
traceability between requirements and conceptual models is not considered in the
transformations; (v) the guidelines only provide a partial generation of the class mod-
el and additional formalization is required for a correct software product generation.

4 Related Works

Some strategies based on i* have been proposed with the aim of reducing the gap
between requirements phase and the software development phase.

The proposal presented in [13] is a methodological approach that enables the gen-
eration of conceptual and requirements models from organizational descriptions. To
do this, two strategies were considered: (1) to extend the organizational model with

monitoring plans and concerned objects, and (2) to define guidelines to establishing
correspondences among business requirements and the conceptual model of the sys-
tem. This proposal uses the particular version of i* defined in Tropos [9] and defines
a set of complex steps to obtain a partial conceptual model definition. By contrast, we
use the i* version disposable at i* Guide [10] to define guidelines for the direct infe-
rence of OO-Method conceptual constructs from i* models. This provides a more
straightforward way for the generation of an initial conceptual model, which facili-
tates the application of our proposal to MDD processes.

In previous works ([1][2][16]) we have proposed a process to derive late require-
ments specifications specified in pUML (precise Unified Modeling Language) from
early requirements model represented in i* framework. In [1], we proposed a set of
guidelines to go from i* models to class diagrams in order to obtain the conceptual
model of the business model, which differs from the approach presented in this paper,
that generates the conceptual model of the information system. In [2] and [16] we
intended to generate scenarios and use cases represented with UML from i* models.
To do this, a set of guidelines that helps the requirements engineer to determine the
existence of potential use cases from the business model specification were proposed.
However, the use case generation is not our goal in this paper, since we intend to
directly transform an i* model into a conceptual model of the OO-Method MDD
approach.

5 Conclusions and Future Works

In this work we consider the combination of a specific GORE approach (i*) and a
specific MDD approach (OO-Method) to go from the requirements models to the
corresponding software product. Both GORE and MDD are based in the use of mod-
els, and we believe that they can complement each other. This proposal is part of a
wider work that is related to the use of MDD techniques to define a full software
process that covers the long path that goes from goal-oriented requirements modeling
to a final high-quality software product.

In this paper, we presented a set of transformation guidelines that are applied to the
industrial MDD approach OO-Method, in order to facilitate the transformation of an
initial i* intentional requirement model into an automatically generated software
product. In addition, since OO-Method is an object-oriented MDD approach many of
the concepts analyzed can be reused by other object-oriented MDD approaches.

The automatic generation of the complete final software products is performed by
means of a precise model transformation process. Therefore, as future work, we plan
to apply the guidelines to other case studies in order to evaluate the correctness and
completeness of our proposal. In addition, we plan to formalize the guidelines using
metamodeling techniques and models transformations technologies in order to be
automatically applied and to preserve the requirements traceability through the mod-
els. Finally, we also consider the definition of extensions for the i* framework in
order to facilitate the capture of new features.

Acknowledgments. This work has been developed with the support of CNPq and CAPES
research grants, BIT initiative, and MEC under the project SESAMO TIN2007-62894.

References

1. Alencar F.: Mapping an Organizational Model in Precise Specification. Ph.D. Dissertation,
Department of Informatics from University of Pernambuco. Recife, Brazil (1999)

2. Alencar F., Pedroza F., Castro, J., Amorim, R.: New Mechanism for the Integration of
Organizational Requirements and Object Oriented Modeling. In Proc. of the VI Workshop
on Requirements Engineering (WER 2003), Piracicaba, Brazil. pp.109-123 (2003)

3. Ayala C., Cares C., Carvallo J.P, Grau G., Haya M., Salazar G., Franch X., Mayol E., Quer
C.: A Comparative Analysis of i*-Based Agent-Oriented Modeling Languages. In Proceed-
ings of the 17th SEKE, pp. 657-663 (2006).

4. Care Technologies Company: OlivaNova Suite. Available at www.care-t.com. Last access:
Jul. (2009)

5. Chung, L., Nixon, B., Yu, E. and Mylopoulos, J.: Non-Functional Requirements in Soft-
ware Engineering. Kluwer Academic Publishers (2000)

6. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition.
Science of Computer Programming 20(3) (1993)

7. Estrada, H., Rebollar, A. M., Pastor, O., Mylopoulos, J.: An Empirical Evaluation of the i*
Framework in a Model-Based Software Generation Environment. In CAiSE’06. LNCS
4001, Springer-Verlag , pp. 513-527 (2006)

8. Grau, G., Franch, X., Ávila, S.: J-PRiM: A Java Tool for a Process Reengineering i* Me-
thodology. RE 2006: p.352-353 (2006)

9. Giorgini P., Mylopoulos J.,Sebastiani R.: Goal-Oriented Requirements Analysis and Rea-
soning in the Tropos Methodology. In Engineering Applications of Artificial Intelligence,
Elsevier 18(2), March (2005)

10. Abdulhadi, S.:i* Guide v.3, Aug. 2007 Available at: http://istar.rwth-aachen.de/tiki-
view_articles.php. Last access: Jul. (2009)

11. Lucena, M. ; Santos, E. ; Silva, M. J. ; Silva, C. ; Alencar, F. ; Castro, J. F. B. :Towards a
Unified Metamodel for i*. In: 2nd IEEE Int. Conference on Research Challenges in Infor-
mation Science (RCIS'08), Marrakech. Proceedings of the RCIS'08, pp. 237-246 (2008).

12. Marín, B., Giagchetti, G., Pastor, O.: The Photography Agency: A case study of the OO-
Method Approach. Technical Report DSIC-II/13/08, Universidad Politécnica de Valencia,
Valencia, Spain (2008)

13. Martínez, A.: Conceptual Schemas Generation from Organizational Models in an Automat-
ic Software Production Process, PhD Thesis, Universidad Politécnica de Valencia, Valen-
cia, Spain (2008)

14. Pastor, O. and Molina, J. C. Model-Driven Architecture in Practice: A Software Production
Environment Based on Conceptual Modeling, Springer-Verlag 1st ed., Springer, New York,
New York (2007)

15. Rolland C., Prakash N., Benjamen A. A multi-model view of process modeling. Require-
ments Engineering, 4 (4), pp. 169-187 (1999)

16. Santander, V., Castro, J.: Deriving Use Cases from Organizational Modeling. 10th Anni-
versary IEEE Joint International Conference on Requirements Engineering (RE 2002), Es-
sen, Germany. September, pp. 32-42 (2002)

17. SELIC, B. The Pragmatics of Model-Driven Development. IEEE Software, 20, pp. 19–25
(2003).

18. Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD Thesis, Univer-
sity of Toronto, Toronto, Canada (1995).

19. BPMI.org: Business Process Modeling Notation; OMG Available Specification. Object
Management Group, version 1.1. Available at http://www.bpmn.org/. Last access Sep 2009
(2008).

