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Abstract. Some quality attributes are known to have an impact on the overall 
architecture of a system, requiring to be properly handled from the early stages 
of the software development. This led to the creation of different and unrelated 
approaches to handle specific attributes, such as security, performance, 
adaptability, etc. The challenge is to propose a flexible approach that could be 
configured to address multiple attributes of interest, promoting the reuse of best 
practices and reduction of development costs. We advocate the use of Software 
Product Line (SPL) principles to manage and customize variability in software 
processes targeted for the generation of architectural models from requirements 
models. Hence, in this paper we propose F-STREAM, a flexible and systematic 
process to derive architecture models from requirements. We define a common 
core process, its variation and extension points. The definition of this process 
was performed based on a survey of the existing approaches. As example, we 
instantiate a process for adaptive systems. 

Keywords: Model-driven architectures; architecture derivation; non-functional 
requirements and architectures. 

1   Introduction 

It is well known that some kinds of systems present quality attributes, also called non-
functional requirements (NFRs), that have an impact on the architecture of the system 
as a whole. These requirements must be elicited, analyzed and properly handled in the 
early requirements phase. Otherwise, it would compromise the software architectural 
design quality. Moreover, some NFRs demand specific approaches and mechanisms 
to enable their achievement. For instance, it is unlikely that an approach to develop 
mobile systems (portability) is also suitable to develop multi-server scalable systems 
(scalability). 

The STREAM process [11] [13] allows a model-based systematic derivation of 
architectures—in Acme [8]—from requirements models—in i* [19]. However, it does 
not properly address non-functional requirements (NFR). Instead of trying to define 
an entirely new process, we envision the integration of the original STREAM with 
already existing approaches for handling specific NFRs. With this purpose, in this 
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paper we propose a Flexible Strategy for Transition between REquirements models 
and Architectural Models (F-STREAM). To provide such flexibility, we are going to 
use the concepts of variability management—i.e., define the common core 
(commonalities) and the variations (variabilities) of the process. Therefore, we are 
going to define a base process that can be extended through integration with already 
existing approaches that are tailored to handle specific NFRs—in contrast with other 
approaches that handle generic NFRs [2] [3] [4] [6]. The integration of F-STREAM 
with a specific approach is called an F-STREAM instance. 

In order to identify the commonalities and variabilities for the F-STREAM process, 
we performed a survey on different goal-based approaches that address these specific 
NFRs. Table 1 gives a brief description of some of the analyzed approaches. Usually 
the approaches require the use of an extended goal model notation, to include 
information that is not present on the original goal model. Some of the approaches 
also provide reasoning algorithms, specific components or a reference architecture. 
These are the key characteristics that will be considered on our approach. 

Table 1. Some of the surveyed i*-based approaches that target specific NFRs. 

Approach Description 
For security [18] Extends goal models by defining context annotations, preconditions 

and effects; Use anti-goal models; Provides a diagnostic component. 
For adaptability [7] Extends goal models with context annotations; Provides a self-

configuring component. 
For data warehouses [9] Extends goal models by defining facts, attributes, dimensions and 

measures. 
For software product lines 
[1711] 

Extends goal models to express cardinality; Provides heuristics to elicit 
variability information. 

 
The remainder of this paper is organized as follows. Section 2 describes the 

common core of the process, whilst Section 3 presents how the process might vary to 
accommodate the specific approaches, in terms of variation points and extension 
points. As a case study, we instantiated the F-STREAM process by integrating it with 
an approach that tackle the adaptability NFR (Section 4). The final remarks and future 
works are presented in Section 5. 

2   The F-STREAM Common Core Process 

The common core of the F-STREAM process is the subset of the original STREAM 
process that is generic enough to be used with different complementary approaches, 
requiring at most minimal modifications. This common core is able to generate 
architectural models from requirements models, with an incremental and models-
transformation based approach. 

For expressing the requirements models and architectural models we use, 
respectively, i* (iStar) [19] and Acme [8], since the original STREAM process also 
use these languages. Goal modeling is a an widespread approach in the academy to 
express requirements, such as in the Tropos method [14]. i* defines goal-based 
models to describe both the system and its environment in terms of intentional 
dependencies among strategic actors [12] (who). There are two different diagrams, or 
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views, of an i* model: the Strategic Dependency (SD) view presents only the actors 
and the dependency links amongst them, whilst the Strategic Rationale (SR) view 
shows the internal details of each actor. Within a SR diagram is defined why each 
dependency exists and how they are going to be satisfied. 

There is a variety of Architectural Description Languages (ADLs), each one with 
its set of tools and techniques. Acme ADL was proposed with the primary goal of 
providing an interchange format for tools and environments for architectural 
development. Therefore, it can be easily translated into an ADL of choice.  

Based on the survey on specific goal-based approaches, we defined a core set of 
activities that may be carried out with any of the approaches. Fig. 1 presents the 
process diagram of this core set, which is the F-STREAM process common core. In 
the next sub-sections these activities will be further detailed. 

 

Fig. 1. Common core of the F-STREAM process 

2.1   Apply Refactoring to Requirements 

The aim of this activity is to modify the organization of the i* diagram, splitting the 
responsibilities of the software actor into smaller actors. This allows the delegation of 
different issues of a problem, initially concentrated into a single actor, to new actors 
so that it is possible to deal with each of them separately. The decomposition of the 
main software actor into smaller actors has the objective of modularizing i* models 
by delegating responsibilities of the software actor to other (new) software actors that 
are dedicated to a particular concern. The decomposition criterion is based on the 
separation and modularization of elements or concerns that are not strongly related to 
the application domain. Usual examples of this kind of domain independent elements 
are persistency, security, statistics, etc.  

In order to assist the requirements engineer to identify the elements that can be 
extracted from the software actor, we use the following heuristics. H1: Search for 
internal elements in the software actor that are independent of the application domain. 
H2: Check whether these elements can be moved from the software actor to another 
software actor without compromising the behavior and the understandability of the 
internal details of the actor. H3: Verify whether these elements can be reused in 
different domains. 

After the identification of the movable elements, they will be transferred to other 
actors, through horizontal transformation rules defined in previous work [13]. 

2.2   Generate Architectural Model 

In this step, transformation rules will be used to translate the i* requirements model 
onto an early architecture model in Acme. Since these transformations have different 
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source and target languages, they are exogenous, or translation transformations. They 
are also vertical transformations, since the source and target models have different 
level of abstractions. 

In summary, these transformations define the mapping from i* actors to Acme 
components, and from i* dependencies to Acme connectors and ports. A component 
in software architecture is a unit of computation or a data store having a set of 
interaction points (ports) to interact with external world. An actor in i* is an active 
entity that carries out actions to achieve goals by exercising its knowhow. Thus, an 
actor representing the software establishes a correspondence with modules or 
components [10]. In addition, an actor may have as many interactions points as 
needed. Hence, an actor in i* can be represented in terms of a component in Acme. 

Thus, the first vertical transformation rule is a straightforward one, that maps i* 
actors onto Acme components. Further details of this component will be added later 
during the mapping of i* dependencies. In i*, a dependency describes an agreement 
between two actors playing the roles of depender and dependee, respectively [5]. In 
Acme, connectors mediate the communication and coordination activities among 
components. Thus, we can represent a dependency as an Acme connector. The 
complete transformation rules for mapping the i* model to an Acme architecture are 
described in [11]. 

2.3   Refine Architectural Model 

Having produced an early architectural design solution, we can now refine it. This 
activity relies on some commonly used architectural patterns, such as Model View 
Control (MVC), Layers and Client-Server. The components of early architectural 
model will be manually refined by the architect based on his/her expertise by applying 
these patterns. These patterns are analyzed to identify the similarity with the early 
architectural model. The refinement process follows three steps. 

The first step is to analyze the components of the early architectural model and 
compare them with the elements of the pattern observing the similarities of their roles 
and responsibilities. The most similar architectural pattern can be used to structure the 
early architectural model. For instance, if the roles of the architectural model 
components are organized hierarchically they can be associated with the Layers 
pattern, then the components of a layer will communicate just with the components of 
the layer next to them. Thus, a new version of architectural model is generated. Since 
the components of architectural model have been related to components of an 
architectural pattern, also their connectors need be associated. Therefore, the second 
step is to analyze the connectors of the generated architectural model and compare 
them with the connectors of architectural. Applying the architectural patterns during 
the refinement can incorporate the qualities associated with the pattern to the refined 
model. However, if some component of the pattern is missing in the architectural 
model it needs to be included. The third step is to introduce new components to adjust 
the architectural model to the pattern, if any is missing. Since the architectural design 
can be iterative, components can be added anytime. Moreover, refining the 
architectural models with patterns to address system qualities (i.e., NFRs) is a 
common practice, existing several tactics to this end documented in the literature. 
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3   Variation and Extension Points of the F-STREAM Process 

In this section we are going to present the Flexible STREAM process, which consists 
of the common core presented in Section 2 enriched with variability information. In a 
business process, a variation point is the place on which a variation occurs, and each 
possible alternative for a variation point is a variant [15]. In order to describe the 
variation points in the process without defining which are the variants themselves we 
are going to use the notation proposed by Schnieders and Puhlmann [16], which 
defines a set of stereotypes and association links for expressing variability in Business 
Process Modeling Notation (BPMN) diagrams. 

The top of Fig. 2 shows the F-STREAM process. Its gray rectangle shows an 
instance of the process, which will be explained in Section 4. The variation points—
VarPoint stereotype—are the activities that are already present on the F-STREAM 
common core. These activities are generic, but they still may be customized in order 
to better suit the approach being integrated. The extension points—Null stereotype—
represent points of the process on which new activities may be inserted, in order to 
complement the process. 

 

Fig. 2. The F-STREAM process with variability information. The gray rectangle shows 
modifications and extensions creating a process instance integrated with one approach to 
handle adaptability. 

The process starts with the analysis of the requirements models to detect 
improvement possibilities. Then, the requirements are enhanced with more 
information followed by the generation of an initial architectural model. This early 
architectural model can be further refined and later integrated with a reference model. 

The Apply Refactoring to Requirements activity consists of refactoring the goal 
models, based on a set of heuristics and transformation rules. This step is intended to 
improve the overall quality of the goal model and to turn its structure closer to the 
expected of an architectural model. Therefore, a modification of this activity would 
involve changing the heuristics to be used, changing the transformation rules or 
including new sub-activities. 

However, some approaches require the model to be extended, for example with 
temporal, contextual annotations [7] or crosscutting concerns [1]. Furthermore, they 
may even require complementary models, such as data-entity models or contextual 
models. The activities to enrich the original goal models or to define new models may 
be inserted through the Enhance Requirements extension point. Some further 
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requirements elicitation activity may be required in order to provide the information 
for these enhanced models. 

The next activity is Generate Architectural Model. This activity consists of 
deriving an architectural model from the goal model using vertical transformation 
rules. The set of transformation rules may be modified to address the peculiarities of 
the approach being integrated in the process. This is the case when an extended 
version of goal models is used or when other kinds of models are used, requiring the 
creation of new rules in order to provide a more complete mapping. This is also the 
case when an architectural description language other than Acme is required. For the 
latter case, there are two possible approaches: modifying the current set of 
transformation rules to derive an architecture on the new target language, or defining 
new transformation rules for performing the mapping from the Acme language to the 
new target language. 

The Refine Architectural Model activity concerns evolving the architectural model 
by applying architectural patterns. This activity can be simplified when the approach 
being integrated to the process requires the usage of a specific architectural pattern. 
Furthermore, new activities may be inserted to provide a more detailed architecture as 
well as intermediary steps towards integration of the current architecture with the 
reference architecture. 

Lastly, the Integrate with Reference Architecture is an extension point to insert the 
activities that will close the gap between the refined architecture and the reference 
architecture of the approach that is being integrated with the process, if any. 
Basically, it consists of defining how to link the existing components to the 
components of the reference architecture. Nonetheless, further activities may be 
defined to conclude the architecture generation. 

These variation and extension points are summarized in Table 2. 

Table 2. A summary of the variability information of the F-STREAM process 

Type of 
Variability 

Activity Variability description 

Variation 
Points 

Apply Refactoring 
to Requirements 

Add, change and remove refactoring heuristics; 
Add, change and remove horizontal transformation rules; 
Add new sub-activities. 

Generate 
Architectural Model 

Add, change and remove vertical transformation rules; 
Add new sub-activities. 

Refine Architectural 
Model 

Add, change and remove architectural patterns to be considered; 
Add new sub-activities. 

Extension 
Points 

 Enhance 
Requirements 

Add new activities to handle goal model extensions or other kinds 
of models. 

Integrate with 
Reference 
Architecture 

Add activities to integrate the derived architecture with the 
reference architecture of the approach being used. 

4   Example of F-STREAM Instantiation for Adaptive Systems 

In this section we instantiate the F-STREAM process to include activities for handling 
the development of adaptive systems. This particular instance is the result of 
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integrating the F-STREAM process with an approach for developing adaptive 
systems, presented in [7], which uses an extended version of i* models to represent 
context information. This information will be used by a self-configuring component, 
which performs all the runtime reasoning related to adaptation. Its reference 
architecture is based on the definition of sensors and actuators, which interface with 
the system environment. 

This process is depicted in Fig. 2. The first activity, Apply Refactoring to 
Requirements, was maintained as-is. On the other hand, the third activity—Generate 
Architectural Model—was modified, which is expressed by the Inheritance 
association link from the Generate Architectural Model with Rules for Context 
Annotations activity. Similarly, the Refine Architectural Model Defining Sub-
Components activity modifies the Refine Architectural Model activity. Also, on this 
adaptability instance of the F-STREAM process, the Enhance Requirements with 
Contexts sub-process and the Integrate with Self-Adaptation Component were inserted 
on the extension points, which is expressed by the Inheritance association link. 

In the following sub-sections we describe each activity of this instantiated process. 
To exemplify the use of these activities, we are going to use an adaptive smart-home 
system. In the specific domain of smart homes the adaptivity is a transverse issue. 
Even when we do not explicitly model a softgoal called Adaptivity, most of softgoals 
in the model will require adaptivity in some degree (e.g., reliability, customization). 
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Fig. 3. a) Excerpt of the Strategic Dependencies model of the Smart home system b) Excerpt of 
the Strategic Dependencies model after refactoring, showing three new software actors. 

4.1   Apply Refactoring to Requirements 

No modification was required in this activity. Therefore, it can be performed as 
described in the common core. Fig. 3-a shows an excerpt of the Strategic 
Dependencies model of the Smart home system. A Tenant, who is the user of this 
system, depends on the Smart home system to have the house temperature managed, 
to have electricity spent wisely and to be safe. She also requires the system to be 
reliable. In order to fulfill these dependencies, the system also depends on other 
actors. For instance, it needs the Fire department to handle emergencies. After 
refactoring the Smart home system actor (see Section 2.1), three new actors were 
created: Preference Manager, Communication and Data storage. This is shown in 
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Fig. 3-b. This refactoring is based on the content of the Smart home system actor, 
which is not presented here for the sake of space. 

4.2   Enhance Requirements 

In this extension point we inserted a sub-process concerned with context sensors and 
actuators, presented in Fig. 4. A context sensor is “any system providing up-to-date 
information about the context where the system is running”, whilst a context actuator 
is “any actuator in the environment which can receive commands from the system to 
act on the environment context” [7]—i.e., a context sensor monitors the environment 
and a context actuator performs a change on the environment. 

 

 

Fig. 4. Enhance Requirements with Contexts sub-process 

The Identify Contexts activity defines the context information that has an impact on 
the system’s behavior. This information is included in the goal model as context 
annotations. Fig. 5 shows an excerpt of the goal model of the Smart home system with 
context annotations. Temperature be managed is a goal of the system, but it is only 
required when the context C1 holds—i.e., when there is someone at home. To achieve 
this goal, the task Control Heating Device can be performed. This task is decomposed 
in Turn on heating device—when C2 holds—and Turn off heating device—when C3 
holds. The system also has to perform the task Manage lighting, which is further 
decomposed. 

Context Description 

C1 There is someone at the smart-home. 
C2 The temperature at the room is colder than what 

would be pleasant for the people within it and the 
heating device is off. 

C3 The temperature at the room is hotter than what 
would be pleasant for the people within it and the 
heating device is on. 

C4 There is someone at the room or close to it, the 
room is dark and the light is off. 

C5 There is no one at the room or close to it and the 
light is on. 

 

Fig. 5. Excerpt of the Smart home system goal model with context annotations 

The definition of these contexts is crucial for the proper specification of an 
adaptive behavior. In the Analyze Contexts activity these contexts are analyzed to 
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provide the actual data entities that need to be monitored in order to define the 
context. This information will be used in the Identify Sensors and Actuators activity 
to discover the context sensors that the system will need. During this activity the 
context actuators will also be identified, based on the tasks of the goal model. Both 
the sensor (monitor) and actuator for the Smart-home system are presented on the i* 
excerpt of Fig. 6. 

 

Fig. 6. Excerpt of the Strategic Dependencies model of the Smart home system after the 
Identify Sensors and Actuators activity. Non-software actors are omitted. 

4.3   Generate Architectural Model 

This variation is needed to add new transformation rules in order to consider the 
context annotations. Therefore, we defined a new activity that modifies the original 
activity by adding new rules: the Generate Architectural Model with Rules for 
Context Annotations activity. Fig. 7-a shows the resulting early architecture diagram 
of the Smart-home system—i.e., the mapping from the i* model to an architecture in 
Acme. In summary, the actors are mapped to components and its dependencies are 
mapped to connectors. The context annotations are mapped as properties of the 
connectors, which are not explicit in the architecture diagram but are defined with the 
Acme textual notation. 

4.4   Refine Architectural Model 

Instead of applying the architectural patterns, at this point it is possible to define some 
sub-components of the components related to adaptability, using the information 
included in the goal models during the Enhance Requirements with Contexts activity. 
Therefore, we created a new activity named Refine Architectural Model Defining Sub-
Components. This activity modifies the original Refine Architectural Model activity 
by including steps to define sub-components of the Monitor and Actuator 
components. This is achieved by analyzing the extra information added in the goal 
model during the Enhance Requirements with Contexts sub-process (Section 4.2). In 
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Fig. 7-b we show the resulting sub-components of the Monitor and the Actuator 
components. 
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Fig. 7. a) Early architecture of the Smart-home system, after the Generate Architectural Model 
with Rules for Context Annotations activity. b) Sub-components of the Monitor and Actuator 
components, defined during the Refine Architectural Model Defining Sub-Components activity. 
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Fig. 8. Resulting architecture of the Smart home system, after the Integrate with Self-
Adaptation Component activity. 
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4.5   Integrate with Reference Architecture 

Since the components of the architecture modeled so far need to be linked to the 
component defined in the reference architecture [7], in this extension point we defined 
the Integrate with Self-Adaptation Component activity. This component performs a 
Monitor-Diagnose-Compensate (MDC) reasoning cycle, to check if the goals of the 
system are being achieved and, if not, what adaptations are required to achieve them. 
This is performed based on the context-annotated goal model and on the input of the 
context sensors. By encapsulating this reasoning, this component prevents the need of 
hard-coding the adaptation handling.  

The Self-adaptation component will be linked to the main component of the system 
(in this example, the Smart home system component), to the Monitor component and 
to the Actuator component. The Self-adaptation component will receive a history of 
the system’s execution from the main component (log connector) and the 
environmental data from the Monitor component (environmentMonitored connector). 
This data will be checked against the goal model of the system, and the required 
adaptations will be identified. Some of the adaptations will be required to be 
performed through the Actuator component (actuations connector), and others will be 
suggested to the main component (system pushes connector). The resulting 
architecture of the Smart-home system is presented in Fig. 8. 

5   Conclusion and Future Work 

In this paper we defined F-STREAM, a flexible, systematic and model-based process 
to derive architecture models from requirements. We faced the challenge of proposing 
an approach that could be configured to address multiple quality attributes of interest. 
Inspired by Software Product Line (SPL) principles we defined a set of common core, 
variation and extension points.  

Our goal is to be able to deploy our generic approach to handle specific non-
functional requirements, such as adaptability, security, reusability, etc, through 
integration with other existing approaches. Thus, all the support for NFR would come 
from these approaches, including NFR refinement and traceability. As a proof of 
concept, we described how F-STREAM could be applied to develop an adaptive 
Smart Home system.  

As future work, we need to further validate our work with more case studies. We 
also intend to define a family of instances of the F-STREAM process, addressing 
some of works presented in Table 1. Additionally, we need to conduct further 
research to analyze how the different approaches may be weaved together to handle 
multiple and possibly conflicting NFR. There will be also a parallel effort to improve 
the STREAM process–for instance, by defining guidelines for its use. 
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