
F-STREAM: A Flexible Process for Deriving
Architectures from Requirements Models

Jaelson Castro1, João Pimentel1,2, Márcia Lucena3, Emanuel Santos1, Diego
Dermeval1

1 Universidade Federal de Pernambuco – UFPE, Centro de Informática, Recife, Brazil

2 Universitat Politècnica de Catalunya, Omega–122, CP: 08034, Barcelona, Spain
3 Universidade Federal do Rio Grande do Norte – UFRN, DIMAp, Natal, Brazil

{jbc, jhcp, ebs, ddmcm}@cin.ufpe.br, marciaj@dimap.ufrn.br

Abstract. Some quality attributes are known to have an impact on the overall
architecture of a system, requiring to be properly handled from the early stages
of the software development. This led to the creation of different and unrelated
approaches to handle specific attributes, such as security, performance,
adaptability, etc. The challenge is to propose a flexible approach that could be
configured to address multiple attributes of interest, promoting the reuse of best
practices and reduction of development costs. We advocate the use of Software
Product Line (SPL) principles to manage and customize variability in software
processes targeted for the generation of architectural models from requirements
models. Hence, in this paper we propose F-STREAM, a flexible and systematic
process to derive architecture models from requirements. We define a common
core process, its variation and extension points. The definition of this process
was performed based on a survey of the existing approaches. As example, we
instantiate a process for adaptive systems.

Keywords: Model-driven architectures; architecture derivation; non-functional
requirements and architectures.

1 Introduction

It is well known that some kinds of systems present quality attributes, also called non-
functional requirements (NFRs), that have an impact on the architecture of the system
as a whole. These requirements must be elicited, analyzed and properly handled in the
early requirements phase. Otherwise, it would compromise the software architectural
design quality. Moreover, some NFRs demand specific approaches and mechanisms
to enable their achievement. For instance, it is unlikely that an approach to develop
mobile systems (portability) is also suitable to develop multi-server scalable systems
(scalability).

The STREAM process [11] [13] allows a model-based systematic derivation of
architectures—in Acme [8]—from requirements models—in i* [19]. However, it does
not properly address non-functional requirements (NFR). Instead of trying to define
an entirely new process, we envision the integration of the original STREAM with
already existing approaches for handling specific NFRs. With this purpose, in this

2

paper we propose a Flexible Strategy for Transition between REquirements models
and Architectural Models (F-STREAM). To provide such flexibility, we are going to
use the concepts of variability management—i.e., define the common core
(commonalities) and the variations (variabilities) of the process. Therefore, we are
going to define a base process that can be extended through integration with already
existing approaches that are tailored to handle specific NFRs—in contrast with other
approaches that handle generic NFRs [2] [3] [4] [6]. The integration of F-STREAM
with a specific approach is called an F-STREAM instance.

In order to identify the commonalities and variabilities for the F-STREAM process,
we performed a survey on different goal-based approaches that address these specific
NFRs. Table 1 gives a brief description of some of the analyzed approaches. Usually
the approaches require the use of an extended goal model notation, to include
information that is not present on the original goal model. Some of the approaches
also provide reasoning algorithms, specific components or a reference architecture.
These are the key characteristics that will be considered on our approach.

Table 1. Some of the surveyed i*-based approaches that target specific NFRs.

Approach Description
For security [18] Extends goal models by defining context annotations, preconditions

and effects; Use anti-goal models; Provides a diagnostic component.
For adaptability [7] Extends goal models with context annotations; Provides a self-

configuring component.
For data warehouses [9] Extends goal models by defining facts, attributes, dimensions and

measures.
For software product lines
[1711]

Extends goal models to express cardinality; Provides heuristics to elicit
variability information.

The remainder of this paper is organized as follows. Section 2 describes the

common core of the process, whilst Section 3 presents how the process might vary to
accommodate the specific approaches, in terms of variation points and extension
points. As a case study, we instantiated the F-STREAM process by integrating it with
an approach that tackle the adaptability NFR (Section 4). The final remarks and future
works are presented in Section 5.

2 The F-STREAM Common Core Process

The common core of the F-STREAM process is the subset of the original STREAM
process that is generic enough to be used with different complementary approaches,
requiring at most minimal modifications. This common core is able to generate
architectural models from requirements models, with an incremental and models-
transformation based approach.

For expressing the requirements models and architectural models we use,
respectively, i* (iStar) [19] and Acme [8], since the original STREAM process also
use these languages. Goal modeling is a an widespread approach in the academy to
express requirements, such as in the Tropos method [14]. i* defines goal-based
models to describe both the system and its environment in terms of intentional
dependencies among strategic actors [12] (who). There are two different diagrams, or

3

views, of an i* model: the Strategic Dependency (SD) view presents only the actors
and the dependency links amongst them, whilst the Strategic Rationale (SR) view
shows the internal details of each actor. Within a SR diagram is defined why each
dependency exists and how they are going to be satisfied.

There is a variety of Architectural Description Languages (ADLs), each one with
its set of tools and techniques. Acme ADL was proposed with the primary goal of
providing an interchange format for tools and environments for architectural
development. Therefore, it can be easily translated into an ADL of choice.

Based on the survey on specific goal-based approaches, we defined a core set of
activities that may be carried out with any of the approaches. Fig. 1 presents the
process diagram of this core set, which is the F-STREAM process common core. In
the next sub-sections these activities will be further detailed.

Fig. 1. Common core of the F-STREAM process

2.1 Apply Refactoring to Requirements

The aim of this activity is to modify the organization of the i* diagram, splitting the
responsibilities of the software actor into smaller actors. This allows the delegation of
different issues of a problem, initially concentrated into a single actor, to new actors
so that it is possible to deal with each of them separately. The decomposition of the
main software actor into smaller actors has the objective of modularizing i* models
by delegating responsibilities of the software actor to other (new) software actors that
are dedicated to a particular concern. The decomposition criterion is based on the
separation and modularization of elements or concerns that are not strongly related to
the application domain. Usual examples of this kind of domain independent elements
are persistency, security, statistics, etc.

In order to assist the requirements engineer to identify the elements that can be
extracted from the software actor, we use the following heuristics. H1: Search for
internal elements in the software actor that are independent of the application domain.
H2: Check whether these elements can be moved from the software actor to another
software actor without compromising the behavior and the understandability of the
internal details of the actor. H3: Verify whether these elements can be reused in
different domains.

After the identification of the movable elements, they will be transferred to other
actors, through horizontal transformation rules defined in previous work [13].

2.2 Generate Architectural Model

In this step, transformation rules will be used to translate the i* requirements model
onto an early architecture model in Acme. Since these transformations have different

4

source and target languages, they are exogenous, or translation transformations. They
are also vertical transformations, since the source and target models have different
level of abstractions.

In summary, these transformations define the mapping from i* actors to Acme
components, and from i* dependencies to Acme connectors and ports. A component
in software architecture is a unit of computation or a data store having a set of
interaction points (ports) to interact with external world. An actor in i* is an active
entity that carries out actions to achieve goals by exercising its knowhow. Thus, an
actor representing the software establishes a correspondence with modules or
components [10]. In addition, an actor may have as many interactions points as
needed. Hence, an actor in i* can be represented in terms of a component in Acme.

Thus, the first vertical transformation rule is a straightforward one, that maps i*
actors onto Acme components. Further details of this component will be added later
during the mapping of i* dependencies. In i*, a dependency describes an agreement
between two actors playing the roles of depender and dependee, respectively [5]. In
Acme, connectors mediate the communication and coordination activities among
components. Thus, we can represent a dependency as an Acme connector. The
complete transformation rules for mapping the i* model to an Acme architecture are
described in [11].

2.3 Refine Architectural Model

Having produced an early architectural design solution, we can now refine it. This
activity relies on some commonly used architectural patterns, such as Model View
Control (MVC), Layers and Client-Server. The components of early architectural
model will be manually refined by the architect based on his/her expertise by applying
these patterns. These patterns are analyzed to identify the similarity with the early
architectural model. The refinement process follows three steps.

The first step is to analyze the components of the early architectural model and
compare them with the elements of the pattern observing the similarities of their roles
and responsibilities. The most similar architectural pattern can be used to structure the
early architectural model. For instance, if the roles of the architectural model
components are organized hierarchically they can be associated with the Layers
pattern, then the components of a layer will communicate just with the components of
the layer next to them. Thus, a new version of architectural model is generated. Since
the components of architectural model have been related to components of an
architectural pattern, also their connectors need be associated. Therefore, the second
step is to analyze the connectors of the generated architectural model and compare
them with the connectors of architectural. Applying the architectural patterns during
the refinement can incorporate the qualities associated with the pattern to the refined
model. However, if some component of the pattern is missing in the architectural
model it needs to be included. The third step is to introduce new components to adjust
the architectural model to the pattern, if any is missing. Since the architectural design
can be iterative, components can be added anytime. Moreover, refining the
architectural models with patterns to address system qualities (i.e., NFRs) is a
common practice, existing several tactics to this end documented in the literature.

5

3 Variation and Extension Points of the F-STREAM Process

In this section we are going to present the Flexible STREAM process, which consists
of the common core presented in Section 2 enriched with variability information. In a
business process, a variation point is the place on which a variation occurs, and each
possible alternative for a variation point is a variant [15]. In order to describe the
variation points in the process without defining which are the variants themselves we
are going to use the notation proposed by Schnieders and Puhlmann [16], which
defines a set of stereotypes and association links for expressing variability in Business
Process Modeling Notation (BPMN) diagrams.

The top of Fig. 2 shows the F-STREAM process. Its gray rectangle shows an
instance of the process, which will be explained in Section 4. The variation points—
VarPoint stereotype—are the activities that are already present on the F-STREAM
common core. These activities are generic, but they still may be customized in order
to better suit the approach being integrated. The extension points—Null stereotype—
represent points of the process on which new activities may be inserted, in order to
complement the process.

Fig. 2. The F-STREAM process with variability information. The gray rectangle shows
modifications and extensions creating a process instance integrated with one approach to
handle adaptability.

The process starts with the analysis of the requirements models to detect
improvement possibilities. Then, the requirements are enhanced with more
information followed by the generation of an initial architectural model. This early
architectural model can be further refined and later integrated with a reference model.

The Apply Refactoring to Requirements activity consists of refactoring the goal
models, based on a set of heuristics and transformation rules. This step is intended to
improve the overall quality of the goal model and to turn its structure closer to the
expected of an architectural model. Therefore, a modification of this activity would
involve changing the heuristics to be used, changing the transformation rules or
including new sub-activities.

However, some approaches require the model to be extended, for example with
temporal, contextual annotations [7] or crosscutting concerns [1]. Furthermore, they
may even require complementary models, such as data-entity models or contextual
models. The activities to enrich the original goal models or to define new models may
be inserted through the Enhance Requirements extension point. Some further

6

requirements elicitation activity may be required in order to provide the information
for these enhanced models.

The next activity is Generate Architectural Model. This activity consists of
deriving an architectural model from the goal model using vertical transformation
rules. The set of transformation rules may be modified to address the peculiarities of
the approach being integrated in the process. This is the case when an extended
version of goal models is used or when other kinds of models are used, requiring the
creation of new rules in order to provide a more complete mapping. This is also the
case when an architectural description language other than Acme is required. For the
latter case, there are two possible approaches: modifying the current set of
transformation rules to derive an architecture on the new target language, or defining
new transformation rules for performing the mapping from the Acme language to the
new target language.

The Refine Architectural Model activity concerns evolving the architectural model
by applying architectural patterns. This activity can be simplified when the approach
being integrated to the process requires the usage of a specific architectural pattern.
Furthermore, new activities may be inserted to provide a more detailed architecture as
well as intermediary steps towards integration of the current architecture with the
reference architecture.

Lastly, the Integrate with Reference Architecture is an extension point to insert the
activities that will close the gap between the refined architecture and the reference
architecture of the approach that is being integrated with the process, if any.
Basically, it consists of defining how to link the existing components to the
components of the reference architecture. Nonetheless, further activities may be
defined to conclude the architecture generation.

These variation and extension points are summarized in Table 2.

Table 2. A summary of the variability information of the F-STREAM process

Type of
Variability

Activity Variability description

Variation
Points

Apply Refactoring
to Requirements

Add, change and remove refactoring heuristics;
Add, change and remove horizontal transformation rules;
Add new sub-activities.

Generate
Architectural Model

Add, change and remove vertical transformation rules;
Add new sub-activities.

Refine Architectural
Model

Add, change and remove architectural patterns to be considered;
Add new sub-activities.

Extension
Points

 Enhance
Requirements

Add new activities to handle goal model extensions or other kinds
of models.

Integrate with
Reference
Architecture

Add activities to integrate the derived architecture with the
reference architecture of the approach being used.

4 Example of F-STREAM Instantiation for Adaptive Systems

In this section we instantiate the F-STREAM process to include activities for handling
the development of adaptive systems. This particular instance is the result of

7

integrating the F-STREAM process with an approach for developing adaptive
systems, presented in [7], which uses an extended version of i* models to represent
context information. This information will be used by a self-configuring component,
which performs all the runtime reasoning related to adaptation. Its reference
architecture is based on the definition of sensors and actuators, which interface with
the system environment.

This process is depicted in Fig. 2. The first activity, Apply Refactoring to
Requirements, was maintained as-is. On the other hand, the third activity—Generate
Architectural Model—was modified, which is expressed by the Inheritance
association link from the Generate Architectural Model with Rules for Context
Annotations activity. Similarly, the Refine Architectural Model Defining Sub-
Components activity modifies the Refine Architectural Model activity. Also, on this
adaptability instance of the F-STREAM process, the Enhance Requirements with
Contexts sub-process and the Integrate with Self-Adaptation Component were inserted
on the extension points, which is expressed by the Inheritance association link.

In the following sub-sections we describe each activity of this instantiated process.
To exemplify the use of these activities, we are going to use an adaptive smart-home
system. In the specific domain of smart homes the adaptivity is a transverse issue.
Even when we do not explicitly model a softgoal called Adaptivity, most of softgoals
in the model will require adaptivity in some degree (e.g., reliability, customization).

D
D

D

D

D

D

D

D

D

D

D

D

D
D

D
D

D

D

D

D

D

D

D

D

D

D

Fig. 3. a) Excerpt of the Strategic Dependencies model of the Smart home system b) Excerpt of
the Strategic Dependencies model after refactoring, showing three new software actors.

4.1 Apply Refactoring to Requirements

No modification was required in this activity. Therefore, it can be performed as
described in the common core. Fig. 3-a shows an excerpt of the Strategic
Dependencies model of the Smart home system. A Tenant, who is the user of this
system, depends on the Smart home system to have the house temperature managed,
to have electricity spent wisely and to be safe. She also requires the system to be
reliable. In order to fulfill these dependencies, the system also depends on other
actors. For instance, it needs the Fire department to handle emergencies. After
refactoring the Smart home system actor (see Section 2.1), three new actors were
created: Preference Manager, Communication and Data storage. This is shown in

8

Fig. 3-b. This refactoring is based on the content of the Smart home system actor,
which is not presented here for the sake of space.

4.2 Enhance Requirements

In this extension point we inserted a sub-process concerned with context sensors and
actuators, presented in Fig. 4. A context sensor is “any system providing up-to-date
information about the context where the system is running”, whilst a context actuator
is “any actuator in the environment which can receive commands from the system to
act on the environment context” [7]—i.e., a context sensor monitors the environment
and a context actuator performs a change on the environment.

Fig. 4. Enhance Requirements with Contexts sub-process

The Identify Contexts activity defines the context information that has an impact on
the system’s behavior. This information is included in the goal model as context
annotations. Fig. 5 shows an excerpt of the goal model of the Smart home system with
context annotations. Temperature be managed is a goal of the system, but it is only
required when the context C1 holds—i.e., when there is someone at home. To achieve
this goal, the task Control Heating Device can be performed. This task is decomposed
in Turn on heating device—when C2 holds—and Turn off heating device—when C3
holds. The system also has to perform the task Manage lighting, which is further
decomposed.

Context Description

C1 There is someone at the smart-home.
C2 The temperature at the room is colder than what

would be pleasant for the people within it and the
heating device is off.

C3 The temperature at the room is hotter than what
would be pleasant for the people within it and the
heating device is on.

C4 There is someone at the room or close to it, the
room is dark and the light is off.

C5 There is no one at the room or close to it and the
light is on.

Fig. 5. Excerpt of the Smart home system goal model with context annotations

The definition of these contexts is crucial for the proper specification of an
adaptive behavior. In the Analyze Contexts activity these contexts are analyzed to

9

provide the actual data entities that need to be monitored in order to define the
context. This information will be used in the Identify Sensors and Actuators activity
to discover the context sensors that the system will need. During this activity the
context actuators will also be identified, based on the tasks of the goal model. Both
the sensor (monitor) and actuator for the Smart-home system are presented on the i*
excerpt of Fig. 6.

Fig. 6. Excerpt of the Strategic Dependencies model of the Smart home system after the
Identify Sensors and Actuators activity. Non-software actors are omitted.

4.3 Generate Architectural Model

This variation is needed to add new transformation rules in order to consider the
context annotations. Therefore, we defined a new activity that modifies the original
activity by adding new rules: the Generate Architectural Model with Rules for
Context Annotations activity. Fig. 7-a shows the resulting early architecture diagram
of the Smart-home system—i.e., the mapping from the i* model to an architecture in
Acme. In summary, the actors are mapped to components and its dependencies are
mapped to connectors. The context annotations are mapped as properties of the
connectors, which are not explicit in the architecture diagram but are defined with the
Acme textual notation.

4.4 Refine Architectural Model

Instead of applying the architectural patterns, at this point it is possible to define some
sub-components of the components related to adaptability, using the information
included in the goal models during the Enhance Requirements with Contexts activity.
Therefore, we created a new activity named Refine Architectural Model Defining Sub-
Components. This activity modifies the original Refine Architectural Model activity
by including steps to define sub-components of the Monitor and Actuator
components. This is achieved by analyzing the extra information added in the goal
model during the Enhance Requirements with Contexts sub-process (Section 4.2). In

10

Fig. 7-b we show the resulting sub-components of the Monitor and the Actuator
components.

Monitor

Photosensor

Indoor air
temperature

sensor

Ionization‐based
smoke sensor

Semiconductor
gas leak detector

Magnetic door
locks sensor

Magnetic
windows sensor

Passive infrared
presence detector

RFID stock
supply detector

Internet
connection
verifier

Clock

Actuator

Lights
actuator

Heating
actuator

Air ventilator
actuator

Gas valves
actuator

Windows
actuator

Power outlets
actuator

Alarm
actuator

Doors
actuator

Music
actuator

Smart home
system

get food
stock status

Data storage

store food
consumption data

store medicine
consumption data

Communication

request meal
from restaurant

Preference
manager

get musical
preferences

get
preferences

notify fire
department

notify
tenants

Monitor Actuator

invite
friend

fast
response

environment
monitored

actuations

customization

Fig. 7. a) Early architecture of the Smart-home system, after the Generate Architectural Model
with Rules for Context Annotations activity. b) Sub-components of the Monitor and Actuator
components, defined during the Refine Architectural Model Defining Sub-Components activity.

Smart home
system

get food
stock status

Data storage

store food
consumption data

store medicine
consumption data

Communication

request meal
from restaurant

Preference
manager

get musical
preferences

get
preferences

notify fire
department

notify
tenants

Monitor
Actuator

invite
friend

fast
response

environment
monitored

actuations

customization

Providedport Requiredport

Photosensor

Indoor air
temperature

sensor

Ionization‐based
smoke sensor

Semiconductor
gas leak detector

Magnetic door
locks sensor

Magnetic
windows sensor

Passive infrared
presence detector

RFID stock
supply detector

Internet
connection
verifier

Clock

Lights
actuator

Heating
actuator

Air ventilator
actuator

Gas valves
actuator

Windows
actuator

Power outlets
actuator

Alarm
actuator

Doors
actuator

Music
actuator

Self‐adaptation

Monitor

Diagnoser

Compensator

actuations

system
pushes

log

environment
monitored

Fig. 8. Resulting architecture of the Smart home system, after the Integrate with Self-
Adaptation Component activity.

11

4.5 Integrate with Reference Architecture

Since the components of the architecture modeled so far need to be linked to the
component defined in the reference architecture [7], in this extension point we defined
the Integrate with Self-Adaptation Component activity. This component performs a
Monitor-Diagnose-Compensate (MDC) reasoning cycle, to check if the goals of the
system are being achieved and, if not, what adaptations are required to achieve them.
This is performed based on the context-annotated goal model and on the input of the
context sensors. By encapsulating this reasoning, this component prevents the need of
hard-coding the adaptation handling.

The Self-adaptation component will be linked to the main component of the system
(in this example, the Smart home system component), to the Monitor component and
to the Actuator component. The Self-adaptation component will receive a history of
the system’s execution from the main component (log connector) and the
environmental data from the Monitor component (environmentMonitored connector).
This data will be checked against the goal model of the system, and the required
adaptations will be identified. Some of the adaptations will be required to be
performed through the Actuator component (actuations connector), and others will be
suggested to the main component (system pushes connector). The resulting
architecture of the Smart-home system is presented in Fig. 8.

5 Conclusion and Future Work

In this paper we defined F-STREAM, a flexible, systematic and model-based process
to derive architecture models from requirements. We faced the challenge of proposing
an approach that could be configured to address multiple quality attributes of interest.
Inspired by Software Product Line (SPL) principles we defined a set of common core,
variation and extension points.

Our goal is to be able to deploy our generic approach to handle specific non-
functional requirements, such as adaptability, security, reusability, etc, through
integration with other existing approaches. Thus, all the support for NFR would come
from these approaches, including NFR refinement and traceability. As a proof of
concept, we described how F-STREAM could be applied to develop an adaptive
Smart Home system.

As future work, we need to further validate our work with more case studies. We
also intend to define a family of instances of the F-STREAM process, addressing
some of works presented in Table 1. Additionally, we need to conduct further
research to analyze how the different approaches may be weaved together to handle
multiple and possibly conflicting NFR. There will be also a parallel effort to improve
the STREAM process–for instance, by defining guidelines for its use.

Acknowledgments. This work has been partially supported by Erasmus Mundus
External Cooperation Window - Lot 15 Brasil and the Brazilian institutions CAPES
and CNPq.

12

References

1. Alencar, F., Castro, J., Moreira, A., Araujo, J., Silva, C., Ramos, R., Mylopoulos, J.:
Integration of Aspects with i* Models. In: Agent-Oriented Information Systems IV, LNCS
4898, Springer-Verlag, 2008, pp. 183-201.

2. Alencar, F., Marn, B., Giachetti, G., Pastor, O., Castro, J., Pimentel, J.: From i*
Requirements Models to Conceptual Models of a Model Driven Development Process In:
PoEM, 99-114, 2009.

3. Ameller, D., Franch, X., Cabot, J.: Dealing with Non-Functional Requirements in Model-
Driven Development. In: RE 2010: 189-198.

4. Bastos, L., Castro, J.: From requirements to multi-agent architecture using organisational
concepts, ACM SIGSOFT Software Engineering Notes, vol 30 pp. 1-7, 2005

5. Castro, J., Silva, C., Mylopoulos, J.: Modeling Organizational Architectural Styles in
UML. In: CAISE 2003 - LNCS, v. 2681, pp. 111-126, 2003.

6. Chung, L., Gross, D., Yu, E. S. K.: Architectural Design to Meet Stakeholder
Requirements. In: Proceedings of the TC2 First Working IFIP Conference on Software
Architecture (WICSA1), Kluwer, B.V., 1999, 545-564

7. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: An architecture for requirements-driven self-
reconfiguration. In: CAiSE 2009. LNCS, v. 5565, p. 246-260.

8. Garlan, D., Monroe, R., Wile, D.: Acme: An Architecture Description Interchange
Language. In: Proc.CASCON’97, 1997. Toronto, Canada.

9. Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data
warehouse design. In: Proceedings of the 8th ACM international workshop on Data
warehousing and OLAP (DOLAP '05). ACM, New York, NY, USA, pp. 47-56, 2005.

10. Grau, G., Franch, X.: On the adequacy of i* models for representing and analyzing
software architectures. In: Advances in conceptual modeling: foundations and applications
- LNCS, v. 4802, pp. 296-305, 2007.

11. Lucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., Pimentel, J.: A Model
Transformation Approach to Derive Architectural Models from Goal-Oriented
Requirements Models. In: Proc. the OMT Workshop IWSSA,LNCS Springer-Verlag
Berlin Heidelberg, Vilamoura, Portugal, pp. 370-380, 2009.

12. Lucena, M., Santos, E., Silva, M., Silva, C., Alencar, F., Castro, J.: Towards a Unified
Metamodel for i*. In: Proc. of RCIS’08, pp. 237-246, 2008.

13. Lucena, M., Silva, C., Santos, E., Alencar, F., Castro, J.: Applying Transformation Rules
to Improve i* Models, In: Proc. the 21st International Conference on Software
Engineering and Knowledge Engineering (SEKE 2009), Boston, USA, pp. 43-48, 2009.

14. Mylopoulos, J., Castro, J., Kolp, M.: Tropos: Toward agent-oriented information systems
engineering. In Second International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS2000), 2000.

15. Santos, E., Pimentel, J., Castro, J., Sanchez, J., Pastor, O.: Configuring the Variability of
Business Process Models Using Non-Functional Requirements. In: Enterprise, Business-
Process and Information Systems Modeling - LNBIP, v. 50, part 2, pp. 274-286, 2010.

16. Schnieders, A., Puhlmann, F.: Variability Mechanisms in E-Business Process Families. In:
Proc. of the 9th Int. Conference on Business Information Systems, BIS 2006, 2006

17. Silva, C., Borba, C., Castro, J.: A Goal Oriented Approach to Identify and Configure
Feature Models for Software Product Lines. In: Proc. of the 14th Workshop on
Requirements Engineering (WER 2011), Rio de Janeiro, Brazil, 2011.

18. Souza, V., Mylopoulos, J.: Monitoring and Diagnosing Malicious Attacks with Autonomic
Software. In: ER 2009 LNCS, v. 5829, pp. 84-98, 2009.

19. Yu, E.: Modeling Strategic Relationships for Process Reengineering. PhD Thesis, Toronto
University, 1995.

