Towards Requirements and Ar chitecture
Co-Evolution

Jodo Pimenté] Jaelson CasttpEmanuel SantdsAnthony Finkelsteih

! Universidade Federal de Pernambuco - UFPE, Ceettofdrmatica, Recife, Brazil
{ihcp,jbc,ebs}@cin.ufpe.br
2 University College London - UCL, Department of Conggucience, United Kingdom
a.finkelstein@ucl.ac.uk

Abstract. The relationship between requirements and arc¢hites is an im-
portant research field on software engineering. @hiés challenges is to pro-
vide proper support for their co-evolution, i.eomhto assess the mutual impact
of requirements and architecture changes on e&er, as well as how to react
to these changes in order to prevent misalignmetwden themWe advocate
the use of a single goal model to express bothinements and architectural
concerns. In this paper we put forward an apprdachequirements and archi-
tecture co-evolution considering such a model. Moee, we outline the rea-
soning required in order to support forward andkbecd co-evolution of ser-
vice oriented systems.

Keywords: System architecture, Requirements engineeringn@cdtevolu-
tion, Self-Adaptation, Service-oriented architeegjrAutonomics.

1 I ntroduction

Software evolution has become a key research aresftware engineering [10].
Software artifacts and systems are subject to nkamys of changes, which range
from technical adjustments due to rapidly evolviaghnological platforms, to modi-
fications in the software systems themselves redquiry the natural evolution of the
businesses and requirements supported by theme Thedifications include changes
at all levels, from requirements through architeetand design, as well as source
code, documentation and test suites. For consistentition, all models and artifacts
should remain aligned as the software evolves.

For instance, whenever requirements change we toeggkess whether the current
architectural configuration continues to meet ttakesholders’ requirements. Similar-
ly, if the properties of components in an architeat model are modified we need to
analyze if these changes affect requirements aatish. In both cases, when there is
a mismatch between architecture and requirementsrehitectural reconfiguration
may be considered. This is particularly relevarnthie case of services, since they are
very dynamic and may change in several ways (fanatiupgrades, varying quality-
of-service, withdrawn, so on and so forth). In cast, when a traditional COTS com-

ponent evolves, the system using it may continugstoan older version of that com-
ponent. In the services case, evolution cannoté&eepted.

Since the abstraction level of software architexigradequate for identifying and
analyzing the ramifications of changes [14], itlcblbe one of the software evolution
pillars. Certainly, it is of paramount importanceidentify when and why to perform
changes, as well as to assess their impacts [4eRe@dvances in the Requirements
Engineering and Software Architecture fields indudethods and techniques to ad-
dress the evolution, in isolation, of requiremeantsl of architectural models. Howev-
er, there is a lack of proposals for tackling tbeswolution of requirements and archi-
tecture.

In fact, the line that separates requirements fawaohitecture is a blurred one, as
argued in [5]. The Twin Peaks model highlights theertwined characteristics of
requirements and architectural models [27]. Requénds lie in the problem space,
whilst architectures are part of the solution spddais, investigating how to define
an architecture (solution) that satisfies the resquents (problem) is a key challenge
in software engineering. Moreover, it is important maintain this satisfaction
throughout a system lifecycle [7].

In this paper we present a novel approach for dgaliith requirements and archi-
tecture co-evolution. We define the co-evolutionlpgem as the problem of assessing
the impact of both requirements and architecturainges and responding to these
changes.

The remainder of this paper is structured as fddlolm Section 2 we present the
case study used throughout the paper. In sectiase 8lescribe the approach itself.
Section 4 discusses related works. Lastly, Se&iooncludes the paper with a critical
discussion of our proposed approach and indicaigggpfor improvement.

2 Case Study

In this work we are expressing requirements udieg* Framework [39]. It defines
goal-based models to describe both the systemtamhvironment in terms of inten-
tional dependencies among strategic actors. Tlesaate refined using four kinds of
elements: goal, softgoal, task and resource. Gagilsesent the actors’ intentions,
needs or objectives to fulfill its role within thenvironment in which they operate.
Softgoals also represent the strategic interestheofictors, but in this case these in-
terests are of subjective nature — it is generaflgd to express non-functional re-
quirements. The tasks represent a way to perfomesactivity, i.e., they show how
to perform some action to obtain the satisfactiba goal or softgoal. The resources
represent data, information or a physical resothe¢ an actor may provide or re-
ceive. These elements are linked together withenattor boundaries using means-
end, task-decomposition, and contribution linkse Theans-end links define which
alternative tasks (means) may be performed in a@erchieve a given goal (end).
The task-decomposition links describe what shoeldibne to perform a certain task
(i.e., its sub-tasks). Finally, the contributionks suggest how a task can contribute
(positively or negatively) to satisfy a softgoaheke contributions allow the selection
of alternative tasks driven by the satisfactiosaftgoals.

Requirements
Analysis Tool

Analyze
Requirements
Dogument

Legend

Requirements
Text Obtained

// N Actor
/ \
// \\
i Final Features List C)
! X \
I Provided ! Goal
i \
| \
i Create List 0 \} C:)
| rovide Documen Candidate |
! as PDF Features ; Softgoal
\ /
\

Remove / < >
. /
Duplicated /
Features / Task
/ —_—
y Means-
4 ends link

R

\
. 4
N 7
. Support Several 7 Decomposition
N Languages 7 link

Fig. 1. The requirements model for the Requirements Aralsil.

Fig. 1 presents the original requirements modauwfsystem, which is a Require-
ments Analysis Tool. It is a web-based system #malyzes a textual requirements
document and generates a list of candidate featites, the main task of this system
is to analyze a requirements document. In ordelotso, it will need to obtain a re-
quirements document, which will be provided by a&rughere we are omitting de-
pendency links to the system users). The user ithergrovide the document as a
PDF file, or provide it in any usual file formatugh as word processing documents
and spreadsheets), which will be converted to RiDIedir processing.

A common constraint on natural language text amaligsthat it is highly depend-
ent on the language being used. In order to erthblanalysis of requirements docu-
ments in a wide range of languages, we decideddorporate the functionality of
translating the document to a reference langudngea(ternative would be to adapt the
analysis algorithm for each language that we wargupport). In order to reach a
large user base worldwide, we defined that thisslietion must support several lan-
guages. The requirements analysis itself consistseating a list of candidate fea-
tures, and finally providing a consolidated list igynoving duplicated features. Last-
ly, the High Availability non-functional requirement (softgoal) is importdot our
system, since it will be accessed anywhere, ang tinthe day. Please note that we
have not yet defined how to satisfy this softgeaice we have not taken any archi-
tectural decision yet. Alternatively, we could haaleeady modeled all the different
ways of satisfying this requirement — later we vabaihly select which ones to use.

In Fig. 2 we present a possible structural architecfor the Requirements Analy-
sis tool. In this architecture we rely on two kinofsservices: Document Converter,
which are services that provide file type conversié documents; and Text Transla-

[
[
| Document Converter
[
[

Client

Requirements
Analysis
System

Server Translator A

Requirements
Pre-processor

Requirements

Analyzer Translator B

Translator C

+ Translator D

Legend: [l Provided Port

\
\
\
\
\
\
\
\
\
\
\
\
Text Translator ‘
\
\
\
\
\
\
\
\
\
\
\
) \
|:| Required Port

Fig. 2. Architectural model for the Requirements Analysi®ITam Acme.

tor services, which are able to translate a gieah ©On the service consumer side, the
client-server style was selected because it is sugled for web-based systems.

3 Forward and Backward Evolution of Service-Oriented
Systems

When dealing with requirements and architectureewmution two situations may

arise. On one hand, changes in the system requitsmey happen (this includes the
system context, stakeholders’ attitudes and qualitystraints). In this case, some
analysis is required to assess if these changefoca reconfiguration, and whether
there is some reconfiguration that satisfies the reguirements. We call this forward
evolution, since it is from requirements to arcttitee.

On the other hand, there may also be changes imrttétecture itself. For in-
stance, the performance of a component may degiiduss, it is now required to
check whether these architectural changes preegunirements satisfaction. If this is
the case, and this failure is unacceptable, ietensary to attempt to identify a possi-
ble architectural reconfiguration that improves lneel of the satisfaction of the re-
quirements. However, if it is not feasible to refigure it, the system administrator
could be prompted to either relax the affected irequents, or to perform offline
evolution. This we call backward evolution — fronglitecture to requirements.

We propose to tackle the co-evolution problem bgvesging requirements and
architecture models, i.e., working with architeetumodels that also contain require-

ments information. By doing so, we are able to ganfthe co-evolution reasoning in
a single model. Moreover, this reduces the overl#athaintaining traceability be-
tween requirements models and architecture models.

In order to do so, we use a conventional requiresnerodeling notation to repre-
sent architectures — namely, This was preferred over modifying an Architectura
Description Language (ADL) becau§é we did not find an architectural language
expressive enough for presenting requiremdifsby using the same framework for
both RE and architecture we can have a seamlessabpto go from requirements to
architecture; andii) i* showed to be a suitable notation for expressingitctures.

Despite being an organizational modeling notatidbhas shown to be particularly
adequate for requirements modeling [39]. Recenksvaiso showed that it is reason-
ably suitable for architectural modeling [16] [30)ore specifically, it has been used
to model information services [26]. In [16] thene @arguments in favor of usiny
extended models for architectural modeling. Itl@med that it can be used to de-
scribe main architectural concepts, such as comypsneonnectors, constraints, non-
functional properties and evolution. Moreover,has suitable composition, abstrac-
tion and analysis mechanisms. However, it lackp@raupport to promote reusabil-
ity and heterogeneity, as well as it lacks propgpsrt for configuring the models.

It is claimed that software architecture describasystem in a high-abstraction lev-
el, defining its components, the interaction amtimgse components, their attributes
and their functionalities [37]. Fig. 3 presents @proach for expressing service-
oriented architectures using, in the context of our case study. Here, conveatio
components were mapped orntoactors, service categories onto roles and the ser-
vices themselves onto agents. A service categamygsneral definition of the service
that is required, while an agent is a specific iserthat plays the role defined by a
service category. E.g., Text Translator is a sercitegory, whilst Microsoft Transla-
tor is a particular service of that category. Whis mapping we are able to express
the requirements related to each component ofritétacture. Lastly, connectors are
represented by dependencies. This allows expresgiagjis expected from a compo-
nent @ependum), why is it expected (from thdepender’s model) and how is it going
to be provided (from thdependee's model).

In Table 1 we present a summary of this mappingsiciering the five major ar-
chitectural elements [38]. However, note that thtonale, i.e., the information that
explains the architectural decisions taken, cabeqgtroperly captured by elements.
This is also the case for the majority of architeat modeling notations, where other
artifacts are required to document the architettiesgrams [8].

Table 1. Mapping of architectural elements ofiito

Architectural Element i* Element

Component Actor, role, agent

Connector Dependency links

Interface Implicitly defined by the source and &rglements of
dependency links

Configuration The graph itself

Rationale Partially defined by internal elementsalg, softgoals,

tasks, resources and their relationship)

"""" Document
Converter

Convert Document’

onve
Document to
e PDF

A
(=}
=
=Y
33
® B
o
S
H
@

Requirements! '
Analysis
Client

T
Q
g
>
<
o,
o
=4
<=
o]
%33
o
23 AN
8 \
o+ \

Requirements
Document

Requirements
Analysis
Server

Document to
PDF

Requirements
Text Pre-
Processed

Requirements
Pre-processor

Analyze
Translate Text Requirements Text,
&
QA
Q\

Fig. 3. — Architectural model of the Requirements Analysid, usingi*. It replaces the
former model presented in Fig. 2.

Convert
Document to
TXT

Requirements
Analyzer

Another motivation for the use ©f as an architectural description language is the
current set of available reasoning mechanismsidakatly relevant to our approach is
the evaluation of the softgoals’ satisfiability [IB]. This allows selecting the best
alternative to achieve a goal, considering the rifmutions of each alternative to the
softgoals of interest (top-down reasoning). We akso assess whether a given alter-
native properly satisfies the selected softgoals.

3.1 Forward evolution

Our concern here is to handle requirements chargjated to the information ser-
vices being used by the proposed system. Thesecomag in two ways: a functional
change, i.e., we want the service to satisfy adhfit goal or task; or a non-functional
change, i.e., we define different quality constimion how the service is supposed to
support its goals or tasks.

When there are requirements changes, we are capfblecking whether the in-
formation service currently selected can satis& nlew requirements. For instance,
consider that we are interested in fthecument Converter service category (as de-
scribed in Fig. 3) and that tlRDFm service is currently selected. Several queries can
be performed:

Query 1: Can PDFm suppotonvert Document to PD®ith high Availability?

According to Fig 3. the service is highly avaimbHowever, if after deployment
we notice that requirements documents are sometsplésin several documents ac-
cording to some criteria (such as by sub-systenviéypoints, and so on), we may
decide that we also need the capability of merdioguments. Thus, we can now pose
a new question to check HDFm provides this functionality as well, which is ex-
pressed in Query 2.

Query 2: Can PDFm suppotonvert Document to PDF andMerge Documents?

SincePDFm is unable to perform thislerge Documents task (Fig. 3), the answer
to Query 2 is negative. Thus, we may ask the samastipn to other services of the
same category. If one is found (&PFt), we could then perform the required archi-
tectural reconfiguration, i.e., ubFt instead oPDFm.

The same reasoning presented so far can be pedositie softgoals as well. For
instance, we may decide to go only for PDF coneersas long as it is performed at
low cost. In order to check whetheDFm satisfy this new requirement, we may ask
Query 3:

Query 3: Can PDFm suppottonvert Document to PDF with low cost?

The assessment of softgoal satisfaction is trividhe PDFm model (Fig. 3): since
there is only one contribution link towardsw Cost, and it is a++ contribution.
Hence, theLow Cost softgoal is satisfied. For more complex casesh wlifferent
contribution links, one may refer to [15][19].

3.2 Backward Evolution

On the other hand, when there is a change in piiepaf the information services, or
when new candidate services are identified, a ammgasoning may follow. In this
case, we may use a monitoring framework in ordeetgeve updated information on
the services’ properties. For instance, the SALNumi [28] is able to provide up-to-
date data on web services’ response time and aildilaamong others. With such
monitoring capabilities, we are able to assess hotiesign time and at runtime the
quality of the information services being used.

In our case study, consider that we require doctsrierbe converted to PDF with
a high availability service. Recall that before ldgment we certified that theDFm
service satisfied this query; for this reason, \&d belected it for use in our system.
Nonetheless, after deployment we may have noticédgaadation of its availability.
Thus, we need to check whether this service ikatile to meet our requirements —
i.e., we need to check if there is a possible swiufor Query 1. l.e., the same query
would be performed, now with the model updatedtiier new availability value. Pro-
vided that automated monitoring is available, tieiasoning can be completely per-
formed without human intervention. Hence, it istable for adaptive and autonomic
systems, which could perform this checking at ragtime intervals. Foresight meth-
ods may be used to define which requirements/acthital elements to monitor and
at what time intervals [33].

If the experienced change prevents the informasenvice from satisfying its re-
lated requirements, we may check if other serviafethe same service category are
able to meet the requirements — in this cBE¥:t.

3.3 Tolerance, relaxation and manual evolution

On the last two sub-sections we outlined how we reason to identify a mismatch
between system requirements and information sesviglreover, we showed how
we can attempt to solve this mismatch by searcfonga possible reconfiguration.
There are two questions that arise when perforrfirggreasoning: (i) all mismatches
must be solved or can we live with some mismatchl@gs®What happens when no
reconfiguration is able to solve this mismatch?

In previous works we argued that not every failgguires compensation [32], ac-
knowledging that distinct failures may have differénpacts. In our specific case, we
could rephrase it; not every mismatch between serand requirements (failure to
satisfy requirements) demands a reconfiguratiomfEmnsation). We tackle this issue
by allowing system administrators to define toleearmpolicies, using our previous
framework [32]. Thus, the system administrator Wil able to define different crite-
ria to assess when a failure in satisfying requinets, resulting from architectural
changes, needs to trigger a reconfiguration.

A main element in that framework is the toleranoéiqy, which consists of toler-
ance rules. These rules may be related to thersystatext as well as to a particular
element of the goal model, or to the amount ofufe$ that happened. With this
framework we may decide to ignore when a serviids fa support a given element of
the architectural model (e.g., a quality constjaiit particular conditions. Hence,
instead of searching for a possible reconfiguratie@ will continue to use the same
service.

Regarding the second question, if it is not posstbl reconfigure to satisfy the
evolved requirements, and assuming that the tateraolicy in place does not allow
for that failure to be ignored, we envision two rs@os. On one hand, the system
administrator will be prompted to adjust (relax@ #turrent requirements so that there
is at least one possible reconfiguration. Alten&yi, manual (offline) evolution of
the system may take place.

4 Related Works

The area of Software evolution has been largelgistl More recently, terms such
as autonomics, self-adaptation and self-managehsam been used to describe sys-
tems that are able to dynamically evolve at runtiRegarding requirements evolu-
tion, some approaches (such as Lapouchnian andpdylos [23] and Ali et al. [2])
use the notion of context in order to identify whielements of the requirements
model are active/enabled. Pimentel et al. buildghant to derive architectures that
support requirements activation/deactivation [3lian et al. [21] proposes mecha-
nisms to allow the insertion of goals in the regqomients model at runtime. The sys-
tem is only capable to satisfy these new requiresniey developing new modules for

the system. Qureshi et al. [35] also allows thengiray of goal models at runtime. It

proposes a service lookup mechanism to identifyises that may satisfy the new

requirements. Franch et al. [13] define metricatesl to non-functional requirements.

In turn, the metrics are linked to service categmend services. Thus, its reconfigura-
tion is based solely on the measurements of theteas

Similarly, there are several research works regarairchitectural evolution. For
instance, [9] defines adaptation conditions basedrohitectural properties as well as
reconfiguration operations. Control events basedc@mponents’ states are used in
[3] to reconfigure the architecture connectors. @osition rules are deployed in [34]
to dynamically define connections between companand aspects. Some of previ-
ous work also allowed the addition, removal, chaagé reconfiguration of compo-
nents [32]. These works may have broader and nmphigticated mechanisms for
architecture evolution than ours. However, thel tfairelate this evolution to system
requirements.

There are also works on the requirements and acthite relationship such as
[12][17][20][22]. However, they do not tackle thpsoblem as we do, i.e. by consider-
ing the architecture model as a refinement of drpiirements model, along the lines
of what was developed for problem frames in [17].

Pahl et al. [29] proposes to dynamically defineviger collaboration through a co-
ordination space, on which a service consumer sgpeeits need for a particular kind
of service, which may be satisfied by a serviceviger. However, it does not consid-
er the other elements of the software architecture.

5 Discussion

Considering the architecture as a reification efsfistem under consideration, and
the increasing adoption of technologies that fat#i architectural changes (such as
the technologies behind web services and cloud atimg), it is of utmost im-
portance to understand and reason on the relatpmdietween requirements and
architectural models. This calls for systems that @ble to react to changes in re-
quirements (i.e. according to the stakeholders eggtiens), as well as dealing with
changes in the system itself (architecture). Asgdtitral changes include structural
changes - e.g., replacing a component (due to aupeiate) — and properties changes
- e.g., the performance of a component may haveaded.

Throughout this paper we outlined our approachréguirements and architecture
co-evolution. The main contribution of this apprae that it provides proper reason-
ing to handle the reciprocal impact between requénets and architecture — i.e., the
requirements and architecture co-evolution. Inghgicular case of information ser-
vices we are able to assess the impact of suclgebaas well as to identify whether
and which reconfiguration is possible to react tgiveen change. Given that proper
monitoring tools are set up, this reasoning candeal at runtime to enable autonomic
and self-adaptive behaviors.

In order to provide such reasoning, we advocataitieeof architectural models en-
riched with requirements data. Such model may betd from requirements models
through a series of decision/transformations sfeps, [6]). In this research we pro-

pose the use af for both requirements and architecture modeling][BD]. This
approach has some drawbacks, as follows:

Lack of familiarity — software architectures are already accustomedreentional
ADL. Thus, the need to learn a new notation wowdabbarrier for the adoption of
this approach.

Poor readability — architectural models may become more diffioulhé&ndle in our
approach due to the additional requirements inftiona

Lack of tools — there are several tools to support conventiéisdl — e.g., for au-
tomatic code generation. The lack of similar tomlssupporti* may prevent some
architects to adopt it.

The first two drawbacks may be mitigated by usihg it information hiding
mechanism, by improving th# visual syntax [25] and by using modularization
mechanisms [1][11]. The third problem may be sadteby developing new tools for
i*, or by translating th&x models to a conventional ADL as described in [&][2

We believe that our approach is suited not onlgevice-driven architectures, but
also for any kind of architecture on which compdadrave some degree of intention-
ality. This is the case for socio-technical systeamswhich some responsibilities are
delegated not only to software and hardware compusndut also to organizations
and human participants. This is also the casedentbased systems, on which each
agent has its own goals, that may or may not cgever the overall system goals.

A key limitation of our approach is that we onlynsider the structural view of the
architecture. Thus, an important advance in futuoeks would be to include other
views [36], as well as behavioral concerns. Ii$® amportant to notice that we intend
to support only the derivation of architectural ratsd— detailed design, class dia-
grams, code, and so on, are currently out of tpesof our approach. Thus, we do
not define some service details, such as protopalsjshing mechanisms, and so on.

A major improvement for our approach would be te Astificial Intelligence (Al)
mechanisms in order to enhance the reasoning mepaged — for instance, simula-
tion techniques [18]. This would be an importampstowards Intelligent Software
Engineering, i.e., Software Engineering that malssof Al techniques.

Acknowledgments. This work was partially supported by Brazilian ages CAPES
and CNPq.

References

1. Alencar, F., Castro, J., Lucena, M., Santos, EvaSiC., Aradjo, J., Moreira, A. Towards
modulari* models. In: 25th ACM Symposium on Applied Computipg. 292-297 (2010)

2. Ali, R., Dalpiaz, F., Giorgini, P. A Goal Modelingr&mework for Self-contextualizable
Software. In: BMMDS/EMMSAD 2009, pp. 326-338 (2009)

3. Allen, R., Douence, R., Garlan, D. Specifying and lfjmag Dynamic Software Architec-
tures. LNCS 1382/1998, pp. 21-37 (1998)

4. Andersson, J. Issues in Dynamic Software Architest{2000)

5. Boer, R., Vliet, H. On the Similarity between Requiesnts and Architecture. The Journal
of Systems and Software, Vol. 82, Issue 3, pp. 38@{2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

11

Castro, J., Lucena, M., Silva, C., Alencar, F., 8anE., Pimentel, J. Changing attitudes
towards the generation of architectural modelsrnldwf Systems and Software, Volume
85, Issue 3, March 2012, pp. 463—-479, (2012)

. Cleland-Huang, J., Marrero, W., Berenbach, B. Goal i@eifitaceability: Using Virtual

Plumblines to Maintain Critical Systemic Qualiti®8EE Transactions on Software Engi-
neering, 34(5) (2008)

. Dermeval, D., Soares, M., Alencar, F., SantosPinentel, J., Castro, J., Lucena, M., Sil-

va, C., Souza, C. Towards &nrbased Architecture Derivation Approach. In: Pratiegs

of the 5th Internationat Workshop, Italy, pp. 66-71 (2011)

Dowling, J., Cahill, V. The K-Component Architectuketa-Model for Self-Adaptive
Software. LNCS 2192/2001, pp. 81-88 (2001)

Fernandez-Ramil, J., Perry, D., Madhavji, N.H. (e&@aftware Evolution and Feedback:
Theory and Practice, Wiley, Chichester (2006).

Franch, X. Incorporating Modules into tifeFramework. LNCS 6051/2010, pp. 439-454
(2010)

Franch, X., Botella, P. Putting Non-functional Requients into Software Architecture.
In: 9th International Workshop on Software Speeificn and Design (1998)

Franch, X., Griinbacher, P., Oriol, M., Burgstalr, Dhungana, D., L6pez, L., Marco, J.,
Pimentel, J. Goal-driven Adaptation of Service-BaSgdtems from Runtime Monitoring
Data. In: 5th IEEE Workshop on Requirements Engingeor Services, Germany (2011)
Garlan, D., Perry, D. Introduction to the Specgdue on Software Architecture. In: Jour-
nal IEEE Transactions on Software Engineering, Zal.Issue 4 (1995)

Giorgini, P., Mylopoulos, J., Nicciarelli, E., ar®kbastiani, R. Formal Reasoning Tech-
nigues for Goal Models. In: 21st International Coafece on Conceptual Modeling (2002)
Grau, G., Franch, X. On the Adequacyi®oModels for Representing and Analyzing Soft-
ware Architectures. In: ER Workshops 2007, LNCS 48@2,296-305 (2007).

Hall, J., Jackson, M., Laney, R., Nuseibeh, B., RafiarL. Relating software require-
ments and architectures using problem frames.HEEI Joint International Requirements
Engineering Conference (2002)

Hill, T., Supakkul S., Chung, L. Confirming and Refioning Architectural Decisions on
Scalability: A Goal-Driven Simulation Approach. I8th IWSSA, pp. 327-336 (2009)
Horkoff, J. and Yu, E. Qualitative , Interactiv8ackwards Analysis off Models. Com-
puter, pp. 43-46 (2008)

Inverardi, P., Muccini, H., Pelliccione, P. Chedkieonsistency between architectural
models using SPIN. In: Workshop From Software Remménts to Architectures (2001)
Jian, Y., Li, T., Liu, L., Yu, E. Goal-Oriented Rdgments Modelling for Running Sys-
tems. In: 1st International Workshop on requiremexttrun-time (2010)

Klaus Pohl, Ernst Sikora. The Co-Development oft&ysRequirements and Functional
Architecture. In: Conceptual Modeling in Informati@ystems Engineering, pp. 229-246
(2007)

Lapouchnian, A., Mylopoulos, J. Modeling Domain \aility in Requirements Engineer-
ing with Contexts. In: ER 2009, pp. 115-130 (2009)

Lucena, M., Castro, J., Silva, C., Alencar, F., Ssnk, Pimentel, J. A Model Transfor-
mation Approach to Derive Architectural Models fr@woal-Oriented Requirements Mod-
els. In: 8th IWSSA - OTM Workshops 2009, pp. 37@33009)

Moody, D., Heymans, P., Matulevicius, R. Visual syntloes matter: improving the cog-
nitive effectiveness of thge visual notation. Requirements Engineering Jounnall, 15,
number 2, pp. 141-175 (2010)

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. Morales, E, Franch, X., Martinez, A., Estrada, Hn€ldering Technology Representation
in Service-Oriented Business Models. In: 5th IEEErk8hop on Requirements Engineer-
ing for Services, Germany, pp. 482-487 (2011)

Nuseibeh, B. Weaving the Software Development PeoBetween Requirements and Ar-
chitectures. IEEE Computer, 34(3), pp. 115-117 200

Oriol, M., Franch, X., Marco, J., Ameller, D. Mooiing Adaptable SOA-Systems using
SALMon. In: Workshop on Service Monitoring, Adapdat and Beyond, pp. 19-28 (2008)
Pahl, C., Decar, V., Wang, N., Bandara, K. A CoortiamaSpace Architecture for Service
Collaboration and Cooperation. In: LNBIP 83 part 6, §6-377 (2011)

Pimentel, J., Franch, X., Castro, J. Measuring Aeciiiral Adaptability in* Models. In:
14th Ibero-American Conference on Software Engimge{CIBSE), April 27-29, 2011.
Pimentel, J., Lucena, M, Castro, J., Silva, C., Alen€., Santos, E. Deriving Adaptable
Software Architectures from Requirements Models: BAHREAM-A approach. Require-
ments Engineering Journal, published online (2011)

Pimentel, J., Santos, E., Castro, J. Conditionsgfooring failures based on a requirements
model. In: 22nd International Conference on Softwangineering and Knowledge Engi-
neering, USA, pp. 48-53 (2010).

Pimentel, J., Santos, E., Castro, J. AnticipatinguRemqents Changes — Using Futurology
in Requirements Elicitation. In: International Jaairof Information System Modeling and
Design, 3(2), pp. 89-111 (2012).

Pinto, M., Fuentes, L., Troya, J. DAOP-ADL: An Aitdtture Description Language for
Dynamic Component and Aspect-Based Development.LNOB2833,pp.118-137(2003)
Qureshi, N., Perini, A., Ernst, N., Mylopoulos,Tawards a Continuous Requirements En-
gineering Framework for Self-Adaptive Systems.llst RE @ run-time (2010)
Razavizadeh, A., Cimpan, S., Verjus, H., Ducass8ofware System Understanding via
Architectural Views Extraction According to MultiplViewpoints. In: 8th IWSSA, pp.
433-442 (2009)

Shaw, M., Garlan, D. Software Architecture: Pertipes on an Emerging Discipline.
Prentice Hall (1996)

Taylor, R., Medvidovic, N., Dashofy, |. Software Aitecture: Foundations, Theory, and
Practice, John Wiley & Sons (2009)

Yu, E., Giorgini, P., Maiden, N., & Mylopoulos, (Eds.). Social Modeling for Require-
ments Engineering. Cambridge, Massachusetts: TheRvé$s (2011)

