

R. Meersman, P. Herrero, and T. Dillon (Eds.): OTM 2009 Workshops, LNCS 5872, pp. 370–380, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Model Transformation Approach to Derive
Architectural Models from Goal-Oriented

Requirements Models

Marcia Lucena1,2, Jaelson Castro1, Carla Silva3, Fernanda Alencar1,
Emanuel Santos1, and João Pimentel1

1 Federal University of Pernambuco (UFPE) – Recife/PE, Brazil
jhcp@cin.ufpe.br

2 Federal University of Rio Grande do Norte (UFRN) – Natal/RN, Brazil
3 Federal University of Paraíba (UFPB) – Rio Tinto/PB, Brazil

{mjnrl,jbc,ebs}@cin.ufpe.br,
fmra@ufpe.br, ctaciana@ccae.ufpb.br

Abstract. Requirements engineering and architectural design are key activities
for successful development of software systems. Both activities are strongly in-
tertwined and interrelated, but many steps toward generating architecture models
from requirements models are driven by intuition and architectural knowledge.
Thus, systematic approaches that integrate requirements engineering and archi-
tectural design activities are needed. This paper presents an approach based on
model transformations to generate architectural models from requirements mod-
els. The source and target languages are respectively the i* modeling language
and Acme architectural description language (ADL). A real web-based recom-
mendation system is used as case study to illustrate our approach.

Keywords: Requirements engineering, Architectural design, Models
Transformation.

1 Introduction

The Requirements Engineering (RE) [12] and Software Architecture (SA) [8] are
initial activities of software systems development that have been emerging both in
research as in practice. Currently, software systems present characteristics such as
increased size, complexity, diversity and longevity. Thus, their development must
consider proper requirements elicitation and modeling approaches, as well as use
systematic architectural design methods. A great challenge is the development of
systematic methods for building architectural design that satisfies the requirements
specification. Some efforts have been made to understand the interaction between RE
and SA activities [3], [1]. Therefore, many approaches claim that there is a semantic
gap between these two activities. However, with the widely use of iterative and in-
cremental software development process as the de facto standard, a strong integration
between requirements and architectural design activities can facilitate traceability and
the propagations of changes between these models efficiently [15]. In this context, we
can highlight the twin peaks model [14], which emphasizes the co-development of
requirements and architectures, incrementally elaborating details.

 A Model Transformation Approach to Derive Architectural Models 371

Recognizing the close relation between architectural design and requirements
specification [5], the Model-driven Development (MDD) [11] appears as an effective
way to generate architectural models from requirements models by using model trans-
formations rules, in which the correlation between requirements and architectural
models can be specified accurately. Thus, in this paper, we show an approach to gen-
erate architectural models from requirements model that includes horizontal and ver-
tical transformations rules. The horizontal transformations are applied to requirements
models and results in other requirements models closer to architectural model. While
the vertical transformations map these resulting requirement models in architectural
models. The main contribution is on the vertical transformation rules that complement
the horizontal transformation rules presented in [13]. In our approach, architectural
models are described using Acme ADL [6], which provides a simple structural
framework for representing architectures, whereas requirements models are described
using the modeling language offered by the i* [18], a goal-oriented approach to de-
scribe both the system and its environment in terms of strategic actors and social
dependencies among them.

This paper is organized as follows. Section 2 introduces our case study and over-
views the main concepts of the i* and Acme languages. Section 3 presents our
approach based on model transformation rules. Section 4 describes related works.
Finally, Section 5 summarizes our work and points out open issues.

2 Background

This section presents our case study and briefly reviews the requirements modeling
and architectural description languages used in our approach.

Fig. 1. Partial BTW Strategic Rationale Model

2.1 BTW Project

The BTW-UFPE project [2], presented in the SCORE contest held at ICSE 2009 [16],
is used to illustrate our approach. BTW consists in a route-planning system that helps
users through the recommendation of advices about a specific route searched by the

372 M. Lucena et al.

user. This information is posted by other users and might be filtered to provide the
user only with relevant information about the place that he/she intends to visit.

The BTW-UFPE team generated artifacts that include i* requirement models. We
chose this project by two reasons: it is a real case study that resulted in a software
system; and the produced i* models are not large but have enough complexity to
illustrate the benefits of our approach. Fig. 1 shows a partial SR model for BTW. Its
complete models can be found in [2].

2.2 The Source: i* Requirements Goal Model

i* defines models to describe both the system and its environment in terms of inten-
tional dependencies among strategic actors [18].There are two different models: the
Strategic Dependency (SD) describes information about dependencies and the Strate-
gic Rationale (SR) describes details about each actor.

The SR model complements the information provided by the SD model by adding
internal details for each strategic actor to describe how the dependencies are accom-
plished. In i* models, a depending actor is called a depender, and an actor that is de-
pended upon is a dependee. Fig. 1 presents dependencies between Advice Giver and
BTW actors. Considering the Advice be Published goal dependency, the BTW actor is
the depender actor whereas the Advice Giver actor is the dependee actor of this de-
pendency. BTW represents the software system to be developed. Thus, an actor can
depend upon another one to achieve a goal, execute a task, provide a resource or sat-
isfy a softgoal. Softgoals are associated to non-functional requirements, while goals,
tasks and resources are associated to system functionalities [19]. Actor’s internal
details also include tasks, goals, resources and softgoals, which are further refined
using task-decomposition, means-end and contribution links. The task-decomposition
links describe what should be done to perform a certain task (e.g., the relationship
between the Filter Advices for a route task and the Access Maps database task). The
means-end links suggest that one intentional element can be offered as a means to
achieve another intentional element (e.g., relationship between the Select Advice by
User History task and the Relevant Advice be chose goal). Finally, the contributions
links suggest how a task can contribute (positively or negatively) to satisfy a softgoal
(e.g., the relationship between the Write information about a point task and the Pre-
cise Advices softgoal).

In this paper, we are concerned with how to manage the internal complexity of the
software actor (BTW) and how to produce architectural models from it.

2.3 The Target: ACME Architecture Models

A set of elements are important when describing instances of architectural designs.
According to [17], these elements include Components, Connectors, Interfaces, Con-
figurations and Rationale. Acme ADL [6] supports each of these concepts but also
adds ports, roles, properties, and representations. Besides, Acme has a textual and a
graphical language. Acme Components represent computational units of a system.
Connectors represent and mediate interactions between components. Ports correspond
to external interfaces of components. Roles represent external interfaces of connec-
tors. Ports and roles (interface) are points of interaction, respectively, between com-
ponents and connectors. Systems (Configurations) are collections of components,

 A Model Transformation Approach to Derive Architectural Models 373

connectors and a description of the topology of the components and connectors. Sys-
tems are captured via graphs whose nodes represent components and connector and
whose edges represent their interconnectivity. Properties are annotations that save
additional information about elements (components, connectors, ports, roles, and
systems). Representations allow a component, connector, port, and role to describe its
design in detail by specifying a sub-architecture that refines the parent element. Prop-
erties and representations could be associated to the rationale of the architecture, i.e.,
information that explains why particular architectural decisions were made, and for
what purpose various elements serve [17].

Architectural design is not a trivial task, even using specific concepts to describe
architecture. It depends on the expertise of the architects and on how they understand
the requirements. To make this task more systematic, we propose a MDD approach to
derivate an early architectural design from requirements models.

3 Architectural Design by Using Model Transformations

To generate Acme architectural models from i* models, we propose a process com-
posed of three major activities: (i) analysis of internal elements, (ii) application of
horizontal rules and (iii) application of vertical rules. This process recognizes that i*
models are intrinsically complex and this complexity need to be managed. The first
two activities are concerned to this while the last activity is concerned with the devel-
opment of architectural design. To perform these activities, it is required to use, re-
spectively: (i) conditions to guide the software actor’s decomposition, (ii) model
transformation rules to generate modular i* models, and (iii) model transformation
rules to generate Acme architectural models. This process is semi-automatic, since
interventions of the requirements engineer are likely to be necessary to take some
decisions. The activity (i), in particular, uses some conditions to assist the require-
ments engineer to choose elements that can be moved to another software actor to
balance the responsibilities of an actor. The other activities can be developed with few
interventions.

In this paper, we concentrate on the activity (iii), as the activities (i) and (ii) have
already been presented in [13]. We only present them briefly in the Section 3.1 and
3.2, respectively.

3.1 Analysis of Internal Elements

The decomposition criterion is based on the separation and modularization of ele-
ments that are not strongly related to the application domain. For example, in the
BTW SR model (Fig 1), which captures the web recommendation system require-
ments [2], we can identify those elements that are not fully related to the application
domain (recommendation). At this point, a requirements engineer must perform the
analysis. Some sub-graphs internal to the BTW actor are considered independent from
the recommendation application domain and, therefore, can be moved to new soft-
ware actors. Thus, sorting out the independent elements into other actors can improve
reusability and maintainability of system specification at the requirements level. In
fact, considering the BTW SR model, the following elements could be used as part of

374 M. Lucena et al.

a system of a different application domain: Map to be Handled, User Access and
Information to be published.

3.2 Application of Transformation Rules

In this activity, an appropriate horizontal transformation rule must be applied. The
rule to be applied depends on the type of relationship between the elements to be
moved and the elements that will remain in the original system actor. The general
purpose of the horizontal rules is to delegate internal elements from the system actor
to other actors [13]. This delegation establishes a dependence relationship between
the new actors and the original actor, maintaining the semantics of the original model
in the resulting model. These horizontal rules will be briefly presented in this section
(for more details see [13]).

Fig. 2. Modular SR i* model

HTR1 is a transformation rule that moves a sub-element present in a task-
decomposition to another actor. HTR2 considers the situation where the sub-graph to
be moved has the root element as a “means” in a means-end relationship. After apply-
ing rules HTR1 and HTR2, the resulting model may not be in conformity with the i*
notation. In this case, we need to use a corrective rule, such as HTR3. This rule was
defined to preserve the information about contribution links and maintain the informa-
tion about contribution links and coherence of i* models as it is proposed in [9]. And
HTR4 is applied when the sub-graph to be moved out has a sub-element shared with
other sub-graphs.

After applying the horizontal rules to the selected elements in Analysis activity,
three new actors are created related to sub-graphs of Map be Handled, User Access be
Controlled and Information be published in Map goals (Fig. 2). As these new actors
receive the name of their elements (goal or task), we suggest to use a specific noun
related to the domain of these elements. Thus, we have respectively Mapping Han-
dler, User Access Controller, and Map Information Publisher. In this activity, the
main rules used were HTR3 and HTR4.

As the horizontal rules are applied, the i* model is transformed into an i* model
closer to an early architectural design. This modularized i* model is an entry to the
activity of vertical rules application. All new created actors, the main software actor

 A Model Transformation Approach to Derive Architectural Models 375

and their dependencies among each other will be used in the vertical transformation
rules. Next section presents the rationale behind the vertical transformation rules to
produce Acme architectural models from i* requirements models.

3.3 Generating Architectural Models

The models associated with different activities of the software development process
are created using specific model description language. Therefore, how models will be
generated from a stage to another depend on how the transformation rules are defined
considering the main elements of each involved modeling language. We start to estab-
lish the vertical transformation rules considering only actors and dependencies to map
i* elements to Acme elements, as it is presented in [4]. Fig. 3 shows a generic map-
ping without considering the type of dependency between actors and dependencies, in
i*, to components and connectors in Acme graphical and textual language.

I* Model

Acme Model
1 System ClientServer = {
2 Component DependerActor = {
3 Port port1 = {
4 Property Required : boolean = true; } }
5 Component DependeeActor = {
6 Port port2 = {
7 Property Provided : boolean = true; } }
8 Connector ConnDependency = {
9 Role depender = { }
10 Role dependee = { } }
11 Attachment DependerActor.port1 to connDependency.depender;
12 Attachment DependeeActor.port2 to ConnDependency.dependee;}

Fig. 3. Mapping a generic dependency between i* actors to ACME

A component in software architecture is a unit of computation or a data store hav-
ing a set of interaction points (ports) to interact with external world [17]. An actor in
i* is an active entity that carries out actions to achieve goals by exercising its
knowhow [18]. The actor representing the software establishes a correspondence with
modules or components [7]. In addition, an actor may have as many interactions
points as needed. Hence, an actor in i* can be represented in terms of a component in
Acme (Fig. 3).

Connectors are architectural building blocks that regulate interactions among com-
ponents [17]. In Acme, connectors mediate the communication and coordination ac-
tivities among components. In i*, a dependency describes an agreement between two
actors playing the roles of depender and dependee, respectively [4]. Thus, we can
represent a dependency as an Acme connector. Interfaces are points of access among
components and connectors. However there are not ports in i*, but points where de-
pendencies interact with actors. Depending on role of dependency (depender or de-
pendee) we can know when an actor is a depender or a depended upon actor. Hence,
the roles of depender and dependee are mapped to connector roles that are comprised
by the connector (Fig. 3). Thus, we can distinguish between required ports (where the

376 M. Lucena et al.

actor is a depender) and provided ports (where actor is a dependee). For instance,
Fig. 3 shows the use of property Required (line 4) and property Provided (line 7)
indicating the direction of communication between the DependerActor and De-
pendeeActor components. Therefore, in i* a depender actor depends on a dependee
actor to accomplish a type of dependency. In Acme, a component needs that another
component carries out a service and the requisition of this service is done by a re-
quired port, while the result of this service is done by a provided port, thus, a connec-
tor allows the communication between these ports. A component offers services to
another component using provided ports and a component require services using its
required port.

Applying this mapping in BTW project (Fig. 2) we will have four components:
BTW, Mapping Handler, User Access Controler, and Information map Publisher.
Each dependency is mapped to a connector and the roles of their connectors will be
depender and dependee according the direction of dependency. For instance, when an
actor has at least one dependency as a dependee, its equivalent component will have
at least one provided port (Fig. 3). Therefore, the Mapping Handler component will
have a provided port considering the Placemark resource dependency. Having all
components, ports, connectors and roles mapped and defined, the next step is analyze
each type of dependency.

i* Model

Acme Model

5 Component DependeeActor = {
6 Port port2 = {
7 Property Provided : boolean = true;
8 Property goal: boolean; } }

Fig. 4. Mapping a goal dependency to ACME

In i*, the type of dependency between two actors describes the nature of the
agreement established between these actors. There are four types of dependency:
goals, softgoals, tasks and resources. Each type of dependency will define different
architectural elements in connectors and in ports that play their interfaces. A goal
dependency is mapped to a Boolean propriety related to a provided port of the com-
ponent that offers this port (Fig. 4, line 8). This property represents a goal that this
component is responsible to fulfill by using a provided port.

The type of property is Boolean in order to represent the goal satisfaction (true) or
no satisfaction (false). Applying this goal dependency mapping in BTW case study
implies that BTW and Information Publisher components will add new Boolean prop-
erties in respectively provided ports.

A task dependency represent that an actor depends on another to execute a task
[18] and that a task describes or involves processing [7]. Since port in Acme port
correspond to external interfaces of components and offer services, as it was said
before. Hence, a task dependency is mapped directly to a provided port of component
that offers this port (Fig. 5, line 6). In our BTW example we do not have task depend-
encies related to software actors (Fig. 2).

 A Model Transformation Approach to Derive Architectural Models 377

i* Model

Acme Model

5 Component DependeeActor = {
6 Port Task = {
7 Property Provided : boolean = true; } }

Fig. 5. Mapping a task dependency to Acme

In a resource dependency, an actor depends on another actor to provide informa-
tion. Therefore, a resource dependency is mapped to a return type of a property of a
provided port (Fig. 6, line 8). This return type represents the type of the resulting
product that an operation related to some service that the component is responsible to
perform. This mapping is to show that while a task is generate by an actor in a com-
ponent, it is generated by an element inside of port. In Fig. 2, there is one case of
resource dependency that is placemark resource dependency. Thus, the provided port
of Mapping Handler component receives a property with a method that generates this
resource.

i* Model

Acme Model

4 Property Type Resource;
5 Component DependeeActor = {
6 Port port2 = {
7 Property Provided : boolean = true;
8 Property getResource : Resource; } }

Fig. 6. Mapping a resource dependency to Acme

A softgoal dependency is similar to goal dependency but its fulfillment cannot be
defined precisely. A softgoal is related to a non-functional requirement that will be
treated by a task or a softgoal more specific. Hence, a softgoal dependency is mapped
to a property with enumerated type present into the port that plays the dependee role
of the connector (Fig. 7, line 9). This enumerated type is used to describe the degree
of satisfaction of the softgoal. For the BTW example, the Publisher component has a
provided port that interface with Precise Advices connector by the dependee role.
This provided port will have a property softgoal defined as enumeration type. The
same mapping is done with the security dependency between BTW and Access User
Controller component.

Acme graphical language uses labels to highlight added elements used in textual part.
However, using AcmeStudio tool, information of types of dependency only is presented
in textual language. Each mapping presented will be formalized by vertical transforma-
tion rules following the same structure of horizontal transformation rules [13].

378 M. Lucena et al.

i* Model

Acme Model

4 Property Type SoftgoalType =
5 enum {make,somePos,help,unkown,break,someNeg,hurt};
6 Component DependeeActor = {
7 Port port2 = {
8 Property Provided : boolean = true;
9 Property softgoal: SoftgoalType; } }

Fig. 7. Mapping a softgoal dependency to Acme

4 Related Work

We highlight two goal-oriented approaches [20][21] and a MDD approach [15]. The
SIRA approach [20] focuses on a systematic way to assist the transition from re-
quirements to architecture. It describes a software system from the perspective of an
organization in the context of the Tropos methodology. The requirements and archi-
tectural models are described in i*. An organizational architectural style is chosen
based on the non-functional requirements. Thus, an architectural model is created
considering similarities of elements of requirements and organizational style. In our
proposal, we also use i* goal model as input model, but we modularize these models
to reach an architectural configuration. Moreover, we also present a systematic way to
treat non-functional requirements and we use a target model based on a generic
architectural language (Acme). In [20] it is not clear how the architectural model is
structured.

Lamsweerde [21] defines a method to generate architectural models from KAOS
requirements models. In this approach, specifications are gradually refined to meet
specific architectural constraints of the domain and an abstract architectural draft is
generated from functional specifications. The resulting architecture is recursively
refined to meet the various non-functional goals analyzed during the requirements
activities. It is used KAOS models, which consist of a graphical tree and a formal
language. In our approach, we use another goal model as input model, the i* models.
The relation between i* notation and software architecture facilitate the mapping
between these models, while this is not occur in KAOS models. In contrast, that ap-
proach provides guidelines to refine an initial architecture applying architectural
styles and patterns, while in our approach we provide a preliminary architecture.

In [15] is proposed a set of mapping rules between the AspectualOV-graph (AOV-
graph) and the AspectualACME, an architecture description language. Each element
(goal/softgoal/task) present in an AOV-graph is mapped to an element of Aspectu-
alACME, depending on the position that each element is in the graph hierarchy. The
information about the source of each element is registered in the properties of a com-
ponent or a port. These properties make it possible to keep traceability and change
propagation between AspectualACME to AOV-graph models and vice-versa. We also
propose a set of mapping rules between a goals model i*, but considers the non-
aspectual version of ACME ADL.

 A Model Transformation Approach to Derive Architectural Models 379

5 Conclusions and Future Works

Our approach generates an initial architectural model described in Acme, from i*
requirements models. To achieve this, it was necessary to balance the responsibilities
of a system actor, delegating them to other new system actors. A set of horizontal
rules proposed in [13] were used to generate modular i*models which are closer to
architectural design. From the modular i* model we derive an Acme model through a
set of mappings between the concepts of both languages. These mappings were based
on [4] which the purpose was to map i* architectural models to architectural models
described using UML-RT, since i* was not conceived to be an ADL. Besides, UML-
RT is a language specific to Object Orientation paradigm. The difference from this
work to ours is that we are concerned in creating an architectural design from a re-
quirement specification and not just mapping between languages for architectural
description. Since our mapping relates requirements and architectural models, allow-
ing better traceability and propagation change. Furthermore, using a more general
architectural language led us to propose more generic mapping rules, which in turn
can serve as a guide to derive architectural models in other ADLs. We assessed our
approach using a web recommendation system (BTW) that is a real system developed
for a Software Engineering contest at ICSE 2009 [2].

An issue that needs to be further explored is the systemic nature of some NFRs.
Currently we are also defining formally our transformation rules (horizontal and ver-
tical) using Alloy language to ensure that the resulting models will be well formed.
The use of Alloy will enable us to define the transformation rules and verify their
soundness. However, in order to implement our proposal we rely on a specific model
transformation language, namely ATL.

Other future work includes automating this approach through the implementation
of our transformation rules in the Istar Tool [10], a tool based on MDD and Eclipse
Platform. This will allow us to investigate the scalability of our approach in some real
life complex projects.

References

1. Berry, D.M., Kazman, R., Wieringa, R.: 2nd Intl Ws on From SofTware Requirements to
Architectures (STRAW 2003) at ICSE 2003, Portland, USA (2003)

2. Borba, C., Pimentel, J., Xavier, L.: BTW: if you go, my advice to you Project (July 2009),
https://jaqueira.cin.ufpe.br/jhcp/docs/

3. Castro, J., Kramer, J.: 1st Intl. Workshop on From SofTware Requirements to Architec-
tures (STRAW 2001) at ICSE 2001, Toronto, Canada (2001)

4. Castro, J., Silva, C., Mylopoulos, J.: Modeling Organizational Architectural Styles in
UML. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 111–126.
Springer, Heidelberg (2003)

5. Deboer, R., Vanvliet, H.: On the similarity between requirements and architecture. Journal
of Systems and Software (2008)

6. Garlan, D., Monroe, R., Wile, D.: ACME: An Architecture Description Interchange Lan-
guage. In: Proc. of the CASCON 1997 (1997)

380 M. Lucena et al.

7. Grau, G., Franch, X.: On the Adequacy of i* Models for Representing and Analyzing
Software Architectures. In: Hainaut, J.-L., Rundensteiner, E.A., Kirchberg, M., Bertolotto,
M., Brochhausen, M., Chen, Y.-P.P., Cherfi, S.S.-S., Doerr, M., Han, H., Hartmann, S.,
Parsons, J., Poels, G., Rolland, C., Trujillo, J., Yu, E., Zimányie, E. (eds.) ER Workshops
2007. LNCS, vol. 4802, pp. 296–305. Springer, Heidelberg (2007)

8. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley,
Reading (2000)

9. Horkoff, J.: Using i* modeling for evaluation, Master’s Thesis, University of Toronto, De-
partment of Computer Science (2007)

10. IStarTool Project: A Model Driven Tool for Modeling i* models (July 2009),
 http://portal.cin.ufpe.br/ler/Projects/IstarTool.aspx

11. Kleppe, A., Warmer, J., Bast, W.: MDA Explained - The Model Driven Architecture:
Practice and Promise. Addison-Wesley, Reading (2003)

12. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Techniques.
Wiley, John & Sons Inc. (1998)

13. Lucena, M., Silva, C., Santos, E., Alencar, F., Castro, J.: Applying Transformation Rules
to Improve i* Models. In: SEKE 2009, USA, pp. 43–48 (2009)

14. Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE Computer 34(3),
115–117 (2001)

15. Silva, L., Batista, T., Garcia, A., Medeiros, A., Minora, L.: On the Symbiosis of Aspect-
Oriented Requirements and Architectural Descriptions. In: Moreira, A., Grundy, J. (eds.)
Early Aspects Workshop 2007 and EACSL 2007. LNCS, vol. 4765, pp. 75–93. Springer,
Heidelberg (2007)

16. The SCORE 2009 (July 2009), http://score.elet.polimi.it/index.html
17. Taylor, R.N., Medvidovi, N., Dashofy, I.E.: Software Architecture: Foundations, Theory,

and Practice. John Wiley & Sons, Chichester (2009)
18. Yu, E.: Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis. De-

partment of Computer Science, University of Toronto, Canada (1995)
19. Yu, E., et al.: i-star Tutorial in RE 2008, Spain, pp. 1–60. IEEE Computer Society, Los

Alamitos (2008)
20. Bastos, L., Castro, J.: From requirements to multi-agent architecture using organisa-tional

concepts. ACM SIGSOFT Software Engineering Notes 30(4), 1–7 (2005)
21. Van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo, M., In-

verardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

	A Model Transformation Approach to Derive Architectural Models from Goal-Oriented Requirements Models
	Introduction
	Background
	BTW Project
	The Source: i* Requirements Goal Model
	The Target: ACME Architecture Models

	Architectural Design by Using Model Transformations
	Analysis of Internal Elements
	Application of Transformation Rules
	Generating Architectural Models

	Related Work
	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

