
C

J
a

b

c

a

A
R
R
A
A

K
R
A
M
M

1

1
2
c
a
m
l
f
t
b
K
m
a
t
p
w
e
a
i
t

c
(

0
d

The Journal of Systems and Software 85 (2012) 463– 479

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

hanging attitudes towards the generation of architectural models

aelson Castroa, Marcia Lucenab,∗, Carla Silvac, Fernanda Alencara, Emanuel Santosa, João Pimentela

Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
Universidade Federal da Paraíba (UFPB), Rio Tinto, PB, Brazil

 r t i c l e i n f o

rticle history:
eceived 8 June 2010
eceived in revised form 23 May 2011
ccepted 24 May 2011

a b s t r a c t

Architectural design is an important activity, but the understanding of how it is related to requirements
modeling is rather limited. It is worth noting that goal orientation is an increasingly recognized paradigm
for eliciting, modeling, specifying, and analyzing software requirements. However, it is not clear how
goal models are related to architectural models. In this paper we present an approach based on model
vailable online 12 June 2011

eywords:
equirements engineering
rchitectural design
odel driven development

transformations to derive architectural structural specifications from system goals. The source and tar-
get languages are respectively the i* (iStar) modeling language and the Acme architectural description
language. A real case study is used to show the feasibility of our approach.

© 2011 Elsevier Inc. All rights reserved.
odel transformations

. Introduction

Requirements engineering (RE) (Kotonya and Sommerville,
998) and software architecture design (SAD) (Hofmeister et al.,
001) are initial activities of a software development process. Since
urrent software systems present increasing complexity, diversity
nd longevity, their development must consider the use of proper
ethods and modeling languages both for RE and SAD. A great chal-

enge, in this context, is the development of systematic methods
or designing architectures that satisfy requirements specifica-
ions. Some efforts have been made to understand the interaction
etween RE and SAD activities (Berry et al., 2003; Castro and
ramer, 2001). In fact, with the widely use of iterative and incre-
ental software development processes as the de facto standard,

 strong integration between RE and SAD activities can facilitate
raceability and the propagation of changes between the models
roduced in these activities (Silva et al., 2007). In this context,
e can highlight the twin peaks model (Nuseibeh, 2001), which
mphasizes the co-development of requirements specification and
rchitectural design description, incrementally elaborating details
n both artifacts. Recognizing the close relation between architec-
ural design description and requirements specification, as argued

∗ Corresponding author. Tel.: +55 84 32153814x218.
E-mail addresses: jbc@cin.ufpe.br (J. Castro), marciaj@dimap.ufrn.br (M. Lucena),

arla@dce.ufpb.br (C. Silva), fernanda.ralencar@ufpe.br (F. Alencar), ebs@cin.ufpe.br
E. Santos), jhcp@cin.ufpe.br (J. Pimentel).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.05.047
in (de Boer and van Vliet, 2009), using model transformation
approaches (Czarnecki and Helsen, 2003) appears as an effective
way to generate architectural models from requirements models,
in which the correlation between requirements and architectural
models can be accurately specified.

This paper presents a systematic process based on model trans-
formations to generate architectural models from requirements
models and includes horizontal and vertical transformations rules.
The horizontal transformations are applied to the requirements
models resulting in intermediary requirements models closer to
architectural models (Lucena et al., 2009a). Vertical transforma-
tions map these intermediary models into architectural models
(Lucena et al., 2009b). The activities related to architectural design
involves the selection and application of architectural patterns that
best satisfy non-functional requirements.

In our approach, requirements models are described using the
i* (iStar) (Yu, 1995), a goal oriented modeling language defined
in terms of strategic actors and social dependencies among them.
Whereas architectural models are described using the Acme ADL
(Garlan et al., 1997), which provides a simple structural framework
for representing architectures.

Our choice of i* for specifications was motivated by the grow-
ing number of groups around the world that have been using the i*
modeling framework in their research on early requirements engi-
neering, business process design, organization modeling, software
development methodologies, and more (Yu et al., 2011; Castro et al.,

2010; Franch, 2010). On the other hand, for architecture we opt for
Acme because it is a generic ADL that can be used as a common
interchange format for architecture design tools and/or as a foun-
dation for developing new architectural design and analysis tools.

dx.doi.org/10.1016/j.jss.2011.05.047
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:jbc@cin.ufpe.br
mailto:marciaj@dimap.ufrn.br
mailto:carla@dce.ufpb.br
mailto:fernanda.ralencar@ufpe.br
mailto:ebs@cin.ufpe.br
mailto:jhcp@cin.ufpe.br
dx.doi.org/10.1016/j.jss.2011.05.047

4 tems a

N
2

o
g
g
S
r
a

2

s
V
s
o
o
t
m
h

i

ii

iv

v

a
r
t
m
s
m

r
d
t
s
a
s
b
t
t

3

r
u

64 J. Castro et al. / The Journal of Sys

ote that, if required, Acme descriptions can be mapped to UML
.0 (Goulão and Abreu, 2003).

The rest of this paper is organized as follows. Section 2 defines
ur problem statement. Section 3 introduces our case study and
ives an overview of the main concepts of the i* and Acme lan-
uages. Section 4 outlines our approach, applied to the case study.
ection 5 summarizes our work and points out open issues and
elated works. Last but not least, Section 6 presents the conclusions
nd future works.

. Problem statement

Many researchers associate requirements with the problem-
pace and architecture with the solution-space (de Boer and van
liet, 2009). This leads to a semantic gap between requirements
pecifications and architectural design descriptions, which consists
f conceptual differences between what to do (requirements) in
pposition to how to do it (architecture, design and coding). From
he challenges that appear when developers try to match require-

ents and architecture, presented in (Grünbacher et al., 2004), we
ighlight:

i. Requirements are often captured informally in natural language
while architecture is specified in a semi-formal way.

i. Properties of the software described as non-functional require-
ments (NFRs) are difficult to specify in architectural models.

i. The iterative and concurrent evolution of requirements
and architectural models are usually based on incomplete
requirements. Besides, some requirements can only be under-
stood/elicited after modeling the architectural design.

. Mapping requirements specifications to architectural design
descriptions and promoting a consistent maintenance of these
artifacts are difficult tasks. Moreover, a simple requirement
may be addressed by various architectural elements and a sin-
gle architectural element may have non-trivial links to several
requirements.

. In realworld, large-scale systems have to satisfy thousands of
requirements. For developing this kind of system, it is difficult
to identify and refine the architecturally relevant information
contained in the requirements, such as NFRs.

Despite these challenges, it is unusual to have a systematic
pproach that is concerned with analyzing and understanding the
equirements and producing a suitable set of architectural solu-
ions that satisfactorily meet the requirements. The techniques and

ethods used for software development should include a way of
ystematically dealing with the relationship between requirements
odels and architectural models.
What is the point of building rich, consistent and complete

equirements models if the transition to the architecture is
eveloped on an ad hoc basis, without paying attention to the rela-
ionship between the consumed and produced models? Moreover,
ome information present in the requirements specification, such
s the NFRs, can be lost in the transition to the architectural design,
ince the operationalization of these NFRs are often not considered
y current architectural design methods. In summary, it is impor-
ant to ensure that the requirements information is not lost during
he development process.
. Background

This section presents our case study and briefly reviews the
equirements modeling and architectural description languages
sed in the proposed process.
nd Software 85 (2012) 463– 479

3.1. BTW project

The BTW-UFPE project (Pimentel et al., 2010), presented in the
SCORE contest held at ICSE 2009 (SCORE, 2009), is used to illustrate
our approach. BTW (By The Way) consists in a route-planning sys-
tem that helps users through advices about a specific route searched
by the user. This information is posted by other users and might be
filtered to provide for the user only relevant information about the
place that he/she intends to visit.

The BTW-UFPE team generated artifacts that included i* require-
ment models. We chose this project for two reasons: (i) it is a real
case study that resulted in an awarded software system, and (ii)
the produced i* models are not large but have enough complex-
ity to illustrate the benefits of our approach. Figs. 1 and 2 show i*
models for the BTW project. Its complete models can be found in
(Pimentel et al., 2010).

3.2. The source: i* goal model

i* (iStar) defines models to describe both the system and its
environment in terms of intentional dependencies among strate-
gic actors (Yu, 1995). There are two different models: the strategic
dependency (SD) describes information about dependencies and
the strategic rationale (SR) defines actor details.

The SR model complements the information provided by the
SD model by exploiting internal details of their strategic actors
to describe how the dependencies are accomplished. For example,
Fig. 1 presents the SD model of the BTW project, focusing on depen-
dencies among actors. In i* models, a depending actor is called a
depender, and an actor that is depended upon is a dependee. Thus,
in Fig. 1 there is a software actor (BTW), actors representing human
agents (Travelers, that can be Advice Giver and Advice Receiver), and
an actor representing an external system (Internet Provider).

Fig. 2(a) is a SR model showing the BTW actor and its inter-
nal details. Fig. 2(b), for instance, presents a partial view of the
dependencies between Advice Giver and BTW actors. BTW repre-
sents the software system to be developed. Considering the Precise
Information softgoal dependency in Fig. 1, the BTW actor is the
depender actor whereas the Advice Giver actor is the dependee actor
of this dependency. Thus, there are four types of dependencies,
according to the dependum—i.e., according to what the depender
requires from the dependee. The dependum can be a softgoal, a
goal, a task or a resource (Fig. 1). Softgoals are generally used to
describe the actors’ desires related to quality attributes of their
goals. The tasks represent a way to perform some activity, that
is, they show how to perform some action to obtain satisfaction
of a goal or softgoal. The resources represent data or information
that an actor may provide or receive. Each type of dependency has
a different meaning, according to the definition of the respective
dependum. A goal dependency states that the depender needs the
dependee to satisfy a goal for him. Similarly, in a softgoal depen-
dency the depender needs the dependee to meet a softgoal. In a
task dependency, the dependee is asked to perform an activity for
the depender. A resource dependency express that the depender
needs some resource that may be provided by the dependee. Thus,
an actor can depend upon another one to achieve a goal, execute
a task, provide a resource or satisfy a softgoal. Softgoals are asso-
ciated to NFRs, while goals, tasks and resources are associated to
system functionalities (Yu et al., 2008).

Actor’s internal details also include tasks, goals, resources and
softgoals, which are further refined using task-decomposition,
means-end and contribution links (Fig. 2b). The task-decomposition

links describe what should be done to perform a certain task (e.g.,
the relationship between the Filter Advices for a route task and the
Access Maps database task). The means-end links suggest that one
intentional element can be offered as a means to achieve another

J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479 465

t with

i
U
c
n
W
g
(
e
d
C

t
t

3

a
m
a
c
t
l
s
a

i
R
(
p

Fig. 1. SD model of BTW projec

ntentional element (e.g., relationship between the Select Advice by
ser History task and the Relevant Advice be Chosen goal). Finally, the
ontributions links suggest how a task can contribute (positively or
egatively) to satisfy a softgoal (e.g., the relationship between the
rite information about a point task and the Precise Advices soft-

oal). Note that an element can be shared by different sub-graphs
through task-decomposition, contribution or means-end link). For
xample, in Fig. 2a, the Select Placemark task is shared through task-
ecomposition by both the Provide Maps Services and Add Advice
ontent tasks.

In this paper, we are particularly concerned with how to manage
he internal complexity of the software actor (e.g., BTW) and how
o produce architectural models from it.

.3. The target: Acme architecture models

A set of elements is important when describing instances of
rchitectural designs. According to Taylor et al. (2009), these ele-
ents include components, connectors, interfaces, configurations

nd rationale. Acme ADL (Garlan et al., 1997) supports each of these
oncepts but also adds ports, roles, properties, and representa-
ions. Besides, Acme has a graphical (Fig. 3a) and a textual (Fig. 3b)
anguage. Acme components represent computational units of a
ystem (e.g., BTW, Fig. 3). Connectors represent and mediate inter-
ctions between components (e.g., Publish In Map, Fig. 3).

A connector can present a label that represents the connector’s

dentifier. Ports correspond to external interfaces of components.
oles represent external interfaces of connectors. Ports and roles
interface) are points of interaction, respectively, between com-
onents and connectors. Attachments are used to link ports and
 BTW Actor and dependencies.

roles (e.g., port0 of BTW component is linked with role1 of connector
Publish In Map).

Systems (configurations) are collections of components, con-
nectors and a description of the topology of the components and
connectors. Systems are captured via graphs whose nodes rep-
resent components and connectors whose edges represent their
interconnectivity. Properties are annotations that define additional
information about elements (components, connectors, ports, roles,
and systems).

Representations (e.g., Map Info Publisher, Fig. 3) allow the
description of details about the sub-architecture that refines a
component, a connector, a port or a role. By using the binding
mechanism, the ports of a sub-component can be linked to the
correspondent ports of a parent component. Properties and repre-
sentations could be associated to the rationale of the architecture,
i.e., information that explains why particular architectural deci-
sions were made, and for what purpose various elements serve
(Taylor et al., 2009).

Architectural design is not a trivial task. It depends on the
expertise of the architects and on how they understand the require-
ments. To make this task more systematic, we propose a model
transformation approach to derive an early architectural design
from requirements models. In a software development process,
software architecture models should be related to requirements
models.

The relationship between them is usually established in an ad
hoc manner, relying on the expertise of the software architect.

A challenge, when using model transformation approaches, is to
define the transformation rules that guide the software devel-
oper through the process. In this paper, we propose a process that
smoothly transforms the initial requirements model into an early

466 J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479

Fig. 2. BTW strategic rationale model with dependencies (a) and partial BTW strategic rationale model (b).

J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479 467

e grap

a
t

4

R
s
m
m
c
t
a
r
u
a

d

Fig. 3. Overview of the Acm

rchitectural model. This process will be presented in the next sec-
ion.

. Stream process

Our approach was named “Strategy for Transition between
Equirements models and Architectural Models” (STREAM). It con-
ists of: (a) a set of transformation rules to prepare requirements
odels; (b) a set of transformation rules to generate architectural
odels; and (c) a systematic process to assist developers. The pro-

ess includes four main macro-activities that will be detailed in
he next sections: (i) prepare requirements models, (ii) generate
rchitectural solutions, (iii) select an architectural solution, and (iv)
efine architecture. Fig. 4 presents the flow of these macro-activities

sing the SPEM notation (Consortium, 2006). Each macro-activity
ggregates a flow of activities that will be detailed afterwards.

The prepare requirements models activity (i), in particular,
escribes some conditions to assist the requirements engineer to

Fig. 4. Overview of the
hical and textual notation.

choose elements that can be moved to another software actor to
balance the responsibilities of an actor. It is worth noting that
preliminary versions of the prepare requirements models (i) and
generate architectural solutions (ii) activities have already been
presented respectively in Lucena et al. (2009a,b).

4.1. Prepare requirements

i* offers expressive models to capture social and intentional
characteristics of a system organizational context. Actors and
dependencies are core concepts. Actors have desires and needs.
They are concerned with opportunities and vulnerabilities. Thus, i*
is used to explicitly capture stakeholders’ motivations and rationale

in a requirements model (Yu, 1995).

However, i* models are often overloaded with information that
captures features of both the system organizational environment
and the software system itself. The more detailed i* models are, the

STREAM process.

4 tems and Software 85 (2012) 463– 479

m
e

b
u
t
m
e
m
p
c
m
s

s
o
i
r
o
a
b
m
m
t

t
a
e
i
a
u
m

o
r
b

o
u
i
p

e
i
n
l
t
m
a

e
t
w
V
a
i
C

o
r
m
(
o
N

a

Table 1
Transformation rule to move sub-element in a task-decomposition link.

HTR1 – Move a sub-element in a task-decomposition

(c) Pre-condition: a root element (task or goal) of the graph to be transferred is
decomposed into sub-elements that do not share any sub-element through
task-decomposition or means-end links.
(d) Effects: the sub-graph that is independent from the application domain
(e.g., the sub-graph whose root is the Information be published in Map goal) is
moved from the original actor to a new actor. The sub-element that was
moved out, but remain linked to the original actor (e.g., Information be
published in Map goal), will be replicated as a dependency relationship of same
68 J. Castro et al. / The Journal of Sys

ore complex they become. Hence, i* models can become unnec-
ssarily hard to read, understand, maintain and reuse.

Accordingly to Estrada et al. (2006), the i* modeling language can
e evaluated using several aspects, from which we highlight mod-
larity management. Modularity measures the degree to which
he modeling language offers well-defined building blocks (i.e.,

odules) for building a model. The modules should allow the
ncapsulation of internal structures of the model in a concrete
odeling construct. This characteristic ensures that changes in one

art of the model will not be propagated to other parts, whereas
omplexity management measures the capability of the modeling
ethod to provide a hierarchical structure for its models, con-

tructs and concepts.
Although i* incorporates a decomposition mechanism based on

trategic actors, which could be used to improve modularization
f i* models, often the way in which this mechanism is deployed
s not suitable to produce models that are easy to maintain and
euse. Current methods for i* modeling, represent the rationale
f an actor in a monolithic way. Sometimes several refinements
re described in a mixed way, making it hard to visualize the
oundaries of sub-graphs related to specific domains. This poor
odularity compromise the management of the complexity of the
odels, an important pre-requisite for the adoption of i* in indus-

rial settings (Estrada et al., 2006).
Considering this disadvantage of i * with respect to modularity,

here are some works addressing this issue. The most remark-
ble contributions are related to incorporating of aspects (Alencar
t al., 2010), services (Estrada, 2008) and modules (Franch, 2010)
nto i*. Among these works, the most closely with the modular
pproach used in our approach is the work that incorporates mod-
les (Franch, 2010), specifically the concept of SR module. An SR
odule is composed of SR elements and links among them.
It should contain at least two SR elements, with a minimum of

ne link among them. At least one of the SR elements shall be a
oot. From the root elements, all other intentional elements shall
e reachable.

Therefore, we propose to take the modularity problem by means
f a divide and conquer strategy, whereas a strategic actor can be
sed as a decomposition mechanism that divides complex actors

nto meaningful and manageable sub-actors. We claim that such
re-processing can greatly improve the modularity of i* models.

The aim of this activity is to improve the modularity of the
xpanded/refined software actor. It allows delegating different
ssues of a problem, initially concentrated into a single actor, to
ew actors. This enables to deal with each of them separately, fol-

owing the separation of concerns principle (Dijkstra, 1976). Thus,
his activity uses as decomposition criterion the separation and

odularization of elements that are not strongly related to the
pplication domain and that could easily be used in other domains.

In order to assist the requirements engineer to identify the
lements that can be removed from the software actor, we propose
he following heuristics: (H1) Search internal elements in the soft-
are actor that are independent of the application domain; (H2)
erify whether these elements can be moved from the software
ctor to another software actor without compromising the behav-
or and the understandability of the actor’s internal details; (H3)
heck whether these elements can be reused in different domains.

For example, in the BTW SR model (see the selected parts
f Fig. 2a), which captures the web recommendation system
equirements (Pimentel et al., 2010), we can identify some ele-
ents that are not fully related to the current application domain

recommendation systems). Furthermore, they can be delegated to

ther actors, which could possibly be reused in other applications.
ote that this analysis is performed by the requirements engineer.

In our case study, some sub-graphs internal to the BTW actor
re considered independent from the recommendation application
type relating to the original actor, as the depender, and the new actor, as the
dependee. Besides, all the existent external dependencies of this transferred
sub-graph also will be transferred to the new actor.

domain. Therefore, they can be moved to new software actors. Thus,
sorting out the independent elements into other actors can improve
reusability and maintainability of the software requirements spec-
ification. In fact, considering the BTW SR model (see the selected
parts of Fig. 2a), the following elements could be seen as being inde-
pendent of the application domain: Map to be Handled, User Access
be Controlled and Information be published in map.

The decomposition has the objective of modularizing i* models
by delegating responsibilities of the software actor to other actors
that are in charge of a particular concern. In this paper, concerns
are cohesive groups of domain independent elements. The modu-
larization is performed by a set of horizontal transformations rules.
Each rule performs a small and localized transformation that pro-
duces a new model that decomposes the original model. Both the
original and the produced models are described as i* models.

The proper rule to be applied depends on the type of relationship
(task-decomposition, means-end and contribution) between the
elements to be moved out and the elements that will remain in the
original software actor. This delegation establishes a dependency
relationship between the new actors and the original actor, aiming
at keeping the same semantics of the original model in the result-
ing model. A special case to be considered is when some element
is shared (through task-decomposition, means-end or contribution
relationship).

Hence, we propose four horizontal transformation rules: HTR1,
HTR2, HTR3 and HTR4. The first three rules address, respectively,
elements that participate in task-decomposition, means-end or
contribution relationship. The last one deals with situations where
there is some shared element.

Horizontal transformation rule 1 (HTR1) is a transformation rule
that moves a sub-task, present in a task-decomposition, to another
actor. Table 1 presents the structure of HTR1, showing two mod-
els, one to illustrate the context in which the original model can
match before applying the rule (a) and other illustrating the result-
ing model after applying the rule (b). In addition, a description of
the conditions required for the application of the rule (c) and the
effects produced by the rule (d). Since HTR1 and HTR3 were applied
in BTW application (Fig. 2), so only these rules are used to illus-
trate the models in (a) and (b). In order to illustrate the remaining
rules HTR2 and HTR4 another example, based in a web application

(Castro et al., 2002), was used.

Horizontal transformation rule 2 (HTR2) considers the situation
where the sub-graph to be moved has the root element as a “means”
in a means-end relationship (see Table 2).

J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479 469

Table 2
Transformation rule to move the“means” sub-graph in a means-end link.

HTR2 – Move “means” sub-graph in a means-end link

(c) Pre-condition: a root goal of a graph (e.g., Item Searching Handled) is an
“end” in one or more means-end relationships and, at least one of its “means”
is a task (e.g., Query Database). Besides, its sub-graph does not share any
element (through task-decomposition or means-end links) with other
sub-graphs (independent sub-graph).
(d) Effects: an independent sub-graph (alternative) will be moved to a new
actor. The root of transferred sub-graphs (e.g., Query Database task) must be
replicated inside the original actor. From the replicated elements, a new

s
n
p
w

a
e
t
G
i
(
t
m
t

e
l
I
t
a
b
c
w
M

T
T

Table 4
Transformation rule to move shared elements.

HTR4 – Move a shared sub-element

(c) Pre-condition: There is an element (Get Item Detail task) that is shared by
different sub-graphs (through task-decomposition, contribution or means-end
link) and at least one of these sub-graphs is to be moved to a new actor (after
applying rules HTR1 or HTR2).
(d) Effects: The shared element will remain in the sub-graph whose root
element has the highest priority, according to this order: goal, softgoal and
task. Case all sub-graphs’ roots have the same type, verify the hierarchical
position of each root of the sub-graphs that share the element check the root
that is closer to the most general root will keep the shared element. Case all
the roots of the sub-graphs have the same type and are on the same
hierarchical level in relation to the most general root, then the shared element
will stay with the sub-graph that remains in the original actor.
The relationships with the elements that will remain in the original actor are
dependency of the same type and name must be created from the original
actor to the sub-graph’s root moved to the new actor.

Horizontal transformation rule 3 (HTR3) is a restrictive rule,
ince after applying rules HTR1 and HTR2, the resulting model may
ot be in conformity with the i* syntax. This rule was defined to
reserve the information about contribution links and coherence
ith the i* syntax (Table 3).

On the other hand, horizontal transformation rule 4 (HTR4)
ddresses situations involving elements that participate in differ-
nt sub-graphs (Table 4). Thus, HTR4 is applied when the sub-graph
o be moved has a shared sub-element with other sub-graph (see
et Item Detail in Table 4a). This rule suggests that a priority pol-

cy is established to define where the shared element will remain
e.g., Get Item Detail task, Table 4a). Thus, it is necessary to check
he types of the root elements in the sub-graphs that share the ele-

ent. The shared elements will remain with the sub-graph that has
he root with type of highest priority.

In our study, after applying the horizontal rules to the selected
lements, three new actors were created to modularize the fol-
owing sub-graphs: Map be Handled, User Access be Controlled and
nformation be published in Map goals. Fig. 5a and b show, respec-
ively, the SD model and part of the SR model of the BTW actor
fter applying the horizontal rules. As these new actors have names
ased on the name of their root elements, we suggest using a spe-

ific name related to the domain addressed by these elements. Thus,
e have respectively Mapping Handler, User Access Controller, and
ap Information Publisher.

able 3
ransformation Rule to move a contribution link crossing the actor‘s boundary.

HTR3 – Contribution link crossing actor’s boundary

(c) Pre-condition: there are elements such as task, goal or softgoal contributing
to the achievement of softgoals that are inside of another actor’s boundary
(e.g., Write Information about a point task contributes positively to Precise
Advices softgoal).
(d) Effects: a softgoal element, with the same name, must be created inside the
actor from where the contribution link goes out (e.g., Map Information Publisher
actor). The contribution link is kept inside that actor. A softgoal dependency,
with the same name, must be created from the softgoal element present in the
original actor (e.g., Precise Advice softgoal inside BTW) to the softgoal created in
the other actor (e.g., Precise Advice softgoal inside Map Information Publisher).
to be replaced by dependencies (e.g., Get Item Detail dependencies), as stated
by the rules HTR1, HTR2 and HTR3.

As the horizontal rules are applied, the i* model is transformed
into an intermediary model closer to an early architectural design.
This intermediary model is used as an input to the Generate Archi-
tectural Solutions macro-activity. All the new created actors, as well
as the main software actor, the actors representing human agents
(Advice Giver and Advice Receiver), the Internet Provider actor, and
the dependencies among each other will be used by the vertical
transformation rules. Next section presents the rationale behind
the vertical transformation rules to produce Acme architectural
models from more modular i* requirements models.

4.2. Generate architectural solutions

The activities of a software development process create mod-
els using specific model languages. In a model transformation
approach, new models are generated by transforming a previ-
ous model. Therefore, how models are generated from a stage to
another rely on how the transformation rules are defined consid-
ering the main elements of each involved modeling language. In
the Prepare Requirements Models activity we used horizontal rules
because both models, original and final, were in the same abstrac-
tion level (i* models). In the Generate Architectural Solutions activity,
vertical rules are used because they translate models of different
abstraction levels, i.e., from i* models into Acme models.

In this second activity, we start by establishing the vertical trans-
formation rules considering only actors and dependencies to map i*
elements to specific elements of an ADL, similarly to the approach
presented in Castro et al. (2003). Thus, Table 5 shows a generic
mapping while Tables 6–9 show mappings according to type of
dependency, respectively goal, task, resource and softgoal.

Table 5 shows a generic mapping of actors and dependencies
without considering the dependency type, in i* (Table 5a), to com-
ponents and connectors in Acme graphical (Table 5b) and textual
language (Table 5c).

A component in software architecture is a unit of computation
or a data store having a set of interaction points (ports) to interact

with external world (Taylor et al., 2009). An actor in i* is an
active entity that carries out actions to achieve goals by exercising
its knowhow (Yu, 1995). The actor representing the software
establishes a correspondence with modules or components (Grau

470 J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479

Fig. 5. Modular i* model: SD model (a) and excerpt from SR model (b).

J. Castro et al. / The Journal of Systems a

Table 5
Mapping a generic dependency between i* actors to Acme.

a
a
r
m
c
o
(

r
t
t
n
a
c
a
(
o

p
T
T
l
c
i
a
d
d
t
d

nd Franch, 2007). In addition, an actor may have as many inter-
ctions points as needed. Hence, a software actor in i* can be
epresented as a component in Acme (Table 5). If the actor being
apped represents a human agent, it will be mapped to an Acme

omponent that represents the communication interface, or point
f interaction, between the human agent and the software actors
e.g., Advice Giver and Advice Receiver in Fig. 6).

In Acme, a component requires that another component car-
ies out a service and the requisition of this service is performed
hrough a required port, while the result of this service is done
hrough a provided port. Thus, a connector allows the commu-
ication between these ports (Garlan et al., 1997). Connectors
re architectural building blocks that regulate interactions among
omponents (Taylor et al., 2009) and mediate the communication
nd coordination of activities among components. Note that a label
graphically represented as a circle) can be attached to a connect
r to represent its identifier (see Table 5b).

In i*, a dependency describes an agreement between two actors
laying the roles of depender and dependee (Castro et al., 2003).
hus, we can represent an i* dependency as an Acme connector.
he label of the connector can be mapped accordingly (see Table 5c,
ine 8). Ports are external interfaces that acts as access points among
omponents and connectors. The concept of port is not present in
*. However, there are points where dependencies interact with
ctors and define if an actor plays the role of a depender or a

ependee in a dependency, according to the direction of the depen-
ency. Hence, the roles of depender and dependee are mapped
o roles that are comprised by the connector (Table 5c). We can
istinguish between required ports (mapped from the depender

Table 6
Mapping a goal dependency to Acme.
nd Software 85 (2012) 463– 479 471

actor) and provided ports (mapped from the dependee actor). For
instance, Table 5 shows the use of the Required property set with
“true” value (Table 5c, line 4) and the Provided property set with
“true” value (Table 5c, line 7) indicating the communication direc-
tion between the DependerActor and DependeeActor components.
In i*, a depender actor depends on a dependee actor to accomplish
a type of dependency. Therefore, a component offers services to
another component using its provided ports and requires services
from another component using its required ports. Thus, in a port,
a Required property is true if the port is in charge of requesting a
service while a Provided property is true if the port is in charge of
providing a service (Table 5, lines 4 and 7).

After applying this mapping to the software actors of the BTW
requirements model (Fig. 4), four components will be generated
from them: BTW, Mapping Handler, User Access Controller and Map
Info Publisher. Besides, two components will be generated from
the actors representing human agents and one component will
be generated from the Internet Provider actor. Each dependency
is mapped to a connector and the roles of each connector’s end
(depender or dependee) will be defined according to the depen-
dency direction. Thus, the roles of depender and dependee are
mapped to connector roles that are comprised by the connector. In
addition, required ports (inside the component mapped from the
depender actor) and provided ports (inside the component mapped
from the dependee actor) are presented. Thus, when an actor has
at least one dependency as a dependee, its equivalent component
will have at least one provided port (Table 5c, line 7). For exam-
ple, the Mapping Handler component will have a provided port for
the Placemark resource dependency. Having all components, ports,
connectors and roles mapped and defined, the next step is to ana-
lyze each type of dependency.

In i*, the type of dependency between two actors describes the
nature of the agreement established between these actors. There
are four types of dependency: goals, softgoals, tasks and resources.
Each type of dependency will define different architectural ele-
ments in the connector and in the ports that play the connector
roles.

A goal dependency is mapped to a Boolean property inside a
provided port responsible for providing a service that will fulfill
the goal (Table 6c, line 8). The goal property is Boolean to indicate

whether the component has accomplished the goal by providing a
service. Initially, the value of this property is false indicating that the
service has not been offered yet. Its value becomes true when the
component actually provides the required service. Such goals pre-

472 J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479

Table 7
Mapping a task dependency to Acme.

s
g
i
t

o
t
m
t
g
i
n

t
p
i
n
d

Table 8
Mapping a resource dependency to Acme.

Table 9
Mapping a softgoal dependency to Acme.
cribe the intended system behaviors declaratively. A behavioral
oal implicitly defines a maximal set of admissible system behav-
ors. Goals describe functions the system will perform. Moreover,
hey have a well defined criteria for satisfaction.

Observe that in this case, the type of property is Boolean in
rder to represent the goal fulfillment (true) or not (false). Applying
his mapping to the BTW case study implies that the MapInfor-
ation Publisher component will add a new Boolean property in

he provided port related to the Information be published in map
oal dependency (Publish in Map connector). A note (e.g., Table 6b)
s attached to a port to highlight added elements used in textual
otation (e.g., Table 6c, line 8).

A task dependency represents that an actor depends on another
o execute a task (Yu, 1995) and that a task describes or involves

rocessing (Grau and Franch, 2007). As explained before, a port

n Acme corresponds to an external interface of the compo-
ent and offers services. Hence, a task dependency is mapped
irectly to a provided port of the component that offers the ser-

Fig. 6. BTW architectural model produced by the third activity of STREAM.

J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479 473

lution

v
B
T
s
t

p
t
9
c
i
i
t
t
p

fi
t
a
a
c
m
s
d

n
t
P
s
p

t
t
I
A
r

a
a
e
I
t
m
n
o
t
E
m
b
t

Fig. 7. Architectural so

ice represented by the task (Table 7c, line 6). For example, in the
TW-UFPE project, there is the Select Placemark task dependency.
hus, the Mapping Handler component has a provided port respon-
ible for offering the service represented by the Select Placemark
ask.

In a resource dependency, an actor depends on another actor to
rovide information. Therefore, a resource dependency is mapped
o a return type of a property of a provided port (Table 8c, line
). This type represents what will be returned (provided) by that
omponent. This mapping represents that while a service (task)
s performed by a component (actor), an information (resource)
s produced and provided through the port. In BTW-UFPE project,
here is one case of resource dependency that is Profile Informa-
ion. Thus, a property that returns this resource is assigned to the
rovided port of Advice Giver component.

A softgoal dependency is similar to a goal dependency but its ful-
llment cannot be precisely defined. A softgoal is related to a NFR
hat will be treated by a task or a more specific softgoal. Hence,

 softgoal dependency is mapped to a property with an enumer-
ted type present into the port that plays the dependee role of the
onnector representing the dependency (Table 9c, line 9). This enu-
erated type is used to describe the degree of satisfaction of the

oftgoal (satisfied, partially satisfied, conflict, unknown, partially
enied, and denied).

For the BTW example, the Map Information Publisher compo-
ent has a provided port connected to the Precise Advices and inside
his port there is a property of type enumeration representing the
recise Advices softgoal. The same mapping is performed for other
oftgoal dependencies between actors representing software com-
onents.

Therefore, all software actors present in Fig. 5 are mapped to
he following components: BTW, Mapping Handler, User Access Con-
roller, Map Information Publisher, Advice Receiver, Advice Giver and
nternet Provider. Fig. 6 presents the BTW architectural model in
cme generated from the application of the vertical transformation
ules.

Observing Fig. 5b, note that inside the Map Information Publisher
ctor, there are three alternative ways (via path, area or point) to
chieve the Information be Published in Map goal. i* uses means-
nd relationships to represent alternatives that accomplish a goal.
n Acme, the concept of representations is used to describe alterna-
ives. Thus, each alternative of Map Information Publisher actor was

apped to a representation of Map Information Publisher compo-
ent, since each alternative is modeled as a different representation
f the Map Information Publisher component (Fig. 7a–c). Hence,
here are three architectural design solutions for the BTW software.

ach solution has a different internal representation for Map Infor-
ation Publisher component, addressing alternative information to

e published in the map (path, area or point). In the final archi-
ectural design description, only one of these representations will
s for the BTW system.

remain. This choice is performed in the next activity of the STREAM
process.

4.3. Select an architectural solution

After generating the full set of possible architectural solutions,
the architect needs to decide the most appropriate one for a given
requirements specification. Softgoals, present in the requirements
models, provide valuable information to assist the software engi-
neer in the decision.

Thus, this third activity receives as input the modular require-
ments model (Fig. 5) and a set of possible architectural solutions
represented by Fig. 6 complemented by Fig. 7. These artifacts are
required because the set of architectural solutions are analyzed to
check how they satisfy the softgoals captured by the requirements
model. In fact, the architectural solution presented in Fig. 6 shows
a high level description. It does not show details about elements
that are inside the components. These kinds of details are present
inside Map Info Publisher component to show that this component
has three internal representations (Fig. 7).

Note that, in our case study, the architectural model pro-
duced encloses three architectural solutions (Fig. 7), since the Map
Info Publisher component has three potential representations. The
choice of which alternative to be used can be based on the contri-
bution of each solution to the satisfaction of the softgoals captured
in the requirements model. Observe in the Map Information Pub-
lish actor (Fig. 5b) that there are three alternatives to fulfill the
Information be published in map goal that contributes to the satisfac-
tion of Precise Advices softgoal. The Write Information about a point
task contributes very positively (make/++) to the satisfaction of the
Precise Advices softgoal. While Write Information about a path task
contributes positively (help/+) and the Write Information about an
area task contributes negatively (hurt/−) to the achievement of the
softgoal. Therefore, according to the strength of the contribution,
make/++ has priority over the other ones. Thus, the Point alternative
(Fig. 7a) is selected as the most appropriate component for the Map
Info Publisher component.

The next activity is related to the use of styles or patterns to
refine the architecture.

4.4. Refine architecture

Having produced an early architectural design solution, we can
now refine it. This activity relies on some commonly used archi-
tectural patterns, such as model view control (MVC), layers and

client-server (Castro et al., 2003). The components of the archi-
tectural model will be manually refined by the architect based on
his/her expertise. The choice of the most appropriate pattern should
consider many factors, including NFRs.

474 J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479

plying

t
t
m
i
c
N
w

f
s
o
a
p
d
c
c
p
a
g

r
c

Fig. 8. BTW architecture after ap

In our case study we have chosen the Layers pattern, since in
he BTW software there are high and low-level services, so that
he Layers pattern is a natural candidate. In fact, modularization

etrics (see Section 4.5) could be used to check if this choice has
mproved modularity, one of our concerns. Besides, this pattern
ontributes positively to Security and does not affect the Usability
FR (Buchmann et al., 1996), other key quality attributes (together
ith Performance) present in Fig. 5a.

Usually the Layers pattern suggests separating software in the
ollowing layers: interface, business and services. Each layer has a
pecific functionality and upper layers depend on lower layers. In
ur case study, we identified the three layers previously mentioned,
s shown in Fig. 8. The lower layer is Service, since it aggregates com-
onents that provide services available over the Internet. The mid-
le layer has components related to the Business logic. The top layer
omponents interact directly with the users and, for that reason, is
alled Interface. In general, there is no systematic way to apply a
attern. What we have are principles that software architects usu-
lly adopt. Therefore, in this work we group these principles into

eneral steps that guide the application of the Layer pattern.

As layers group a set of components, the layer itself is rep-
esented as a component. This kind of abstraction (grouping
omponents inside other components) is allowed by Acme. The
 the Layer architectural pattern.

internal components arrangement forms a sub-architecture that
refines the layer. The layer preserves the interface (set of ports) of
the components with the components outside the layer. For each
port that is connected with a component outside the layer, we will
have the same port in the layer. A bind associates the internal port
with the external port.

The first step is to analyze the components of the original archi-
tecture (e.g., BTW) and compare them with the elements of the
pattern (e.g., Layers) observing the similarities of their roles and
responsibilities. As commented earlier, the Layers pattern is charac-
terized by layers that depend only on the layer below it. Therefore,
we rearranged the components of the early architectural design
(Fig. 6) to conform to this constraint. Components at the bottom
layer provide services to the components above them, and so on.
There is no restriction for components at the same layer. Therefore,
components that mutually rely on each other must stay in the same
layer. To apply the Layer pattern, we must group the components
in each layer according to their roles and responsibilities.

The second step is to analyze the connectors of the original archi-

tecture and compare them with the pattern connectors. If they are
similar, they need to be associated. In our case study, there was no
need to create or remove connectors, since there is no defined role
for the connectors of the Layer pattern.

J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479 475

ture o

t
p
a
R
p
t
d
B
s

m
e
e
a
f
A
a
L
s
a

d
b
2
(

c
A
P
fi
t
b
p
T
fi
t
m
c

Fig. 9. BTW architec

The third step is to introduce components to adjust the archi-
ectural model to the pattern. The strict definition of the Layers
attern requires that a layer must depend only on the layer immedi-
tely below it. In the BTW Software architectural model, the Advice
eceiver component (top layer) relies on the Internet Provider com-
onent (bottom layer). This connections cross the middle layer
owards the bottom layer. Therefore, in order to respect the strict
efinition of the Layers pattern, a new component, called Internet
usiness, must be introduced in the middle layer to provide internet
ervices to the top layer (see Fig. 8).

Note that the architecture being represented in the modular i*
odel (Fig. 5(a)) is the system architecture, so that humans and

xternal software that interact with the software-to-be are mod-
led as actors. The architecture represented in Fig 8 is the software
rchitecture, so that each component was mapped according to the
ollowing: (i) human actors are mapped to the Interface Layer (e.g.,
dvice Giver and Advice Receiver); (ii) external software actors
re mapped to architectural components located at the Service
ayer (e.g., Internet Provider), and; (iii) actors representing the
oftware-to-be are mapped to architectural components located
t the Business Layer (e.g., BTW).

In order to make a comparison between the BTW architecture
escription generated by the STREAM approach and the one defined
y the BTW-UFPE team for the SCORE competition (Pimentel et al.,
010), let us review this latter architecture also described in Acme
Fig. 9).

In this BTW-UFPE team’s architectural model, five different
omponents were identified: Advice Manager, Profile Manager,
dvice Publisher, Advices Recommender and Maps Manager. The
rofile Manager component is responsible for maintaining pro-
les of system users. The Advice Manager is responsible for
he maintenance of advices. The Advice Publisher is responsi-
le for the publication of advice in accordance with the user
rofiles using the resources of graphic presentation of maps.
he Advices Recommender is responsible for reviewing the pro-

les, advices and recommendations to suggest routes or areas
o be visited by travelers. The Maps Manager is responsible for

aintenance of maps depending on external maps management
omponents.
f the SCORE project.

Note that this architectural solution reflects the real imple-
mentation of the BTW software presented at the SCORE contest
(Pimentel et al., 2010).

4.5. Evaluating architectural alternatives

An evaluation of the software architectural design while it is
still a candidate specification can greatly reduce project risk. The
comparison of the candidate architectures is highly dependent on
the quality attributes of interest (such as performance, availability,
extensibility, security, usability, and modularity), as well as on their
associated architectural metrics and process for analyzing them.

In this paper, we have only conducted a partial evaluation of
our approach, focused on its main goal, i.e., the improvement of the
modularity of requirements specifications and architectural design
descriptions. This key non-functional attribute has direct effect on
reusability and scalability of models (Sant’Anna et al., 2007a). Thus,
we can check if the design decisions taken for the architectural
model, such as the one related to the use of the Layers pattern,
have indeed improved the modularity of the architectural design
description. Certainly, an evaluation that encompasses more qual-
ity attributes could be performed but it is currently out of scope of
this work.

In order to evaluate the architectural design alternatives pro-
duced by both the STREAM approach and the BTW-UFPE team,
we used a set of modularity metrics proposed by Sant’Anna et al.
(2007a,b). We have selected this set of metrics because they were
deployed to evaluate architectural design described using an ADL,
such as Acme. Table 10 shows the suite of modularity architectural
metrics used to evaluate cohesion, concerns diffusion and coupling.

We used the Lack of Concern-based Cohesion metric (LCC) to mea-
sure the cohesion attribute. This metric evaluates how cohesive are
the components according to the separation of concerns. In the case
of a component with high cohesion, it is expected that it deals with
few concerns.
The concern diffusion attribute is evaluated with the metrics of
Concern Diffusion over Architectural Components (CDAC) and Concern
Diffusion over Architectural Interfaces (CDAI). CDAC evaluates how
many components contribute to the achievement of a concern.

476 J. Castro et al. / The Journal of Systems and Software 85 (2012) 463– 479

Table 10
Suite of architectural modularity metrics (Sant’Anna et al., 2007a).

Attribute Metric Definition

Component cohesion Lack of concern-based cohesion (LCC) It counts the number of concerns addressed by the assessed
component.

Concern Diffusion Concern diffusion over architectural components
(CDAC)

It counts the number of architectural components that
contribute to the realization of a certain concern.

Concern diffusion over architectural interfaces (CDAI) It counts the number of interfaces that contribute to the
realization of a certain concern.

Coupling between components Afferent coupling between components (AC) It counts the number of components that require a service
from the assessed component.

Efferent coupling between components (EC) It counts the number of components from which the assessed

I
s
a
m
t
a

b
n
t
i

1
2
3

4
5

t
t
m
u

i

a
a
c
i

T
R

n this case, the lower is its value of the metric, the lower is the
preading of concerns. This indicates a high separation of concerns
mong the components of the architecture. CDAI evaluates how
any interfaces contribute to the achievement of a concern. In

his case, the lower is its value, the lower the concerns diffusion
nd, consequently, the greater is the separation of concerns.

The coupling attribute is evaluated using Afferent Coupling
etween Components (AC) and Efferent Coupling between Compo-
ents (EC) metrics. These metrics measure the interaction between
he components. In this case, the higher is theirs values, the greater
s the dependency degree between the components.

The following steps were used to apply this metrics suite:

. Define a set of concerns that will drive the evaluation.

. List all components and interfaces (ports in the Acme notation).

. Label all components and interfaces with the concerns that will
be evaluated (the components and interfaces can present more
than one label).

. Collect metrics.

. Evaluate the results according to properties of concern diffusion,
coupling and cohesion.

In our case study, four concerns were considered: Recommenda-
ion, Access Control, Mapping Handle and Information in Maps. Note
hat, to perform the evaluation and comparison between two or

ore architectural design models, the following assumptions were
sed:

i. the architectural models should be described in the same ADL;
ii. the interfaces (or ports in Acme) that are used by two or more

components can be counted several times (one time by each
component that requires it);

ii. the interfaces (or ports) with the same name, but in different
components, will be considered as different interfaces.

Three versions of the BTW architectural design were compared

ccording to the modularity properties (concerns diffusion, coupling
nd cohesion). It is expected that modular architectures have high
ohesion, low coupling and low concerns diffusion. The evaluation
ncluded the BTW-UFPE team’s architectural design (BTW-SCORE),

able 11
esults after applying architectural metrics.

Attribute Metrics

Cohesion Lack of concern based cohesion (LCC)

Concern diffusion
Concern diffusion over architectural components (CDAC)
Concern diffusion over architectural interfaces (CDAI)

Coupling
Afferent coupling between components (AC)

Efferent coupling between components (EC)
component requires a service.

the early architectural solution produced by the STREAM approach
(BTW-STREAM) and a refined version of the architectural solu-
tion after applying the Layers pattern using the STREAM approach
(BTW-STREAM-Layers). Using the modularity metrics, we obtained
the results shown in Table 11. For all metrics, the lower the value the
better. It is important to remember that the LCC metric measures
the lack of cohesion, so that a low value means high cohesion.

The values presented in Table 11 show that the two archi-
tectural design alternatives produced by the STREAM approach
presented higher cohesion if compared to the BTW-SCORE architec-
tural design. It means that the application of the STREAM approach
can improve the cohesion to some degree. The architectural design
produced by BTW-STREAM and BTW-STREAM-Layers present the
same value of LCC. It happens because many of the concerns that
were separated into components are now grouped into one layer
in the BTW-STREAM-Layers architecture. The separation of con-
cerns is a property of modularity that is measured by the concerns
diffusion metrics. According to the results presented in Table 11,
the architecture alternatives produced by the STREAM approach
have reduced the concerns diffusion over architectural artifacts
(i.e., components and interfaces). The coupling attribute, measured
by two metrics, show how the components depend on each other.
Higher coupling indicate higher dependency among the architec-
ture components. According to the values measured by the AC
and EC metrics, the STREAM approach helped to reduce the cou-
pling among components in the architectural design model. The
BTW-STREAM-Layers architecture presented the best results by
significantly reducing the coupling among components when com-
pared with the other architectural design alternatives.

In general, the STREAM approach improves the modularity
of the architectural design when compared to the BTW-SCORE
architectural design. The results for BTW-STREAM and BTW-
STREAM-Layers were very close for cohesion and concerns
diffusion attributes. However, we probably would select BTW-
STREAM-Layers by its expressive gains in the coupling attribute.
5. Discussion

It is worth noting that our approach is specifically aimed at sup-
porting the derivation of Acme architectural design models from i*

BTW-SCORE BTW-STREAM BTW-STREAM-Layers

12 9 9

 12 8 9
20 15 13

15 11 3
15 9 3

tems a

r
c
F
t
r
t

a
i
t
m
a
d
m
o
p

r
2
a
m
b
r
a
m

t
a
(
C
f
s
b
m
t
b
i
a
T
s
a
o
g
r
t
m
d
d
e
p
d

m
i
o
e
r
i
a
d
t

d
2
r
a

J. Castro et al. / The Journal of Sys

equirements models. Hence, the heuristics proposed in our work
orrespond to transformation rules oriented to these languages.
urthermore, if different languages are selected, new transforma-
ion rules are required. The development of effective heuristics may
equire a large experience from the software engineering relation
o the chosen languages.

The use of metrics, as presented in Section 4.5, requires special
ttention. Given that the STREAM approach is aimed at improv-
ng the reusability and scalability of the models, it is natural that
he evaluation provided in this paper was focused on modularity

etrics. However, many other quality attributes (and associ-
ted metrics) could have been used for evaluating architectural
esign (Bobrica and Niemela, 2002), such as availability, perfor-
ance and security. The definition, usage or validity of these

ther metrics are important issues, but are out of scope of this
aper.

Goal oriented approaches have long been proposed for the
easoning and understanding of requirements (van Lamsweerde,
001). They offer a unified framework in which both functional
nd non-functional concerns can be integrated. Besides, refine-
ent/abstractions links are precisely defined and provide the

asis for various forms of qualitative, quantitative or formal
easoning. In this paper, we address the issue of the gener-
tion architectural models considering goal models as source
odels.
We can also highlight some approaches that produce architec-

ural design considering goal models as source models: i* (Bastos
nd Castro, 2005), KAOS (van Lamsweerde, 2003) and AOV-graph
Silva et al., 2007). For example, the SIRA approach (Bastos and
astro, 2005) focuses on a systematic way to assist the transition

rom requirements models in i* to architecture. It describes a
oftware system from the perspective of an organization, as stated
y the Tropos methodology (Castro et al., 2002). Both require-
ents and architectural design models are described in term of

he i* language. An organizational architectural style is chosen
ased on a catalogue of NFRs presented in (Kolp et al., 2006).

* elements, at requirements level, are grouped inside an actor
ccording to their contribution to achieve some responsibilities.
hen, an architectural design model is created by considering the
imilarities between the requirements actors and the architectural
ctors present in the chosen organizational architectural style. In
ur STREAM approach, we also use i* goal model as input, but we
roup i* elements into an actor according to their independence in
elation to the application domain and the possibility of that actor
o be reused in another domain. The i* modularized model is then

apped to the Acme ADL elements to reach early architectural
esign solutions. We also choose among alternative architectural
esign solutions and traditional architectural patterns (Buchmann
t al., 1996) based on NFRs. Moreover, we can apply architectural
atterns and we use, as target model, a generic architectural
escription language (Acme).

Another approach that also advocates the transformation of
odels during the early requirement analysis phase was presented

n Bresciani et al. (2002). It proposes an iterative process based
n successive transformations to incrementally refine the social
nvironment model of the system-to-be. The produced model is
icher than the original model. Our approach, on the other hand,
s concerned with applying transformations to an i* model aiming
t obtaining a more modular i* model that makes it easier to pro-
uce an early architectural design model in Acme, also using model
ransformations.

Axel Lamsweerde defines a method to produce architectural

esign models from KAOS requirements models (van Lamsweerde,
003). In his approach, requirements specifications are gradually
efined to meet specific architectural constraints of the domain and
n abstract architectural draft is generated from functional speci-
nd Software 85 (2012) 463– 479 477

fications. The resulting architecture is recursively refined to meet
the various non-functional goals analyzed during the requirements
activities. It relies on KAOS modeling language, which consist of a
graphical tree and a formal language. In our STREAM approach, we
use another goal model as input, the i* model. In fact, we advo-
cate that first we need to modularize the i* models by means of
horizontal transformations. Then we use vertical transformations
to refine them according to architectural patterns. The mapping
from i* models and architectural design models is made easier by
the presence of actor and dependency concepts. Although KAOS
encloses the concept of agents, it does not support the concept of
dependencies among them.

In Silva et al. (2007) a set of mapping rules is proposed between
the Aspectual Oriented V-graph (AOV-graph) and the Aspectu-
alACME, an ADL based in Acme. Each element (goal/softgoal/task)
present in an AOV-graph is mapped to an element of Aspectu-
alACME, depending on its position in the graph hierarchy. The
information about the source of each element in the AOV-graph
is registered in the properties of a component or a port in Aspectu-
alACME. These properties make it possible to keep the traceability
and propagation of change from AspectualACME to AOV-graph
models and vice versa. In our approach, NFRs are considered for
the selection among architectural design models. Later this early
architectural design model is refined according to an architectural
pattern chosen using as criteria the NFRs.

In the context of this work, we are working specifically with
i* models to produce architectural models in Acme (Garlan et al.,
1997). To the best of our knowledge, there are no studies using
i* as requirements models that generates architectural design
descriptions in Acme. Moreover, it is well known that goal-oriented
requirements specifications present complex representations. The
first activity of the STREAM process is a first step to address this
issue.

Nonetheless, an experienced architect could define his/her own
transformation rules based on the model transformation by exam-
ple approach (Varro, 2006), for instance. Such approach is used
in García-Magariño et al. (2009) to support specific requirements
refinements and agents’ communication specification.

The use of design patterns is a good way of providing experience
and best practices with a view of increasing reusability. Bézivin
et al. (2005) focus on the use of design patterns and said that they
were working on the construction of a collection of 23 patterns in
the context of Model Driven Engineering (MDE). The research cov-
ers the design of metamodels, transformations, compositions and
other operations on models. In particular, transformation parame-
ters and multiple matching patterns were described using the Atlas
Transformation Language (ATL) [47].

In our work, we outlined some transformations. However, they
are not yet properly described. We expect in the near future to be
able to accurately describe them in ATL. The use of MDE design
patterns, as proposed by Bézivin et al. (2005), could be of great
assistance in our future work. The idea is to identify any similarity
between our transformations and the patterns proposed by Bézivin,
trying to adapt them to the context of goal-oriented modeling.

The work on Le Goaer et al. (2008) proposes a reuse-based
framework for architecture evolution, which is guided by evolu-
tion styles. However, it does not describe how to define an initial
architectural design that latter are to be evolved.

The i* modeling language is rich and expressive in describing
the system requirements (Yu, 1995). The approaches that use i*
modeling language as the starting point of software specification,
such as RISD (Grau et al., 2005), Tropos (Castro et al., 2002), and

PRIM (Grau et al., 2006), do not support a systematic transition
from requirements specifications to architectural design descrip-
tion. Often architects perform architectural design in an ad hoc
manner and do not benefit from all the expressiveness and rich-

4 tems a

n
r
a
p
m
t

6

c
r
i
a
o
t
c

S
s
t
e
t
g
w
m

a
t
b
t

b
p
a
a
s
r

t
t
2
s
i
e
S
a
t
p
t
t

p
l
w
p
i
i
2
o

t
c
k
t

78 J. Castro et al. / The Journal of Sys

ess offered by the requirements models. Filling this gap between
equirements engineering and architectural design activities will
llow the i* models to drive subsequent software development
hases, relating requirements models to architectural design
odels, in order to make the developed software systems closer

o the stakeholders needs.

. Conclusions and future works

This paper presented the STREAM approach, that includes a pro-
ess to generate an architectural model described in Acme, from i*
equirements models. The first activity of the process prepares an
* requirements model to balance the responsibilities of a software
ctor, delegating them to other new software actors. An early set
f horizontal rules was defined in Lucena et al. (2009a) to generate
hese intermediate models (more modular i* models), which are
loser to architectural design models.

From these intermediate models, the second activity of the
TREAM process derives a set of possible architectural design
olutions described in Acme (Garlan et al., 1997). Our vertical
ransformation rules relate requirements and architectural mod-
ls, allowing better traceability and propagation change between
hem. Furthermore, the use of a more general architectural lan-
uage, such as Acme, led us to propose more generic mapping rules,
hich, in turn, can serve as a guide to derive architectural design
odels using other ADLs.
The third activity of our process is related to the selection of an

rchitectural solution using as criteria a given set of NFRs. From
hese architectural design solutions, described in Acme, it is possi-
le to choose an architectural design solution that better achieves
he NFRs present in the i* SR model.

Finally, the fourth activity refines the architecture. It is inspired
y architectural patterns proposed in Buchmann et al. (1996) and
roduces a detailed architectural design solution. This activity uses
s input the architectural design solution chosen by the previous
ctivity. In our case study, we showed how a given architectural
tyle (e.g., the Layers pattern) could be used to generate a more
efined architectural design model.

We evaluated our approach using a suite of metrics applied
o a web recommendation system (BTW) that is an awarded sys-
em developed for the SCORE contest at ICSE 2009 (Pimentel et al.,
010). The use of the STREAM approach to this real system has
hown that we can produce an architectural design solution with
mproved separation of concerns. A suite of metrics was used to
valuate the architectural design developed for the contest (BTW-
CORE) against the architectural design produced by the STREAM
pproach (BTW-STREAM and BTW-STREAM-Layers). The architec-
ural design models obtained using the STREAM process have
resented better results, in relation to the modularity property,
han the architectural design model produced by the BTW-UFPE
eam.

We are exploring in more depth the MDE design patterns, as
roposed by Bézivin et al. (2005), in order to identify any simi-

arity between the patterns and our transformation rules, which
ill be formally described in ATL. Therefore, we should adapt the
atterns to the context of goal-oriented modeling. We are also

nvestigating how to incorporate our transformation rules, spec-
fied using ATL (Jouault and Kurtev, 2005), in the iStarTool (Anon.,
009). This automation will allow us to investigate the scalability
f our approach to other real life software systems projects.

Besides, we also need to consider other factors that architects

ake into account when designing software architecture, such as
ost, the involved technology and the familiarity with an already
nown architecture. These factors are closer to the solution space
han the NFRs.
nd Software 85 (2012) 463– 479

Acknowledgments

This work has been supported by the Brazilian institutions
Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Coordenaç ão de Aperfeiç oamento de Pessoal de Nível Supe-
rior (CAPES), and by the Erasmus Mundus External Cooperation
Window - Lot 15 Brazil.

References

Alencar, F., Castro, J., Lucena, M., Santos, E., Silva, C., Araújo, J., Moreira, A., 2010.
Towards modular i* models. In: Proc. 25th SAC International Conference—RE
Track ,. ACM, New York, pp. 292–297.

Anon., 2009. IStarTool Project: A Model Driven Tool for Modeling i* Models.
http://portal.cin.ufpe.br/ler/Projects/IstarTool.aspx.

Bastos, L., Castro, J., 2005. From Requirements to Multi-agent Architecture Using
Organisational Concepts, vol. 30. ACM SIGSOFT Software Engineering Notes, pp.
1–7.

Berry, D.M., Kazman, R., Wieringa, R., 2003. Proc. Second International Software
Requirements to Architectures Workshop (STRAW’03) at ICSE’03 , Portland,
Oregon, USA.

Bézivin, J., Jouault, F., Palies, J., 2005. Towards model transformation design patterns.
In: Proc. the 1st European Workshop on Model Transformations (EWMT 2005).

Bobrica, L., Niemela, E., 2002. A survey on software architecture analysis methods.
IEEE Transactions on Software Engineering 28 (7), 638–653.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J., 2002. Model-
ing early requirements in tropos: a transformation based approach. Proc. the
2nd International Workshop on Agent-oriented Software Engineering, vol. 2222,
Springer. Lecture Notes in Computer Science, 151–168.

Buchmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
oriented Software Architecture: A System of Patterns. John Wiley & Sons,
Chichester, UK.

Castro, J., Kramer, J., 2001. Proc. First International Workshop on From Software
Requirements to Architectures (STRAW’01) at ICSE’01 , Toronto, Ontario, Canada.

Castro, J., Kolp, M., Mylopoulos, J., 2002. Towards requirements-driven information
systems engineering: the Tropos project. Information Systems 27, 365–389.

Castro, J., Silva, C., Mylopoulos, J., 2003. Modeling organizational architectural styles
in UML. In: Proc. the 15th International Conference on Advanced Information
Systems Engineering (CAISE 2003) , pp. 111–126.

Castro, J., Franch, X., Mylopoulos, J., Yu, E. (Eds.), 2010. Proc. the 4th International i*
Workshop, Hammamet, Tunisia, CEUR Workshop Proceedings, vol. 586.

Consortium, O.M.G., 2006. SPEM—Software Process Engineering Metamodel (SPEM)
Specification, Version 1.1. http://www.omg.org/docs/formal/05-01-06.pdf.

Czarnecki, K., Helsen, S., 2003. Classification of model transformation approaches.
In: Proc. the 2nd OOPSLA Workshop on Generative Techniques in the Context of
the Model Driven Architecture , pp. 1–17.

de Boer, R., van Vliet, H., 2009. On the similarity between requirements and archi-
tecture. Journal of Systems and Software 82 (3), 544–550.

Dijkstra, E., 1976. A Discipline of Programming. Prentice-Hall.
Estrada, H., 2008. A service-oriented approach for the i* framework. Ph.D Thesis,

Universidad Politécnica de Valencia, 2008.
Estrada, H., Martinez, A., Pastor, O., Mylopoulos, J., 2006. An empirical evaluation of

the i* framework in a model-based software generation environment. In: Proc.
the 18th International Conference on Advanced Information Systems Engineer-
ing (CAISE 2006), LNCS, vol. 4001 ,. Springer-Verlag, Luxemburgo, pp. 513–527.

Franch, X., 2010. Incorporating modules into the i* framework. In: Pernici, B. (Ed.),
Proc. the 22nd International Conference on Advanced Information Systems Engi-
neering (CAiSE 2010). Springer, Hammamet, Tunisia, pp. 439–454.

García-Magariño, I., Rougemaille, S., Fuentes-Fernández, R., Migeon, F., Gleizes,
M.P., Gómez-Sanz, J.J., 2009. A tool for generating model transformations by-
example in multi-agent systems. Proc. the 7th International Conference on
Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009), vol.
55. Advances in Soft Computing, 70–79.

Garlan, D., Monroe, R., Wile, D., 1997. Acme: an architecture description interchange
language. In: Proc. the CASCON 97.

Goulão, M., Abreu, F.B., 2003. Bridging the gap between ACME and UML 2.0 for CBD.
In: Proc. Specification and Verification of Component-Based Systems Workshop
(SAVCBS’2003) at the ESEC/FSE’2003 , Helsinki, Finland.

Grau, G., Franch, X., 2007. On the adequacy of i* models for representing and
analyzing software architectures. In: Proc. ER 2007 Workshops CMLSA, FP-
UML, ONISW, QoIS, RIGiM, SeCoGIS ,. Springer, Berlin/Heidelberg/Auckland, New
Zealand, pp. 296–305.

Grau, G., Franch, X., Mayol, E., Ayala, C., Cares, C., 2005. RiSD: a methodology for
building i* strategic dependency models. In: Proc. the 17th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE 2005) , Taipei,
Taiwan.

Grau, G., Franch, X., Avila, S., 2006. J-PRiM: a java tool for a process reengineering

i* methodology. In: Proc. the 14th IEEE International Requirements Engineering
Conference, RE 2006 ,. IEEE Computer Society Press.

Grünbacher, P., Egyed, A., Medvidovic, N., 2004. Reconciling software requirements
and architectures with intermediate models. Software and System Modeling
(SoSyM) 3 (3), 235–253.

http://portal.cin.ufpe.br/ler/Projects/IstarTool.aspx
http://www.omg.org/docs/formal/05-01-06.pdf

tems a

H

J

K

K

L

L

L

N

P

S

S

S

S

T

v

v

J. Castro et al. / The Journal of Sys

ofmeister, C., Nord, R., Soni, D., 2001. Applied Software Architecture. Addison-
Wesley.

ouault, F., Kurtev, I., 2005. Transforming models with ATL. In: Proc. Model Trans-
formations in Practice Workshop (MTIP) at MoDELS Conference , Montego Bay,
Jamaica.

olp, M., Giorgini, P., Mylopoulos, J., 2006. Multi-agents architectures as organi-
zational structures. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 13, 3–25.

otonya, G., Sommerville, I., 1998. Requirements Engineering Processes and Tech-
niques. John Wiley & Sons Inc.

e Goaer, O., Tamzalit, D., Oussalah, M., Seriai, A.D., 2008. Evolution shelf: reusing
evolution expertise within component-based software architectures. In: Proc.
the 32nd Annual IEEE International on Computer Software and Applications
(COMPSAC 2008) , pp. 311–318.

ucena, M., Silva, C., Santos, E., Alencar, F., Castro, J., 2009a. Applying transformation
rules to improve i* models. In: Proc. the 21st International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE 2009) , Boston, USA, pp.
43–48.

ucena, M., Castro, J., Silva, C., Alencar, F., Santos, E., Pimentel, J.A.H.C., 2009b.
A model transformation approach to derive architectural models from goal-
oriented requirements models. In: Proc. the OMT Workshop IWSSA, LNCS ,.
Springer-Verlag, Berlin/Heidelberg/Vilamoura, Portugal, pp. 370–380.

useibeh, B., 2001. Weaving Together Requirements and Architectures. IEEE Com-
puter 34 (2), 115–117.

imentel, J., Borba, C., Xavier, L., 2010. BTW: if you go, my advice to you Project, May.
http://jaqueira.cin.ufpe.br/jhcp/docs.

ant’Anna, C., Figueiredo, E., Garcia, A., Lucena, C.J.P., 2007a. On the modularity of
software architectures: a concern-driven measurement framework. In: Proc.
First European Conference, ECSA 2007 ,. Springer, Berlin/Heidelberg/Aranjuez,
Spain, pp. 207–224.

ant’Anna, C., Figueiredo, E., Garcia, A., Lucena, C.J.P., 2007b. On the modularity
assessment of software architectures: do my architectural concerns count? In:
Workshop on Aspects in Architectural Description (AARCH) at AOSD’07 , Van-
couver, Canada, pp. 1–4.

CORE, 2009. The Student Contest on Software Engineering—SCORE 2009, July.
http://score.elet.polimi.it/index.html.

ilva, L., Batista, T., Garcia, A., Medeiros, A., Minora, L., 2007. On the symbiosis of
aspect-oriented requirements and architectural descriptions. In: LNCS 4765, vol.
75.

aylor, R.N., Medvidovic, N., Dashofy, I.E., 2009. Software Architecture: Foundations,
Theory, and Practice. John Wiley & Sons.

an Lamsweerde, A., 2001. Goal-oriented requirements engineering: a guided tour.

In: Proc. the 5th IEEE International Symposium on Requirements Engineering
(RE’01) , pp. 249–263.

an Lamsweerde, A., 2003. From system goals to software architecture. In:
Formal Methods for Software Architectures. LNCS 2804/2003. Springer,
pp. 25–43.
nd Software 85 (2012) 463– 479 479

Varro, D., 2006. Model transformation by example. Proc. MoDELS 2006, vol. 4199,
Springer. Lecture Notes in Computer Science, 410–424.

Yu, E., 1995. Modelling strategic relationships for process reengineering. Ph.D. thesis,
Department of Computer Science, University of Toronto, 1995.

Yu, E., Castro, J., Perini, A., 2008. Strategic actors modeling with i*. In: Tutorial Notes,
16th Intl. Conf. on Requirements Engineering (RE 2008) , IEEE Computer Society,
Spain, pp. 1–60.

Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J., 2011. Social Modeling for Requirements
Engineering. MIT Press, ISBN 978-0-262-24055-0.

Jaelson Castro is an associate professor at the Universidade Federal de Pernam-
buco, Brazil, where he leads the Requirements Engineering Laboratory (LER), since
1992. He received his Ph.D. in 1990 from Imperial College, London. His research
interests include software engineering, requirements engineering, agent-oriented
development, aspect-oriented development, model-driven development, and soft-
ware product lines. Castro serves on the editorial boards of the International Journal
of Agent-Oriented Software Engineering and Requirements Engineering journal. He
has served as editor in chief of the Journal of the Brazilian Computer Society (JBCS).

Márcia Lucena is an adjunct professor of the Universidade Federal do Rio Grande do
Norte, Brazil, since 1999. She received her Ph.D. in Computer Science from the Uni-
versidade Federal de Pernambuco in 2010. Her research interests are requirements
engineering, software architecture, and model driven development.

Carla Silva earned her Ph.D. in computer science at the Universidade Federal de
Pernambuco, Brazil, in 2007. Currently, she is an adjunct professor at the Univer-
sidade Federal da Paraíba, Brazil. Her main topics of research are agent-oriented
software engineering, software product lines, aspect-oriented development, and
requirements engineering.

Fernanda Alencar joined the faculty of Universidade Federal de Pernambuco, Brazil,
in 1988, where she earned her doctoral degree in 1999, and became an adjunct
professor in 2000. She spent one year (2008–2009) at Universidad Politécnica de
Valencia, Spain, as a postdoctoral fellow. In 2006, she did postdoctoral work at Uni-
versidade Nova de Lisboa, Lisbon, Portugal, where she was also on leave in 2008. Her
research interests include requirements engineering, agent-oriented development,
aspect-oriented development, model-driven development, and organizational mod-
eling.

Emanuel Santos is a Ph.D. student at the Informatics Center of Universidade Fed-
eral de Pernambuco, Brazil. His research interests include requirements engineering,
goal-oriented software engineering, business process modeling and adaptive sys-
tems.
João Pimentel is a Ph.D. student at the Informatics Center of Universidade Federal
de Pernambuco, Brazil. His research interests include requirements engineering,
goal-oriented software engineering, model-driven development and autonomic
computing.

http://jaqueira.cin.ufpe.br/jhcp/docs
http://score.elet.polimi.it/index.html

	Changing attitudes towards the generation of architectural models
	1 Introduction
	2 Problem statement
	3 Background
	3.1 BTW project
	3.2 The source: i* goal model
	3.3 The target: Acme architecture models

	4 Stream process
	4.1 Prepare requirements
	4.2 Generate architectural solutions
	4.3 Select an architectural solution
	4.4 Refine architecture
	4.5 Evaluating architectural alternatives

	5 Discussion
	6 Conclusions and future works
	Acknowledgments
	References

