
Implicit Priorities in Adaptation Requirements 
 

João Pimentel 
Universidade de Pernambuco 
Universidade Federal Rural de 

Pernambuco 
jhcp@ecomp.poli.br 

Maria Lencastre 
Universidade de Pernambuco, 

Recife, Brazil 
mlpm@ecomp.poli.br 

 

Jaelson Castro 
Universidade Federal de 

Pernambuco 
jbc@cin.ufpe.br

 
 

Abstract— The increasing need for adaptive systems has led 
to the creation of many frameworks aiming to support their 
development. Nonetheless, the implementation of requirements 
related to adaptation, just as of any other kind of requirement, 
comes at a cost. In being so, it is necessary to consider 
requirements' priorities when creating such systems. In this work 
we analyze the relationship between requirements prioritization 
and software adaptation. In particular, the following questions 
are tackled: is the use of requirements-based adaptation 
frameworks somehow affected by requirements' priorities? Does 
the use of said frameworks affect requirements' priorities? 
Through an analysis of selected frameworks, we have found 
evidences that suggest positive answers for both questions. In this 
paper we present our findings as well as an initial proposal for 
interlacing prioritization activities with adaptation activities. 

Keywords—requirements engineering; software adaptation; 
adaptive systems; requirements prioritization. 

I.  INTRODUCTION 

Software adaptation enables the creation of more flexible, 
resilient, robust, recoverable and energy-efficient systems [6]. 
It can be defined as the software capability of accepting 
environmental changes as well as changes on the system itself. 
Adaptive systems, which are often implemented with feedback 
loops [3], pose specific challenges regarding requirements 
engineering, since the system must be able to perform 
satisfactorily on a diversity of contexts that may be unforeseen 
at design time. In fact, in some cases the system itself may 
perform requirements engineering activities when requirements 
change at runtime [4]. 

Adaptation requirements, i.e., requirements related to 
adaptive behavior, must be subject to traditional requirements 
engineering activities, such as specification, conflict analysis, 
refinement, prioritization, verification, and so on. Analyzing 
the literature on software adaptation, it is possible to identify 
many proposals to handle the specification of adaptation 
requirements, with some also handling refinement. However, 
the remaining activities are often neglected. In this paper we 
focus on requirements prioritization as pertaining to the 
development of adaptive systems. 

Considering the peculiarities of adaptive systems, such as 
its high complexity, its dynamic changes, and the need to 
implement different alternatives for achieving a goal, 
requirements prioritization may prove to be a key factor for the 
successful development of said systems. By reasoning on 

explicit requirements' priorities, it may be possible to better 
execute the trade-offs that are necessary not only at design 
time, but also at runtime. 

In this work we aim at investigating the effects of 
requirements prioritization on the development of adaptive 
systems, as well as the impact of the latter on the former. In 
order to do so, we analyzed the elements, processes, and 
examples of requirements-based adaptation frameworks. For 
the sake of space, in this paper we present observations only of 
two well-established frameworks: Relax [7], and Zanshin 
[1][2]. Relax modifies requirements statements with a set of 
pre-defined operators, while also including additional 
information regarding environment, monitoring, relationship, 
and dependencies. Zanshin extends goal models to include 
monitoring needs, adaptation strategies, and their relationship. 
Based on this analysis, we propose a model that represents the 
relationship between prioritization and adaptation. 

In the following sections the two frameworks for 
requirements-based adaptation are briefly described and 
discussed. Section IV presents a proposal to make explicit the 
relationship between prioritization and adaptation. Lastly, 
section V concludes the paper and present future work. 

II. RELAX FRAMEWORK 

The RELAX approach for adaptation is grounded on the 
uncertainty that afflicts the execution of complex socio-
technical systems. Since lack of resources, unforeseen 
conditions, and failed assumptions, among other factors, may 
prevent a system to completely satisfy its requirements, a fuzzy 
specification is adopted: instead of binary requirements 
satisfaction (successfully or not), each requirement may present 
different degrees of satisfaction. 

In the RELAX process, each requirement (in the form of a 
shall statement) is analyzed, deciding if it must be RELAXed 
or if it should be kept as-is (invariant requirement). A 
RELAXed requirement contains a new version of the 
requirements statement using one of the following operators of 
the RELAX language: SHALL; MAY…OR; EVENTUALLY; 
UNTIL; BEFORE/AFTER; IN; AS EARLY/LATE AS 
POSSIBLE; AS CLOSE AS POSSIBLE TO; and AS 
MANY/FEW AS POSSIBLE. Moreover, the following types of 
uncertainty factors can be defined for each requirement: 
environmental, monitoring, relationship (between environment 
and monitoring), and dependencies (between requirements). 

2016 10th International Conference on the Quality of Information and Communications Technology

978-1-5090-3581-6/16 $31.00 © 2016 IEEE

DOI 10.1109/QUATIC.2016.52

83



The following requirement of a smart home system [7] 
illustrates these operators and uncertainty factors: The 
fridge SHALL detect and communicate with food 
packages. After going through the process, see the 
RELAXed requirement in Figure 1. 

This relaxed requirement is more flexible than the original 
statement, since now the system does not need to detect and 
communicate with every food package, but with as many as 
possible. In the following sub-section we describe further 
requirements of this system (extracted from [7]), illustrating the 
use of the RELAX process and language. 

R1.1’ The fridge SHALL detect and communicate 
information with AS MANY food packages AS POSSIBLE. 

 ENVIROMENT: Food locations, food item 
information (type, calories) & food state 
(spoiled, unspoiled).  

MONITORING: RFID readers; Cameras; Weight 
sensors.  

RELATIONSHIP: RFID tags provide food 
locations/food information/food state; Cameras 
provide food locations; Weight sensors provide 
food information (whether eaten or not). 

DEPENDENCIES: negatively impacts R1.2’; 
positively impacts R1.4 and R1.6. 

Fig. 1 Complete specification of the R1.1’ requirement, from [7] 

1) Example:  
To exemplify RELAX we use a smart-home system 

focused on healthcare described in [7], with the requirements 
shown in Figure 2. This system includes a fridge that detects 
the food it contains (R1.1), using this information to create diet 
plans for its user (R1.2). Besides defining the user’s diet, the 
system must take care of the liquid intake of the user (R1.3) 
and raise an alarm in case of prolonged and unexpected 
inactivity (R1.5). Additionally, the system must have low 
energy consumption (R1.4) and low alarm latency (R1.6). 

R1.1: The fridge SHALL detect and communicate with food packages.  

R1.2: The fridge SHALL monitor and adjust the diet plan.  

R1.3: The system SHALL ensure a minimum of liquid intake.  

R1.4: The system SHALL minimize energy consumption during normal 
operation. 

R1.5: The system SHALL raise an alarm if no activity by Mary is detected for 
t.b.d. (to be defined) hours during normal waking hours.  

R1.6: The system SHALL minimize latency when an alarm has been raised. 

Fig. 2 Requirements statements of the smart home system, from [7] 

After enacting the RELAX process, the first four 
requirements were modified (see Figure 3). 

R1.1’: The fridge SHALL detect and communicate information with AS 
MANY food packages AS POSSIBLE. 

R1.2’: The fridge SHALL suggest a diet plan with total calories AS CLOSE 
AS POSSIBLE TO the daily ideal calories. The fridge SHALL adjust the 
diet plan in line with Mary’s actual calorie consumption. 

R1.3’: The system SHALL ensure that Mary’s liquid intake is as AS CLOSE 
AS POSSIBLE TO ideal during the course of the day. The system SHALL 
ensure minimum liquid intake BEFORE bedtime. 

R1.4’: The system SHALL consume AS FEW units of energy AS

POSSIBLE during normal operation. 

Fig. 3 Relaxed requirements of the smart home system, from [7] 

For the sake of brevity, the uncertainty factors of these 
requirements are not presented here, except for R1.1 which 
was presented in the previous sub-section. Requirements R1.5 
and R1.6 remained unchanged (invariant requirements). In the 
following sub-sections we discuss the RELAX process and 
language in light of the rationales for these modifications as 
described in [7]. 

2) Discussion:  
The RELAX language defines a set of operators that, when 

applied to a given requirements statement, may reduce the 
constraints imposed by the original requirements.  

This relaxation also improves the flexibility of the system, 
as it now can manage the use of the available resources in order 
to favor the satisfaction of a requirement or another. For 
instance, the rationale for R1.1’ presented in [7] describes that 
“it might be preferable to divert resources from the intelligent 
fridge to support emergency functions…”, where R1.6 is an 
example of an emergency function (minimal alarm latency) 
that should be favored. Implicitly, this indicates that R1.6 has 
higher priority than R1.1. 

During the RELAX process, dependencies between 
requirements are made explicit, in order to define which other 
requirements are impacted by the relaxation. For instance, 
“relaxing R1.1 will impair the system's ability to suggest an 
appropriate diet plan (R1.2')”  [7]. This information indicates 
that R1.2 depends on R1.1, which is relevant information for 
prioritization and release planning [8].  

As shown for R1.1’, some kind of monitoring is required in 
order to obtain information from the environment. Thus, a 
requirement may become costlier to implement, due to the 
implementation of monitoring capabilities. On the other hand, a 
requirement may become less costly to implement, if the 
original statement was too strict. For instance, if the system 
needed to obtain information from every food package (instead 
of as many as possible), monitoring through RFID would not 
suffice and more expensive solutions would be required (for 
instance, video cameras and image processing). In either way, 
the RELAX process has potential to change the cost of 
implementing a requirement, which is a relevant factor for 
requirements prioritization [5][9]. 

Relaxation implicitly suggests that the requirement is of 
lower priority than an unchanged (invariant) requirement. This 
is evidenced by excerpts from [7]: “R1.5 was considered an 
invariant and was thus unchanged, since it specified behavior 
that may be critical to Mary's health”; “…treat R1.6 as an 
invariant because of its implicit criticality to Mary's health”. 

III. ZANSHIN FRAMEWORK 

Zanshin is a framework for requirements-based adaptation 
which makes the feedback loop explicit by defining what needs 
to be monitored (through indicators) and what can be changed 
(by means of parameters and adaptation strategies). 

The Zanshin process for system identification of adaptive 
software systems starts with a requirements goal model and 

U 
N 
C 
E 
R 
T 
A
I 
N 
T 
Y

F
A
C
T
O
R
S 

84



ends with a goal model enriched with adaptation elements. The 
process represents an incremental refinement of the goal 
model, in order to include: indicators, parameters, and relations 
between parameters and indicators. 

The goal model variation adopted by Zanshin represents 
goals, tasks, softgoals, domain assumptions (DAs) and quality 
constraints (QCs). The space of alternatives for goal 
satisfaction is represented by Boolean AND/OR refinements. 
Tasks are directly mapped to functionality in the running 
system and are satisfied if executed successfully. DAs are 
satisfied if they hold (affirmed) while the system is pursuing 
their parent goal. Softgoals represent, usually, non-functional 
requirements that do not have clear-cut criteria for satisfaction, 
such as Low cost or Fast response. Nonetheless, their 
satisfaction may be metricized by one or more QCs, which can 
be associated with run-time procedures that check their 
satisfaction. 

In order to better support the development of adaptive 
systems, [1][2] propose two additional concepts for goal 
models: indicators (named awareness requirements) and 
parameters.  

•  Indicators are requirements about the state of other 
requirements (such as their success or failure) at runtime. 
In practice, indicators define which requirements should 
be monitored at runtime. 

•  Parameters are variables that affect the fulfillment of 
indicators. They represent some attribute of the system that 
may be modified as desired. For example: level of 
automation, number of servers and of ambulances 
available. 

When indicators fail at runtime, a possible adaptation 
strategy is to change one or more parameter values in order to 
improve chances of success. This change is driven by 
qualitative differential expressions relating parameters and 
indicators [1] stating, for instance, that increasing the number 
of staff members in a call center increases the likelihood of 
successfully taking calls. 

1) Example:  
The use of Zanshin is illustrated by a case study based on 

the London Ambulance Service Computer-Aided Dispatch 
(CAD) system, as reported in [10].  An excerpt of the goal 
model is shown on Fig. 4. Its main goal is to Generate 
optimized dispatching instructions. This goal is AND-refined 
onto three other goals: Call taking, Resource mobilization, and 
Map retrieval. Furthermore, the following domain assumption 
was made: Resource data is up-to-date. The Resource 
mobilization goal is further AND-refined onto Determine best 
ambulances, Inform stations / ambulances, Provide route 
assistance, and Get good feedback. The system also presents 
two softgoals, Fast arrival and Fast dispatching, which are 
refined with the following quality constraints, respectively: 
Ambulance arrive in 8 min and Dispatching occurs in 3 min. 

Besides these traditional goal model elements, Fig. 4 also 
shows some adaptation elements – namely, indicators and 
parameters. The i5 and i11 indicators mandate, respectively, 
that the Resource data is up-to-date domain assumption and 
the Dispatching occurs in 3 min quality constraint should never 

fail – i.e., throughout the entire system execution, these 
elements should always be satisfied. Moreover, i3 defines that 
the Ambulance arrive in 8 min quality constraint should have a 
success rate of at least 75%, whereas i12 states that the Get 
good feedback task should have a success rate of at least 90%. 

Lastly, the LoA (Level of Automation) parameter can have 
any of the following values: Manual, Auto with confirmation, 
or Automatic 

2) Discussion:  
According to [10], the following elements are input for 

defining the indicators of the system: critical requirements, 
non-functional requirements, preferable solutions, trade-offs, 
preemptive adaptation, meta-awareness requirements, and 
qualitative elicitation. From these, the following are related to 
prioritization: critical requirements, preferable solutions, and 
trade-offs. 

As reported in [10], the definition of indicators for the CAD 
system was mostly based on problems that may occur during 
execution. A few excerpts of the report show, nevertheless, the 
impact of criticality in the identification of indicators: “Such a 
subset of critical goals can be identified in the process and 
AwReqs specifying the precise achievement rates that are 
required for these goals will be attached to them”; “A 
constraint on the first part is depicted in the CAD model by 
quality constraint Dispatching occurs in 3 min and to indicate 
the criticality of this constraint, AwReq AR11 indicates the 
constraint should never fail” [10]. These excerpts describe a 
rationale for creating indicators (AwReqs): the criticality of the 
requirements that they refer to. 

Since indicators define which requirements should be 
monitored, they potentially affect the costs of implementing 
some requirements. Thus, this additional cost should be taken 
into consideration in an eventual reprioritization. 

Similarly to RELAXed requirements, the parameters 
included in a goal model potentially create new dependencies 
in the system. This is the case since the same parameter may 
affect different indicators, creating an indirect dependency 
between them. It is possible, for instance, that modifying a 

 
 

Fig. 4. Excerpt of the goal model of the CAD system, based on [10] 

85



parameter in order to improve the success likelihood of a given 
indicator will have adverse effects on other(s) indicators(s). For 
instance, decreasing values for Level of Automation (LoA) 
helps the i3 and i12 indicators, whereas it hurts the satisfaction 
of the i11 indicator (which refers to the Dispatching occurs in 3 
minutes quality constraint) [10]. 

Given the potential of parameter changes having both 
positive and negative impacts in the system, it is helpful to 
have explicit priorities of the requirements in order to decide 
which trade-offs to perform whenever an adaptation is needed, 
as discussed in [11]. Lastly, when defining adaptation 
strategies, different alternatives for handling the failure of a 
given indicator can be defined. For instance, two possible 
reconfigurations were defined if i11 is not successful (i.e., if an 
ambulance dispatch takes longer than three minutes). The order 
on which the different alternatives should be chosen suggests 
implicit prioritization of these alternatives. 

IV. WHERE DOES PRIORITIZATION HAPPEN? 

. On one hand, requirements priorities seem to play a role 
on the decisions made during the RELAX process, thus they 
would be a valuable input. On the other hand, the RELAX 
process is an analysis process that provides additional 
information about the requirements, such as cost and 
dependencies. Since this information is an input of the 
requirements prioritization activity, a reprioritization may be 
advisable in order to revisit preferences in light of what was 
uncovered during the process. 

The Zanshin framework, although using different 
foundations, is similar to RELAX in its relationship with 
prioritization: requirements’ priorities are an input for defining 
some aspects of adaptation; new information is discovered 
during the process, which may warrant a reprioritization of the 
system requirements. Unlike RELAX, Zanshin has an implicit 
prioritization of alternative adaptations that can be executed, in 
terms of ordered enumeration of parameters and of different 
execution orders within adaptation strategies. 

Based on these evidence-based observations, we propose 
that before starting the process of specifying adaptation 
requirements the original requirements should be prioritized 
(see Fig. 5). After an iteration of the adaptation process is 
completed, a reprioritization may be needed. Lastly, within the 
adaptation process a specific kind of prioritization may be 
useful: the prioritization of alternative adaptations. 

V. CONCLUSION 

By analyzing different requirements-based frameworks for 
software adaptation, we identified that requirements priorities 
can aid the task of specifying adaptation. Moreover, we 
observed that the specification of adaptation is an analysis 
process where further information is elicited, in such a way that 
in some cases a reprioritization may be warranted. Lastly, we 
have found weaker evidence that the prioritization of 
alternative options for adaptation may be beneficial to better 
choose which adaptation to perform when more than one 
alternative is available. 

We have used examples from case studies performed and 
reported by the authors of the respective frameworks, instead 

of performing new case studies of our own, in order to reduce 
bias from our part. 

REFERENCES 

 
[1] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos, “System 

Identification for Adaptive Software Systems: A Requirements 
Engineering Perspective,” Conceptual Modeling – ER 2011, 2011, pp. 
346–361. 

[2] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos, 
“Awareness Requirements,” Software Engineering for Self-Adaptive 
Systems II, vol. 7475, R. Lemos, H. Giese, H. A. Müller, and M. Shaw, 
Eds. Springer, 2013, pp. 133–161. 

[3] D. Weyns, M. Usman Iftikhar, and J. Soderlund, “Do external feedback 
loops improve the design of self-adaptive systems? A controlled 
experiment,” 2013 8th Int. Symp. Softw. Eng. Adapt. Self-Managing 
Syst., pp. 3–12, May 2013. 

[4] D. M. Berry, B. H. C. Cheng, and J. Zhang, “The four levels of 
requirements engineering for and in dynamic adaptive systems,” in 11th 
International Workshop on Requirements Engineering Foundation for 
Software Quality (REFSQ), 2005, p. 8. 

[5] P. Berander and A. Andrews, “Requirements Prioritization,” in 
Engineering and Managing Software Requirements, 

[6] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, et al, “Software 
Engineering for Self-Adaptive Systems: A Second Research Roadmap,” 
in Software Engineering for Self-Adaptive Systems II, vol. 7475, no. 
October 2010, R. Lemos, H. Giese, H. Müller, and M. Shaw, Eds. 
Springer Berlin Heidelberg, 2013, pp. 1–32. 

[7]  J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Chengy, and J. M. Bruel, 
“Relax: a language to address uncertainty in self-adaptive systems 
requirement,” Requir. Eng. J., vol. 15, no. 2, pp. 177–196, 2010.. 

[8] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. N. O. Dag, 
“An industrial survey of requirements interdependencies in software 
product release planning,” Proceedings Fifth IEEE International 
Symposium on Requirements Engineering. pp. 84–92, 2001. 

[9] K. Wiegers and J. Beatty, Software Requirements, 3rd ed. Pearson 
Education, 2013. 

[10] V. E. S. Souza, “Requirements-based software system adaptation,” Ph.D 
Thesis, University of Trento, Italy, 2012. 

[11] K. Angelopoulos, V. E. S. Souza, and J. Mylopoulos, “Dealing with 
Multiple Failures in Zanshin: a Control-Theoretic Approach,” Proc. 9th 
Int. Symp. Softw. Eng. Adapt. Self-Managing Syst. - SEAMS 2014, no. 
May 2016, pp. 165–174, 2014. 

Fig. 5. Overview of the relationship between prioritization and adaptation 

86


