
Web Tool for Goal Modelling and Statechart

Derivation

João Pimentel, Jéssyka Vilela, Jaelson Castro

Universidade Federal de Pernambuco

Recife, Brazil

{jhcp, jffv, jbc}@cin.ufpe.br

Abstract—Creating and maintaining visual models is a time-con-

suming step in software engineering processes. In order to support

the creation of some of these models, we have developed the Goal

to Architecture tool (GATO). This web tool handles the creation

and edition of goal models, as well as the derivation of statecharts.

The particular variation of goal modelling supported by this tool

contains four views: requirements view, design view, delegation

view, and behavioural view.

Index Terms—Goal modelling tool, Web tool, Statechart

Derivation, Requirements-driven software adaptation.

I. INTRODUCTION

Requirements engineering and architectural design, while

addressing the system specification at different abstraction lev-

els, comprise intertwined activities. The former focuses on the

problem at hand, whereas the latter provides solutions for that

problem [1]. One of the challenges in Software Engineering is to

determine whether a system specification is actually a solution

to the given requirements. We propose to tackle this challenge

by systematically deriving the latter from the former. In earlier

work we proposed a process for deriving architectural models

from requirements [2][3]. However, these proposals handle only

the structural view (e.g., components-and-connectors) of the ar-

chitectural design, lacking any behavioural specification of the

system-to-be. The behavioural view (e.g., statecharts) accounts

for the order of execution of tasks that fulfils requirements, in-

cluding concurrency and time dependencies for the system-to-be

[4], allowing further refinement of the system and supports rea-

soning to detect potential deadlocks, termination and efficient

use of scarce resources.

In recent work [5][6] we have proposed the MULAS frame-

work for designing adaptive systems. This framework includes

a systematic process for deriving behavioural models – ex-

pressed as statecharts [7] – from goal models through a series of

refinements that introduce into the design: (i) design tasks, de-

sign constraints and design assumptions, (ii) assignments of re-

sponsibility, and (iii) behavioural refinements. Design tasks al-

low the architect to define tasks that, although not relevant for

the stakeholders – thus not expressed in the requirements – are

important in defining the behaviour of the system (e.g., connect

to server, log in, and check connection speed). Design con-

straints refine requirements quality constraints into more con-

crete constraints (e.g., use 128-bits encryption may be a refine-

ment of a security requirement). Design assumptions represent

1 Available at http://www.cin.ufpe.br/~ler/supplement/re2015/

situations assumed during system design, often allowing some

simplification of the system (e.g., no more than 100 users will

access the system simultaneously). Assignments lead to an initial

structuring of the system, in accordance with who/what (e.g., hu-

man actors, organizations, software components, etc.) is respon-

sible for performing its different tasks. Lastly, behavioural re-

finements define the execution flows of the system and open the

door for the transformation of requirements into statecharts.

Considering the effort required for creating and maintaining

the different models of the process, we identified the need for

creating a supporting tool. This Goal to Architecture tool

(GATO)1 is described in the following sections.

II. REQUIREMENTS

The requirements for our supporting tool are presented in Fig.

1. The functional requirements were elicited based on what is

necessary for supporting the enactment of the process proposed

on [5][6]. The quality constraints were elicited from the needs of

the authors when conducting and reporting case studies. It sup-

ports the edition of requirements elements (goals, tasks, domain

assumptions, and quality constraints), as well as of the edition of

design elements (design tasks, design constraints, design as-

sumption, assignments, and behavioural refinements) and the

edition of adaptation elements (awareness requirements and pa-

rameters). After included in the model, each element may be

moved, renamed, or deleted.

Besides editing and managing goal models, it is also possible

to create adaptation specifications (adaptation strategies and pa-

rameters) and to specify transitions (events and conditions). The

tool also supports the derivation of statecharts from the design

goal model. Lastly, the functionality of Export to Zanshin was

included in order to facilitate the integration with a software ad-

aptation component [8].

The GATO tool has three main quality constraints: Portabil-

ity of model editing, Reliability of model managing, and High

Quality of saved images. By portability we mean the ability to

run over different operating systems: Windows, Mac, and Linux.

Reliability, which is too abstract, was made concrete with an Au-

tosave task. I.e., if the tool presents an autosave functionality,

the system is considered to be sufficiently reliable. Lastly, in or-

der to satisfy the High Quality constraint, it was decided to Pro-

vide Vectorial Format, such as SVG (Scalable Vector Graphics).

978-1-4673-6905-3/15 c© 2015 IEEE RE 2015, Ottawa, ON, Canada
Demos and Posters

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

292

III. DESIGN AND IMPLEMENTATION

The tool client was developed with web-based technologies,

taking advantage of recent advances on web browser perfor-

mance. A diagram is a SVG image that is rendered natively by

web browsers. The creation and updating of said image was de-

veloped using the JointJS2 library. The user interface of the cli-

ent was developed using the Bootstrap framework3 and the

jQuery4 library. The goal model is displayed with four different

views, which facilitates its visualization. This feature was in-

spired by the STS-Tool [9].

On the server side, the module for deriving statecharts from

flow expressions was built using the SableCC tool5 , which au-

tomatically generates Java code for parsing an input text, as well

as for creating and traversing an abstract syntax tree of the parsed

text. The code is generated by SableCC taking as input a custom-

defined grammar, which specifies the tokens and production

rules of the language that will be parsed.

The code for actually identifying the states, transitions and

concurrent states that should be derived from a given flow ex-

pression was developed on top of the depth-first tree traverser

generated with SableCC. This mapper was wrapped up as a rest-

ful service using Jersey6, allowing it to be invoked from our web-

based client. The result of the derivation is then displayed back

in the web client.

The use of a grammar-based approach for performing the

goal model – statechart transformation was selected in detriment

of model transformation languages such as ATL (ATL Transfor-

mation Language) and QVT (Query / View / Transformation),

since the most relevant information for this transformation is the

flow expression, which is textual. In order to verify the imple-

mentation of this algorithm we developed automatic tests com-

paring the results for given expressions to their expected results.

The result of the derivation is displayed back in two ways: as

a list of states, their hierarchy, and transitions; and as a visual

diagram. The creation of visual diagrams, from this output, is

2 Javascript library, available at http://www.jointjs.com/
3 Available at http://getbootstrap.com/2.3.2/
4 Javascript library, available at https://jquery.com/

still in early development. Currently, the tool generates a

statechart only with the atomic states; in future developments we

expect to be able to include the super-states on the diagram.

ACKNOWLEDGEMENTS

Work supported by the ERC advanced grant 267856 “Lucre-

tius: Foundations for Software Evolution”; as well as by the fol-

lowing Brazilian institutions: CAPES, CNPQ, and FACEPE.

REFERENCES

[1] B. Nuseibeh, “Weaving together requirements and architectures,”
Computer (Long. Beach. Calif)., vol. 34, no. 3, pp. 115–119, Mar.
2001.

[2] J. Castro, M. Lucena, C. Silva, F. Alencar, E. Santos, and J. Pi-
mentel, “Changing attitudes towards the generation of architec-
tural models,” Journal of Systems and Software, vol. 85, pp. 463–
479, Mar. 2012.

[3] J. Pimentel, M. Lucena, J. Castro, C. Silva, E. Santos, and F.
Alencar, “Deriving software architectural models from require-
ments models for adaptive systems: the STREAM-A approach,”
Requirements Engineering, vol. 17, pp. 259–281, June 2012.

[4] F. Bachmann, L. Bass, P. Clements, D. Garlan, J. Ivers, R. Little,
R. Nord, and J. Stafford, “Documenting Software Architecture :
Documenting Behavior,” Tech. Rep. January, 2002

[5] J. Pimentel, “Systematic Design of Adaptive Systems — A Con-
trol-Based Framework,” Ph.D. thesis, Universidade Federal de
Pernambuco, 2015. Available at http://www.cin.ufpe.br/~ler/sup-
plement/re2015/

[6] J. Pimentel, J. Castro, J. Mylopoulos, K. Angelopoulos, and V.
E. S. Souza, “From Requirements to Statecharts via Design Re-
finement,” Proceedings of the 29th Annual ACM Symposium on
Applied Computing - SAC 2014, pp. 995-1000, 2014.

[7] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of computer programming, vol. 8, no. 3, pp. 231–274,
1987.

[8] V. Souza, “Requirements-based software system adaptation”,
Ph.D. thesis, University of Trento, 2012.

[9] E. Paja, F. Dalpiaz, M. Poggianella, P. Roberti, and P. Giorgini,
“STS-Tool: Specifying and Reasoning over Socio-Technical Se-
curity Requirements”, 6th International i* Workshop (iStar'13),
2013, pages 131–133, Valencia, Spain.

5 Available at http://sablecc.org
6 Java library, available at http://jersey.java.net

Fig. 1. Requirements of the Goal to Architecture tool (GATO)

293

