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Abstract Some quality attributes are known to have an

impact on the overall architecture of a system, so that they

are required to be properly handled from the early begin-

ning of the software development. For example, adapt-

ability is a key concern for autonomic and adaptive systems,

which brings to them the capability to alter their behavior in

response to changes on their surrounding environments. In

this paper, we propose a Strategy for Transition between

Requirements and Architectural Models for Adaptive sys-

tems (STREAM-A). In particular, we use goal models

based on the i* (i-Star) framework to support the design and

evolution of systems that require adaptability. To obtain

software architectures for such systems, the STREAM-A

approach uses model transformations from i* models to

architectural models expressed in Acme. Both the require-

ments and the architectural model are refined to accomplish

the adaptability requirement.

Keywords Requirements engineering �
Architectural design � Mapping between requirements

model and architectural model �Model-driven engineering �
Adaptive systems

1 Introduction

It is well-known that some kinds of systems present quality

attributes—non-functional requirements (NFRs)—that

have an impact on the architecture of the system as a

whole. These requirements must be elicited, analyzed, and

properly handled in the early requirements phase. Other-

wise, it would compromise the software architectural

design quality. Moreover, some NFRs demand specific

approaches and mechanisms to enable their achievement.

For instance, it is unlikely that an approach to develop

mobile systems is also suitable to develop multi-server

scalable systems.

In this paper, we are concerned in developing adaptive

systems that require a specific NFR: adaptability [44].

Software adaptability may be defined as the software

capability for accommodating environmental changes [44].

Thus, an adaptive system must be able to monitor its

environment—identifying the changes on it—and to act on

response to that change—adapting itself. Similarly, self-

managing systems are those that are capable of adapting as

required through self-configuration, self-healing, self-

monitoring, self-optimization, and so on—which are also

referred to as self-* or autonomic systems. These charac-

teristics become more important nowadays due to
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increasing demand for software systems that are expected

to be flexible, resilient, robust, recoverable, energy-effi-

cient, and so on [39].

Although several works were proposed for modeling and

reasoning on adaptive software—such as [3, 38, 42]—a

challenge that still remains is to define a systematic

approach to design architectures of adaptive systems sat-

isfying the requirements specifications, as well as sup-

porting the coevolvement of both artifacts. In this paper,

we propose the STREAM-A (Strategy for Transition

between Requirements and Architectural Models for

Adaptive systems) that defines a systematic process to

generate architectural design models from requirements

models for adaptive systems, based on horizontal and

vertical transformations rules. This process is based on the

generic STREAM process [35].

Transformation approaches [15] appear as an effective

way to generate architectural models from requirements

models, recognizing the close relationship between archi-

tectural design and requirements specification [8]. Hori-

zontal transformations are those on which the source and

target models are in the same level of abstraction (e.g.,

requirements to requirements), while in vertical transfor-

mations, the models are on different abstraction levels

(e.g., requirements to architecture) [37]. On the STREAM-

A process, horizontal transformations are applied to the

requirements models represented as i* goal-based models,

resulting on intermediary requirements models closer to

architectural models [36]. Vertical transformations map

these intermediary models onto architectural models in

Acme [35].

Goal-oriented modeling has been acknowledged in

several areas of the software engineering discipline as a

suitable way of defining and analyzing organizational

expectations and systems requirements [32, 49]. In partic-

ular, the i* framework [47] has become one of the main

references for goal-oriented modeling, with a strong com-

munity and constantly evolving techniques [10, 48]. We

have chosen to use i* on our approach due to (i) its

capability of expressing alternative behaviors; (ii) its

mechanisms for refining NFRs; (iii) its support for inter-

active, iterative analysis over goal models; and (iv) the

existing extensions that improve its expressiveness and

provide richer reasoning. In particular, we are going to use

a context-based extension for the i* framework that sup-

ports adaptability at runtime [2]. For describing the archi-

tectural design of adaptive systems, we rely on Acme [21].

This language contemplates all the necessary elements to

represent architectures. If required, the architecture could

be translated onto architecture description language (ADL)

that better suits the development environment to be used,

benefiting from the fact that Acme is architecture

description interchange language. Moreover, further steps

in the development cycle could be proposed to support a

model-driven approach, such as [40].

Throughout the STREAM-A process, architectural

models will be refined and enriched with additional infor-

mation—such as context annotations—to guide the iden-

tification and analysis of actuators and sensors, essential

elements of adaptive systems. Moreover, the adaptive

reasoning will be encapsulated in a single component [16]

that will be connected to the overall architecture. The

adaptation reasoning will be performed in a high level of

abstraction and therefore easy to change, without requiring

any change on the system’s source code.

The remainder of this paper is organized as follows.

Section 2 presents the main concepts of the i* language—

used to represent requirements as goal models—and the

Acme language, employed to describe architectural mod-

els. This section illustrates the usage of i* models by

presenting our running example—the smart home system.

Section 3 gives an overview of our approach. Sections 4

and 5 describe the activities of the STREAM-A process,

applied to the running example. Section 6 summarizes our

work and points out open issues and related works. Finally,

yet importantly, Sect. 7 presents the conclusions and future

works.

2 Background and running example

This section presents the requirements modeling and

architectural description languages used in the proposed

process. Along with the i* notation, we present the running

example of this paper.

2.1 Goal modeling with i*

In goal-oriented approaches [32], the role of requirements

engineering (RE) is related to the discovery, the formula-

tion, the analysis, and the agreement of what is the problem

being solved, why the problem must be solved, and who is

responsible for solving the problem.

As the usage of goals grew in the RE community, there

are several techniques where goals are used as a major

abstraction, including KAOS [18], NFR Framework [14],

i* [47], V-Graph [50], and Techne [28]. Among these

approaches, we chose i*, which will be briefly presented in

this subsection.

i* defines models to describe both the system and its

environment in terms of intentional dependencies among

strategic actors [47] (who). There are two different dia-

grams, or views, of an i* model: the strategic dependency

(SD) view presents only the actors and the dependency

links among them, while the strategic rationale (SR) view

shows the internal details of each actor. Within a SR
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diagram, it is defined why each dependency exists and what

is required to fulfill them.

Besides the actor, there are four key elements in i*:

goals, softgoals, tasks, and resources. The goals represent

the strategic interests of actors, that is, their intentions,

needs, or objectives to fulfill its role within the environ-

ment in which they operate. Softgoals also represent the

strategic interests of the actors, but in this case, these

interests are of subjective nature. They are not measured in

concrete terms, but are generally used to describe the

actors’ desires related to quality attributes of their goals.

The tasks represent a way to perform some activity, i.e.,

they show how to perform some action to obtain the sat-

isfaction of a goal or softgoal. The resources represent data,

information, or a physical resource that an actor may

provide or receive. Softgoals are usually associated to non-

functional requirements, while goals, tasks, and resources

are usually associated to system functionalities [48].

There is one kind of dependency related to each one of

these four elements. A goal dependency states that the

depender needs the dependee to satisfy a goal for him.

Similarly, in a softgoal dependency, the depender needs the

dependee to meet a softgoal. In a task dependency, the

dependee is asked to perform an activity for the depender.

A resource dependency express that the depender needs

some resource that may be provided by the dependee.

Figure 1 presents an excerpt of a SD model of a smart

home system, which is our running example. A Tenant, whom

is the user of this system, depends on the Smart home system

to have the temperature of her house managed, to be safer, to

be entertained, and so on. In order to fulfill these dependen-

cies, the system also depends on other actors. For instance, it

needs that the Fire department handles emergencies.

In the SR diagram, the actor will be detailed using task

decomposition, means-end, and contribution links (Fig. 2).

The means-end links define which alternative tasks (means)

may be performed in order to achieve a given goal (end)

(e.g., Control air ventilator is a possible means to achieve

the goal Temperature be managed). The task decomposi-

tion links describe what should be done to perform a cer-

tain task (e.g., the task Control air ventilator is

decomposed onto the tasks Turn on air ventilator, and Turn

off air ventilator). Finally, the contribution links suggest

how a task can contribute (positively or negatively) to

ActorTaskGoal Softgoal Resource Depender
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Fig. 1 Strategic dependency

(SD) model of a smart home

system
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satisfy a softgoal (e.g., the task Turn on air ventilator

contributes negatively to the softgoal Energy spent wisely).

These contributions allow the selection of alternative tasks

driven by the satisfaction of softgoals, which includes non-

functional requirements.

Figure 3 presents the complete refinement of the Smart

home system actor. For the sake of simplicity, the depen-

dencies are omitted, since in the STREAM-A process, only

the system itself (software and hardware) will be translated

into architecture. However, it is worth noting that the

system is mainly a way of satisfying the goals of human

actors, such as the Tenant actor that will interact with the

system.

The highlighted elements in Fig. 3 will be later moved

during requirements refactoring, as it is going to be

explained in Sect. 4.1.

2.2 Acme architecture models

There is a variety of architectural description languages

(ADLs), each one with its own set of tools and techniques.

Acme [21] was proposed with the primary goal of pro-

viding an interchange format to be used by tools and

environments for architectural development. Note that if

necessary, it is possible to map Acme diagrams onto other

languages such as UML [23].

According to [45], the fundamental elements when

describing instances of architectural designs include com-

ponents, connectors, interfaces, configurations, and ratio-

nale. Acme supports each of these concepts, also adding

the notion of ports, roles, properties, and representations.

Acme components represent computational units of a

system. Connectors represent and mediate interactions

between components. Ports correspond to external inter-

faces of components. Roles represent external interfaces of

connectors. Ports and roles (interface) are points of inter-

action, respectively, between components and connectors.

Systems (configurations) are collections of components,

connectors, and a description of the topology of the com-

ponents and connectors. Systems are captured via graphs

whose nodes represent components and connector and

whose edges represent their interconnectivity. Properties

are annotations that define additional information about

elements (components, connectors, ports, roles, or sys-

tems). Representations allow a component, connector, port,

or role to describe its design in detail by specifying a sub-

architecture that refines the parent element. Different

representations of an element are considered alternative

representations of that element. Properties and representa-

tions could be associated to the rationale of the architec-

ture, i.e., information that explains why particular

architectural decisions were made and what is the purpose

of the elements [45].

Acme has both a graphical and a textual language.

Figure 4 exemplifies its notation through a client–server

example. The client and the server are components, each

one with a single port. The connector RPC has two roles:

caller and callee. The ports are attached to the connec-

tor roles, defining the connection between these two

components.

In the following section, we describe our process to

systematically transform a requirements model in i* into
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architecture in Acme, aiming at the development of adap-

tive systems.

3 STREAM-A overview

We defined a process specifically designed for the context

of adaptive systems. The goal is to generate architectural

models from requirements models, with an incremental and

models transformation-based approach. The requirements

original model is enriched with the information required to

perform the reasoning related to adaptability, and then

architecture is derived.

The six activities of this process are depicted in Fig. 5.

The first three are related to requirements engineering:

Requirements Refactoring, Context Annotation and Anal-

ysis and Identification of Sensors and Monitors. The last

three are architecture-related: Generate Architectural
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Model, Refine Architectural Model, and Include the Self-

adaptation Component. The flow presented in Fig. 5 is just

a guidance, as in real-world projects, an iterative approach

is more likely to occur.

The Requirements Refactoring concerns the modular-

ization of the system. By defining the main elements of the

system in this abstraction level, the system components of

the resulting architecture are more likely to present a

coherent modularization, using the separation of concerns

criteria. Systems with good modularization are easier to

understand and maintain [11]. To support the refactoring of

goal models, a set of transformation rules is defined.

The second activity, Context Annotation and Analysis, is

based on [2] and defines the environmental contexts that

may influence the goals achievement and task executions.

The definition of these contexts is crucial for the proper

specification of an adaptive behavior. These contexts are

analyzed to provide the actual data entities that need to be

monitored in order to define the context.

This information will be used in the Identification of

Sensors and Actuators activity to discover the context

sensors that the system will need. During this activity, the

context actuators will also be identified, based on the tasks

of the goal model.

These last two activities are the most effortful ones of

this process, given that they require further elicitation to be

performed in order to identify the influencing context and

the possible kinds of devices to be used.

At this point, the goal model has sufficient information

to start the architecture derivation. The Generate Archi-

tectural Model is based on a set of transformation rules to

map the requirements model onto components and con-

nectors of an initial architectural model.

In the Refine Architectural Model activity, the archi-

tectural model will be detailed defining the sub-compo-

nents of the components related to adaptivity.

Finally, in the Include the Self-adaptation Component,

the architecture will be linked to a component that will

perform the reasoning related to adaptivity [16]. This

component allows a high-level reasoning, preventing the

need of hard coding the adaptation handling.

These six activities will be further detailed in the fol-

lowing sections.

4 STREAM-A—requirements enhancement

The following subsections describe the activities focusing

on requirements of the STREAM-A process: Requirements

Refactoring, Context Annotation and Analysis, and Identi-

fication of Sensors and Actuators.

4.1 Requirements refactoring

i* models are often overloaded with information that cap-

tures features of both the system organizational environment

and the software system itself. Its rich diversity of concepts,

aligned with misuse of the decomposition mechanisms

allowed by the i* language, can produce models unneces-

sarily hard to read, understand, maintain, and reuse.

Estrada [20] performed an evaluation of the i* modeling

language regarding modularity management, among other

aspects. Modularity of a modeling language measures the

degree to which it offers well-defined building blocks for

creating a model. The building blocks should allow the

encapsulation of internal structures of the model in a

concrete modeling construct. This characteristic ensures

that changes in one part of the model will not have to be

propagated to other parts. Complexity management mea-

sures the capability of the modeling method to provide a

hierarchical structure for its models, constructs, and

concepts.

System example = { 
Component client = { 

Port send-request = {} 
}; 

Component Server = { 
Port receive-request = {} 

}; 
Connector rpc = { 

Role caller = {} 
Role callee = {} 

}; 
Attachments {
    client.send-request to rpc.caller; 
    Server.receive-request to rpc.callee; 
};

(a)

(b)

Fig. 4 Client and server components to exemplify the graphical and

the textual notation of Acme
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Refactoring

Context 
Annotation and 
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Sensors and 
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Fig. 5 Overview of the STREAM-A process
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Although i* incorporates a decomposition mechanism

based on strategic actors, which could be used to improve

modularization of i* models, often the way in which this

mechanism is used is not suitable to produce models that

are easy to evolve and reuse. Current methods for i*

modeling represent the rationale of an actor in a monolithic

way. Sometimes, several refinements are mixed together,

making it hard to visualize the boundaries of subgraphs

related to specific domains. This poor modularity com-

promises the management of the complexity of the models,

an important prerequisite for the adoption of i* in industrial

settings [20].

The aim of this activity is to improve modularity of the

expanded/refined software actor. It allows delegation of

different issues of a problem, initially concentrated into a

single actor, to new actors. Thus, it is possible to deal with

each of them separately, following the separation of con-

cerns principle [19].

We propose to take the modularity problem by means

of a divide and conquer strategy, whereas a strategic actor

can be used as a decomposition mechanism that divides

complex actors into meaningful and manageable sub-

actors. We claim that some preprocessing can greatly

improve the modularity of i* models. Thus, this activity

relies on using a decomposition criterion based on the

separation and modularization of elements or concerns

that are not strongly related to the application domain.

The domain-independent elements are defined according

to the application nature. For example, in a smart home

system, the elements related with data persistency or data

transmission could be modularized. The decomposition of

the main software actor into smaller actors has the

objective of modularizing i* models by delegating

responsibilities of the software actor to other (new) soft-

ware actors that are dedicated to a particular concern. In

this paper, we are considering concerns as cohesive

groups of domain-independent elements. We have applied

heuristics to select the elements that could be in a module

[36]. However, defining good criteria is a critical issue

that relies on human judgment; thus, other heuristics could

be applied if necessary.

For instance, in the smart home system model—whose

application domain is home automation—we can identify

some elements that are not fully related to the smart home

domain. These elements are highlighted in Fig. 3: Notify

tenants, Notify fire department, Invite friend, Invite friend

by email, Invite friend by letter, and Request restaurant

meal, related to communication; Handle tenant prefer-

ences, Select preferences, Store preferences, and Get

musical preferences, related to the preferences manage-

ment, and; Store food consumption data, Store medicine

consumption data, Get food stock status, and Get prefer-

ences, related to data storage.

In order to assist the requirements engineer to identify

the elements that can be removed from the software actor,

we use the following heuristics. H1: Search for internal

elements in the software actor that are independent of the

application domain. H2: Check whether these elements can

be moved from the software actor to another software actor

without compromising the behavior and the understand-

ability of the internal details of the actor. H3: Verify

whether these elements can be reused in different domains.

After the identification of the removable elements, they

will be transferred to other actors. This is not a trivial step,

since the i* language allows for a high interconnectivity

among its elements. In order to assist this step, we propose

four model transformation rules. Table 1 presents these

rules in terms of their preconditions and effects. A generic

example of the application of these rules is presented in

Figs. 6, 7, 8, 9, reflecting the terminology used in Table 1.

These transformations are improvements on previous rules

proposed by [34], contemplating some cases that were

missing. In Figs. 6, 7, 8, 9, the top part presents a model

before the transformation, while the bottom part presents

the same model after the application of the respective

transformation rule.

Regarding the taxonomy of model transformations [37],

these transformation rules are endogenous, i.e., rephrasing

transformations. This is the case since both the source and

the target language are the same (i*). In particular, they are

refactoring transformation rules, since they change the

model structure to improve its modularity without chang-

ing its semantics. Additionally, they are horizontal trans-

formations, since both source and target models present the

same abstraction level.

The concept behind these transformation rules is that, in

i*, dependencies are the only relationship allowed for

elements of different actors. Therefore, the definition of

these rules consists in defining dependencies that preserve

the meaning of the original relationships.

The horizontal transformation rule 1 (HTR1) is a

transformation rule that simply moves a selected subgraph

from the original actor A to another actor A’ (Fig. 6). In

doing so, the original relationships among the elements are

preserved. Unless the subgraph to be moved is an inde-

pendent one, this rule will generate a syntactically incorrect

model, which will be later corrected. The other three

transformation rules will be used to fix these errors. These

corrective rules could be, actually, part of the first rule.

However, in this paper, we define them separately for the

sake of clarity and simplicity.

The horizontal transformation rule 2 (HTR2) considers

the situation in which there is a means-end link between

elements of different actors (Fig. 7). Since the means-end

link has an implicit OR meaning, to preserve the original

model semantics, the linked task is replicated inside the
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actor that has the goal (actor A’) and a dependency of the

same type is generated linking the replicated task to the

original task. Therefore, even if the task is shown inside the

actor A’ (Fig. 7), it will actually be performed (delegated)

by the actor A.

The third transformation rule (HTR3) handles contri-

bution links between elements of different actors (Fig. 8).

Here, the target softgoal is required to be present in both

actors. Otherwise, other contributions to the same softgoal

(e.g., hurt contribution from Task 6 to Softgoal 1) would be

affected creating new contribution links between elements

of different actors, which this transformation intends to

prevent. Therefore, the softgoal will be replicated inside

the other actor, the elements of each actor will have their

contribution links to that softgoal and a dependency link

between the original and the replicated softgoals will be

created.

Finally, the horizontal transformation rule 4 (HTR4)

defines how to handle task decomposition links between

elements of different actors (Fig. 9). In these cases, the

decomposition link will be replaced by a dependency link,

from the father element to the child one. In the example,

this dependency means that to perform Task 5, Task 3 also

have to be performed (by Actor Z).

In the smart home system, after applying the horizontal

rules in the elements highlighted in Fig. 3, we obtain the

result shown in Fig. 10. For the moment, ignore the small

(yellow) rectangles and the highlighting of some elements

present in Fig. 10, as they are the result of activities to be

explained below.

4.2 Context annotation and analysis

The information about context, i.e., the environment on

which the system is inserted, is crucial for adaptive sys-

tems. It is this information that will allow the system to

identify when it needs to change its behavior and what

change is needed. In the words of Cheng et al. [39]

‘‘Whenever the system’s context changes the system has to

decide whether it needs to adapt’’.

Thus, in this activity, we are concerned with defining the

contextual information that will enable the system to

behave adaptively. It comprises the enrichment of the

requirements model with contextual annotations and the

identification of the data that the system will have to

monitor. For this, we rely on the goal-based framework for

contextual requirements [2]. It allows the insertion of

contextual conditions—context annotations—in six differ-

ent points of a goal model. However, due to a difference of

the i* version used in [2] and the one used in our work, we

are considering only five of them, summarized in Table 2.

These points are root goal, means-end link, actor depen-

dency, contribution to softgoal, and decomposition link.

Root goal: a context annotation in a root goal means that

this goal is supposed to be achieved if and only if the

context holds. It can be considered an activation condition.

Example: The Temperature be managed goal is active only

when there is someone at home (C1).

Means-end: a context annotation in a means-end link

denotes that a task is actually a means for that particular

goal if and only if the context holds. Example: The Assist

Table 1 Horizontal transformation rules

Horizontal transformation rule Pre-conditions Effects

HTR1—Move subgraph between

actors

A subgraph G is selected to be moved to an

actor A’;

All elements of G are within the boundary of a

single actor A

All elements of G are moved to the actor A’;

For each link between an element of G and an element of A:

If the link is a means-end link, apply HTR2;

If the link is a contribution link, apply HTR3;

If the link is a task decomposition link, apply HTR4.

HTR2—Move a means-end link

crossing the actor‘s boundary

An element e of an actor A has a means-end

link l to a goal g that is inside another actor

A’

The element e is copied from the actor A to the actor A’,

creating a copy element e’;

The source of the means-end link l is moved from e to e’;

The element e is replicated as the dependum of a

dependency relationship from the copy element e’ to the

original element e

HTR3—Move a contribution link

crossing the actor‘s boundary

An element e of an actor A has a contribution

link c to a softgoal s that is inside another

actor A’

The softgoal s is copied from the actor A’ to the actor A,

creating a copy s’;

The target of the contribution link c is moved from s to s’;

The softgoal s is replicated as the dependum of a

dependency relationship from the original softgoal s to its

copy s’

HTR4—Move a task

decomposition link crossing the

actor‘s boundary

An element e of an actor A is a decomposition

of a task t that is inside another actor A’
The decomposition link is removed;

The element e is replicated as the dependum of a

dependency relationship from the task t to the element e
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the tenant in cooking the meal is only a means to achieve

the Provide meals goal if there is enough food on stock

(C2).

Actors dependency: a context annotation in a depen-

dency link means that the dependee is capable of fulfilling

this dependency if and only if the context holds. Example:

The dependency between the Request restaurant meal task

of the Smart Home System actor and the Communication

actor can be fulfilled only if an Internet connection is

available and active at home (C3).

Contribution to softgoal: a context annotation in a

contribution link means that this contribution actually

exists if and only if the context holds. Example: the

Occupancy simulation task helps to satisfice the Safety

softgoal only if there is no one at home (C4).

Decomposition: a context annotation in a decomposition

link means that the sub-element is, actually, a sub-element

of the decomposed task, only if the context holds. Exam-

ple: The Provide meals goal is part of the Manage tenant

nutrition task if the tenant is going to eat at home (C5).

In Fig. 10, the context annotations of our running

example are presented as (yellow) small rectangles. The

description of these annotations is presented in Table 3.

After defining all the contexts that will influence the

requirements, they can be analyzed to identify what is

Goal 2

Task 1 Task 6

Softgoal 1

Hurt Task 8

Task 7

Task 2

Task 3 Task 4

Task 5

Goal 1

G

Goal 2

Task 1

Task 6

Softgoal 1

Task 8

Task 7

D

D

D

D

Task 2

Task 3 Task 4

Task 5

Goal 1

G

A

A’

A’

(a)

(b)

H
urt

Hel
p

H
el

p

Fig. 6 Example of HTR1—Move subgraph between actors.

a original model. b Result after applying the transformation rule
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the corresponding data in the environment that needs to

be monitored by the system. This analysis is also per-

formed as proposed in [2], on which a context model

with a tree-like structure is employed. The root of this

model is the context, and statements and facts are its

nodes. The facts are predicates that can be verified in a

context, while the statements cannot be verified in a

context. To obtain a verifiable context, all statements are

refined into facts and sub-statements, until there are only

facts left. With this model, it is possible to identify the

variable ways of how the sets of facts can assess a

context. Then, the context models are analyzed to

eliminate inconsistent statements and define the activa-

tion precedence of the facts. Other analysis to trim the

variability space can be performed before deriving a

preliminary conceptual model with the data necessary to

verify the facts. More details about this process are

presented at [2]. In our smart home system, the context

entities on this conceptual model are the following:

luminance, temperature, fire, gas leak, door locks, win-

dows, room occupation, stock supply, Internet connec-

tion, power outlets, and alarm device.

It is important to note that the monitoring required to

assess the context may have a significative impact on the

system under development. For instance, while assessing

the temperature might require only a simple and non-

expensive sensor, assessing the stock supply might require

several sensors and a system to coordinate them. Thus, the

impact of monitoring the context data must also be con-

sidered when defining the context annotations.

4.3 Identification of sensors and actuators

From the information obtained throughout the previous

activity, we are now able to identify the sensors and

actuators of the system. Using the definitions of [16], a

(context) sensor is ‘‘any system providing up-to-date

information about the context where the system is run-

ning’’, while a (context) actuator is ‘‘any actuator in the

environment which can receive commands from the system

to act on the environment context’’, that is , a context

sensor monitors an environment and a context actuator

performs a change on an environment.

The first step is to create a new actor, named Monitor,

which will encapsulate all the monitoring tasks. The

Monitor actor will be linked to the main actor of the system

through a goal dependency, on which the dependum is

Environment monitored. In the main actor, this dependency

can be linked directly to the adaptability softgoal or one of

its refinements. In our running example, we selected to

attach it on a new task, named Get environment data

(Fig. 11). This new task is a decomposition of the Select

best behavior according to the environment task.

Then, for each one of the context entities, a new goal

will be created, expressing the need to monitor these

entities. These goals have the form of Monitor [context

entity], see Fig. 12. Now, we are able to refine these goals

and define how to achieve them. For instance, the Monitor

room occupation goal can be achieved by using a presence

detector based on passive infrared sensor or based on a

ultrasound one (Fig. 12). Each kind of detector has dif-

ferent impacts to the satisfaction of non-functional

requirements, such as Low Cost and Precision. These

impacts—represented as contribution links in i* models—

will guide the selection of the best alternative in the

detailed design.

This kind of devices selection is a detailed design

decision. However, aligning this selection with non-func-

tional requirements and stakeholders priority for these

NFRS allows a more systematic and justified decision. This

decision is performed in the Refine Architectural Model

activity (see Sect. 5.2).

In the smart home system SR model, there are already

some tasks related to monitoring: Monitor food consump-

tion and Monitor medicine consumption (Fig. 10). How-

ever, these tasks are functionalities of the system, they are

not related to adaptivity itself—for instance, the data about

food consumption will be used to manage the patient

nutrition; changes on these data will not trigger any

adaptation. Therefore, they will not be moved to the

Monitor actor.

Besides defining the contexts sensors, we also need to

define their actuators. This step will be accomplished by

moving the tasks that cause a change in the context data to

Actor ZActor X
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Task 3D D
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Fig. 9 Example of HTR4—Move a task decomposition link crossing

the actor‘s boundary. a original model. b Result after applying the

transformation rule
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a new Actuator actor. For instance, the Turn lights on task

changes the Luminance entity of a room, from low lumi-

nance to high luminance. In Fig. 10, all tasks that will be

moved to the Actuator actor are highlighted.

After the identification of such tasks, the same trans-

formation rules, defined in the STREAM-A approach and

previously defined (Table 1), can be used to move the

highlighted tasks to the Actuator actor. The resulting model

of our running example is shown in Fig. 13.

Throughout the requirements enhancement phase, we

performed the refactoring of the initial i* model, the con-

text annotations, and the context entities to be monitored
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were defined. Moreover, the Monitor actor was created and

refined and, finally, the Actuator actor was defined with

tasks from the main actor. These activities transformed the

requirements model in i* into an intermediate (more

modular) i* model closer to an early architectural design.

This intermediate model is the input for the architecture

derivation phase. In this phase, all the created actors, the

main actor, and the dependencies among them will be

mapped to architectural elements through vertical trans-

formation rules. These transformations and further archi-

tectural refinements are presented in the next section.

5 STREAM—architecture derivation

In this section, each STREAM-A activity that directly deals

with architectural models in Acme will be described.

5.1 Generate architectural model

In this step, transformation rules will be used to translate

the i* requirements model onto early architecture model in

Acme. Since these transformations have different source

and target languages, they are exogenous or translation

Table 2 Points on which it is possible to insert context annotations on a goal model and their meaning

Activation point Semantics

Root goal The annotated goal is supposed to be achieved iff the context holds

Means-end In the annotated means-end link, the task is actually a means for that particular goal iff the context holds

Actors dependency In the annotated dependency link, the dependee is capable of fulfilling this dependency iff the context holds

Contribution to

softgoals

In the annotated contribution link, the contribution actually exists iff the context holds

Decomposition In the annotated decomposition link, the sub-element is actually a sub-element of the decomposed task iff the context

holds

Table 3 Context annotations on the smart home system

Context Description

C1 There is someone at the smart home

C2 The food in the house’s stock is enough to cook the meal

C3 There is an Internet connection available and active at the smart home

C4 There is no one at the smart home

C5 The tenant is going to eat at the smart home

C6 The temperature at the room is hotter than what would be pleasant for the people within it, the temperature outside is colder than the

temperature inside the smart home and, the windows are closed

C7 The temperature at the room is colder than what would be pleasant for the people within it, the temperature outside is colder than the

temperature inside the smart home, the smart home is not on fire, and the windows are open

C8 The temperature at the room is hotter than what would be pleasant for the people within it and the air ventilator is off

C9 The temperature at the room is colder than what would be pleasant for the people within it and the air ventilator is on

C10 The temperature at the room is colder than what would be pleasant for the people within it and the heating device is off

C11 The temperature at the room is hotter than what would be pleasant for the people within it and the heating device is on

C12 There is someone at the room or close to it, the room is dark, and the light is off

C13 There is no one at the room or close to it, and the light is on

C14 There is someone at the smart home, there is no gas leaks, the smart home is not on fire, and the gas valves are closed

C15 The gas valves are open

C16 The smart home is not on fire and the door is unlocked

C17 The door is locked

C18 The power outlet is on and there is no vital equipment attached to it

C19 The power outlet is off, the smart home is not on fire, and there is no gas leak detected

C20 The alarm is off

C21 The alarm is on

C22 The heating device is electricity-based
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transformation. They are also vertical transformations,

since the source and target models have different levels of

abstraction.

In summary, these transformations define the mapping

from i* actors to Acme components and from i* dependen-

cies to Acme connectors and ports. A component in software

architecture is a unit of computation or a data store having a

set of interaction points (ports) to interact with external

world [45]. An actor in i* is an active entity that carries out

actions to achieve goals by exercising its knowhow [47]. The

actor representing the software establishes a correspondence

with modules or components [24]. In addition, an actor may

have as many interaction points as needed. Hence, an actor in

i* can be represented in terms of a component in Acme.

Our approach deals with the architectural models related

with the structural views (e.g., component-and-connector

view [4]). It is important to highlight that architectural

views based on behaviors and technological issues are not

supported yet.

Thus, the first vertical transformation rule is a straight-

forward one that maps i* actors onto Acme components.

Figure 14a shows an actor in i* and Fig. 14b shows that

actor translated to an Acme component. In Fig. 14c, its

textual description is presented. Further details of this

component will be added later during the mapping of i*

dependencies.

In i*, a dependency describes an agreement between two

actors playing the roles of depender and dependee,

respectively [13]. On the other hand, connectors are

architectural building blocks that regulate interactions

among components [45]. In Acme, connectors mediate the

communication and coordination activities among com-

ponents. Thus, we can represent a dependency as an Acme

connector (see Fig. 15). Interfaces are points of access

among components and connectors. In i*, there is no such

thing as a port. However, there are points where depen-

dencies interact with actors and define if an actor plays the

role of a depender or a dependee in a dependency,

depending on the direction of the dependency. Hence, the

roles of depender and dependee are mapped to roles that

are comprised by the connector (Fig. 15c lines 12 and 13).

Thus, we can distinguish between required ports mapped

from the depender actor (Fig. 15c lines 2–4) and provided

ports mapped from the dependee actor (Fig. 15c lines 7–9).

These ports indicate the direction of communication

between the depender and dependee components. While in

i* a depender actor depends on a dependee actor to

accomplish a type of dependency, in Acme, a component

requires that another component carries out a service. The

request for this service is related to a required port, and the

result of this service is associated to a provided port.

Finally, attachments are defined to link the components to

the connector itself (Fig. 15c lines 15–18).

Applying this mapping in our running example

(Fig. 13), six components will be generated: Smart home

system (the main actor); Preference manager, Communi-

cation, and Data storage (actors not related to the appli-

cation domain); Monitor and Actuator (actors included to

provide adaptability). Each dependency is mapped to a

connector and the roles of their connectors (depender or

dependee) will be defined according to the dependency

direction. Furthermore, the roles of depender and dependee

are mapped to connector roles that are comprised by the

connector. In addition, required ports (where the actor is a

depender) and provided ports (where the actor is a de-

pendee) are defined. For instance, when an actor has at

least one dependency as a dependee, its equivalent com-

ponent will have at least one provided port. For instance,

the Monitor component will have a provided port consid-

ering the Environment monitored dependency.

The dependencies on which the dependee is the Actuator

actor all act on the environment. Therefore, in order to

simplify our model, instead of creating one connector for

each one of these dependencies, we propose the usage of a
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single Actuations connector. Later, this connector is refined

to sub-connectors—one for each dependency.

Figure 16 shows an example of such a mapping, from an

excerpt of our running example. The three dependencies are

mapped as sub-connectors (Fig. 16c lines 16–28) of a

single connector (Fig. 16c line 11). In Acme, a sub-

element is defined as an element of a system inside a

representation of the super element. The sub-elements are

linked to the super elements through bindings (Fig. 16c

lines 29–36).

Another particular case is that of dependencies with

context annotations. These annotations, which specify a

condition on which that dependency can be satisfied, will

be mapped to a pre-condition property of the respective

connector. An example of such a mapping is presented in

Fig. 17.

Figure 18 presents the smart home system architec-

tural model in Acme, generated from the application of

these vertical transformation rules. This is an initial

architectural model, yet to be refined in the following

activities.
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Fig. 14 Mapping an i* actor onto an Acme component. a Source.

b Target in graphical notation. c Target in textual notation
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5.2 Refine architectural model

From the initial architectural model with the main com-

ponents of the system, defined in the previous activity, we

are now going to define some of their sub-components.

This will be performed based on the alternative sensor

devices defined in the Identification of sensors & actuators

activity. Recall that each data entity to be monitored was

refined (see Fig. 12) to define the possible ways of moni-

toring it, as well as the impact of each alternative toward

non-functional requirements expressed in softgoals.

At this point, further information may be required to

provide more details and enable a better decision. For

instance, in our example, it may help to compare different

detector brands. Then, based on the priority of each soft-

goal, each alternative selection can be analyzed toward an

optimal solution. The best solution can be automatically

discovered using top–down algorithms [22]. Alternatively,

one can make a selection of the devices and then analyze

how this selection impacts the satisficing of the softgoals,

using bottom–up algorithms [22].

For instance, if in the example of Fig. 12, the softgoal

with higher priority is Precision then a device with ultra-

sonic detection will be selected. If instead the Low cost

softgoal has higher priority, the device with passive

infrared detection is selected. Nonetheless, a non-optimal

set of devices (regarding the softgoals) may be selected due

to another criteria, such as enhanced interoperability.

Once defined which are the devices to be used they will

be mapped onto Acme components, using the first vertical

transformation rule. However, instead of being components

of the overall system, they are sub-components of the

Monitor component. Figure 19 exemplifies the specifica-

tion of two sub-components of the Monitor component.

In Acme, sub-components are defined as components of

a (sub) system inside a representation of the component

(Fig. 19b lines 5–17). The sub-components are linked to

the external port of the Monitor component through bind-

ings (Fig. 19c lines 18–21).

Component Depender = { 
Port port1 = { 

Property Required : boolean = true; 

Component Dependee  = { 
Port port2 = { 

Property Provided : boolean = true; 

Connector Dependum = { 
Role dependerRole; 
Role dependeeRole; 

Attachments { 
Depender.port1 to Dependum.dependerRole; 

to Dependum.dependeeRole; 
 

(a)

(b)

(c)
1    
2 
3    
4 }; 
5    }; 
6    
7 
8    
9 }; 
10    }; 
11    
12 
13 
14    }; 
15   
16 
17 Dependee.port2 
18   };

Fig. 15 Mapping an i* generic dependency onto an Acme compo-

nent. a Source. b Target in graphical notation. c Target in textual

notation

Component SmartHomeSystem = { 
Port port1 = { 

Property Required : boolean = true; 

Component Actuator  = { 
Port port2 = { 

Property Provided : boolean = true;

Connector Actuations = { 
Role dependerRole; 
Role dependeeRole; 
Representation { 

System ActuationsDetails = { 
Connector TurnOnHeatingDevice = { 

Role dependerRole; 
Role dependeeRole; 

Connector CloseGasValves = { 
Role dependerRole; 
Role dependeeRole; 

Connector OpenWindows = { 
Role dependerRole; 
Role dependeeRole; 

Bindings { 
 to

TurnOnHeatingDevice.dependerRole; 
 to CloseGasValves.dependerRole; 
 to OpenWindows.dependerRole; 
 to

TurnOnHeatingDevice.dependeeRole; 
 to CloseGasValves.dependeeRole; 
 to OpenWindows.dependeeRole; 

Attachments { 
to Actuations.dependerRole; 

to Actuations.dependeeRole; 

  }; 

(a)

(b)

(c)
1  
2 
3    
4 }; 
5  }; 
6  
7 
8    
9 }; 
10 }; 
11 
12 
13 
14 
15   
16     
17       
18       
19     }; 
20     
21       
22       
23     }; 
24     
25       
26       
27     }; 
28   }; 
29   
30     dependerRole

31     dependerRole
32     dependerRole
33     dependeeRole

34     dependeeRole
35     dependeeRole
36   }; 
37 }; 
38 }; 
39 
40 SmartHomeSystem.port1 
41 Actuator.port2 
42 };

Fig. 16 Example of the specific mapping of the dependencies on

which the Actuator is a dependee. a Source. b Target in graphical

notation. c Target in textual notation
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A similar refinement will be performed for the Actuator

component. In the Identification of sensors & actuators

activity, the tasks of the Actuator actor were defined. Now,

these tasks will be used as input to discover the sub-com-

ponents of the Actuator component. This is achieved by

analyzing each one of its tasks, identifying what is the real-

world entity that will be changed by that task and defining an

actuator for it. For instance, the Turn on lights and Turn off

lights will affect the lights of the house, requiring a lights

actuator. The Open windows and Close windows tasks affect

the windows of the house, requiring a windows actuator, and

so on. Each actuator will be a sub-component of the Actuator

component. These sub-components will be linked to the

external port of Actuator through a connector that simply

pass forward the information about the required actuation.

The results of this activity on the smart home system are

presented in Fig. 20. It shows the Monitor and the Actuator

components, linked to the main component, as well as their

sub-components.

5.3 Include the self-adaptation component

In this activity, the component responsible for the self-

adaptation reasoning [16] will be incorporated into the

architecture. These components perform a Monitor-Diag-

nose-Compensate (MDC) reasoning cycle, as introduced in

[17], to check whether the goals of the system are being

achieved and, if not, what adaptations are required to

achieve them. Figure 21 shows the smart home system

architecture already with the Self-adaptation component.

The Self-adaptation component will be linked to the main

component of the system (in this example, the Smart home

system component), to the Monitor component and to the

Actuator component. The Self-adaptation component will

receive a history of the system’s execution from the main

component (log connector) and the environmental data

from the Monitor component (environment Monitored

connector). These data will be checked against the goal

model of the system, and the required adaptations will be

identified. Some of the adaptations will be required to be

performed through the Actuator component (actuations

connector) and others will be suggested to the main com-

ponent (system pushes connector).

Figure 22 presents the architecture of the Self-adapta-

tion component in more details. There is a sub-component

for each one of the MDC steps, plus a Policy manager. The

Monitor sub-component of the self-adaptation component

receives data about changes in the context and the system

execution through connectors to the Monitor and to the

main component of the system. These data, gathered from

different sensors, will be normalized by the Event nor-

malizer sub-component. For example, if two different

temperature sensors provide the current temperature,

respectively, on Fahrenheit and Celsius scales, these data

will be normalized to use a single scale. The normalized

data will be used by the Dependency monitor to assess the

status of the dependencies, by the Context monitor to

update the context data, and by the Task execution monitor

to identify whether the tasks of the system were success-

fully performed. This information will be passed to the

Diagnoser sub-component through the Dependencies sta-

tus connector, the Current context connector, and the Task

execution status connector, respectively.

The Diagnoser sub-component will use these data to

identify failures in the system execution, based on the

annotated goal model. The failures may concern unac-

hieved goals, unsatisfied dependencies, and tasks that were

not performed (and should have been). The Contextual

goal model manager uses the information of the current

context to check in the goal model that goals and tasks

should, can, and cannot be achieved. These data will be

provided to the Task execution diagnoser, the Dependency

diagnoser, and the Goal commitment diagnoser, through

Connector RequestRestaurantMeal = { 
Role dependerRole; 
Role dependeeRole; 
Property precondition : String = “Internet

connection is available”};    }; 

(a)

(b)

(c)
1    
2 
3 
4 

Fig. 17 Example of the specific mapping of dependencies on which

there is a contextual annotation. a Source. b Target in graphical

notation. c Target in textual notation

Fig. 18 The result of mapping the smart home system model from i*
to Acme
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the Goals/tasks applicability connector. Each one of these

sub–sub-components will identify the Failed dependencies,

the Failed tasks/goals, and the Uncommitted goals,

respectively. An uncommitted goal is a goal that has not

failed yet but which no task has been initiated to achieve it.

All this failure information will be consolidated as a list of

failures on the Failure diagnoser, based on the Tolerance

policies provided by the Policy manager. The Policy

manager is responsible for providing a list of tolerance

rules that specify whether a failure should be ignored or not

on some conditions [41]. These rules are expressed on a

policy defined by the system administrator or by the user

herself. Based on this policy, the Failure diagnoser will

discard the failures for which the rules apply and provide

the list of failures to the Compensator sub-component,

through the Failure diagnosis connector.

In the Compensator sub-component, the Prioritize

diagnosis will prioritize the list of failures to be compen-

sated (i.e., that will require an adaptation) based on Priority

policies also provided by the Policy manager. The failures

with higher priority will be provided to the Reaction

strategy selector through the Selected Diagnosis connector.

The Reaction strategy selector will define which compen-

sation should be performed to address each failure. The

compensation, or adaptation, may be a change on the

system itself (Push system compensations) or on its envi-

ronment (Actuate compensations). The System pushing will

suggest the push system compensations to the main com-

ponent of the system (system pushes connector on Fig. 21),

and the Actuator manager will require the actuation com-

pensations to be performed by the Actuator component

(actuations connector on Fig. 21).

Therefore, the Self-adaptation component is responsible

for performing the reasoning related to adaptation, but it is

not responsible for performing the adaptation itself. The

Component Monitor = { 
Port port1 = { 

Property Required : boolean = true; 

Representation { 
System MonitorDetails = { 

Component PassiveInfraredPresenceDetector = {
Port p = { 

Property Provided : boolean = true; 
  }; 

Component Photosensor = { 
Port p = { 

Property Provided : boolean = true; 
  }; 

Bindings { 
to PassiveInfraredPresenceDetector.p; 
to Photosensor.p; 

};

(a)

(b)
1    
2 
3   
4 }; 
5 
6   
7     
8       
9         
10     
11     }; 
12     
13       
14         
15     
16     }; 
17   }; 
18   
19     port1 
20     port1 
21   }; 
22 }; 
23   

Fig. 19 Example of a

connection between the Monitor
and two of its sub-components.

a Graphical notation. b Textual

notation

Fig. 20 The smart home system architecture after defining the sub-

components of the Monitor and Actuator components

Requirements Eng (2012) 17:259–281 275

123



Monitor component provides data that allow the Self-

adaptation component to check whether the goals of the

system are being achieved, accordingly to the context-

annotated goal model. Once identified whether and which

adaptations will be required, the Self-adaptation compo-

nent then requests the Actuator component to perform the

adaptations themselves. More details on the algorithms

used by the Self-adaptation component can be found in

[16].

Without the Self-adaptation component, this MDC cycle

would need to be hard-coded and repeated in several dif-

ferent parts of the system’s source code. This would

increase the cost for performing changes on the system,

make more difficult the analysis of the adaptive behavior,

and possibly increase the occurrence of errors. By encap-

sulating all this reasoning on a single component, all the

adaptation reasoning will be able to be performed with a

high level of abstraction and therefore easy to evolve,

without requiring any change on the system’s source code.

So, if the adaptive behavior of the system need to be

changed, only the enriched goal model will need to be

changed—unless this change requires a new kind of

monitoring or actuation. Moreover, since the Self-adapta-

tion component is domain-independent, it can be reused in

different systems. On the other hand, such generality might

provoke some loss in performance. Further studies are

required in order to identify the degree of this loss.

It is important to note that not all events will result in

compensation actions. Just the interactions that were cap-

tured by the monitor component, diagnosed as failures and

filtered by the police manager can receive compensation

actions.

6 Discussion

Goal-oriented approaches have long been proposed for

understanding and reasoning on requirements [31]. We

claim that they are also appropriate for reasoning on and

developing architectures. They offer a unified framework

in which both functional and non-functional concerns

can be integrated, and refinement/abstractions links are

Fig. 21 Architectural model presenting all the internal components

of the Self-adaptation component. Adapted from [16]

Fig. 22 The final architecture for the smart home system, including

the Self-adaptation component
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precisely defined and provide the basis for various forms of

qualitative, quantitative, or formal reasoning [31]. Note

that others have also discussed the application of model

transformations between i* based models. For example, the

work presented in [9] proposes an iterative process based

on successive transformations to incrementally refine the

social environment model of the system-to-be. The pro-

duced model is richer than the original model. Our

approach, on the other hand, is concerned with applying

transformations to an i* model aiming at obtaining a more

modular i* model that makes it easier to produce an early

architectural design model in Acme, also using model

transformations.

The original Strategy for Transition between Require-

ments models and Architectural Models (STREAM) [34] is

a generic process aimed to define modular architectures

with a model-driven approach. It strongly relies on trans-

formation rules to incrementally evolve a requirements

model in i* and then derive architecture models. The

resulting requirements model is closer to an earlier archi-

tectural design, facilitating the transition from require-

ments to architectural design. From the modular i* model,

an Acme architectural solution is derived through a set of

mappings between the concepts of i* and Acme languages.

Afterward, one of the architectural solutions is chosen

according to NFRs established in the requirements phase. If

necessary, this architecture is further detailed through

refinement patterns [30]. These patterns are chosen and

applied. Therefore, these horizontal and vertical transfor-

mations involve steps before and after the change of

notation. For example, in the transformation rules of i*,

there often occurs division of actors, while in the activity of

refinement of the architecture can occur grouping of

components. However, it does not address the specific

problem of developing adaptive systems.

In comparison with the original STREAM, in our

approach, we address the development of adaptive systems

by including three new activities: Context Annotation and

Analysis, Identification of Sensors and Actuators, Include

the Self-Adaptation Component. In addition, the activity

Refine Architectural Model was modified to refine with

more details the Monitor and Actuator components. The

vertical transformation rules of Generate Architectural

Model were complemented to support context annotations

on dependencies. Lastly, for Requirements Refactoring, we

defined an improved set of horizontal transformation rules,

contemplating some cases that were missing.

The proposed approach might not be suitable for all

systems and usage scenarios. It is worth noting that our

approach generates architecture in which the adaptation

reasoning is centralized in a single component. Hence, it

might not be suitable for systems that require high scala-

bility or performance. Further studies are required in order

to identify on which scenarios the STREAM-A approach is

more suitable.

In the following subsections, we discuss our approach in

comparison with other approaches for architecture deriva-

tion and for development of adaptive systems.

6.1 Architecture derivation from goal models

We also discuss some approaches that produce architec-

tural design considering goal models as source models: i*

[5], KAOS [30], and AOV-graph [43]. The SIRA approach

[5] focuses on a systematic way to assist the transition from

requirements models in i* to architecture. It describes a

software system from the perspective of an organization, as

stated by the Tropos methodology [12]. Both requirements

and architecture models are described using the i* lan-

guage. An organizational architectural style is chosen

based on a catalog of non-functional requirements pre-

sented in [29]. i* elements, at requirements level, are

grouped, inside an actor, according to their contribution to

achieve some responsibilities. Then, an architectural design

model is created by considering the similarities between

the requirements actors and the architectural actors present

in the chosen organizational architectural style. In our

approach, we also use i* goal model as input, but we group

i* elements into an actor according to their independence

in relation to the application domain and the possibility of

that actor to be reused in another domain. The i* modu-

larized model is then mapped to Acme elements to reach

early architectural design solutions. Furthermore, our

approach is focused on the development of adaptive

systems.

Lamsweerde [30] defines a method to produce archi-

tectural models from KAOS requirements models. In that

approach, requirements specifications are gradually refined

to meet specific architectural constraints of the domain and

an abstract architectural draft is generated from functional

specifications. The resulting architecture is recursively

refined to meet the various non-functional goals analyzed

during the requirements activities. It relies on KAOS

modeling language, which consists of a graphical tree and a

formal language. In our approach, we use another goal

model language as input, the i* model. In fact, we advocate

that first we need to modularize the i* models by means of

horizontal transformations. The mapping from i* models

and architectural design models is made easier by the

presence of actor and dependency concepts. Although

KAOS encloses the concept of agents, it does not support

the concept of dependencies among them. Then again, our

approach is specifically designed to address the develop-

ment of adaptive systems.

In [43], a set of mapping rules is proposed between the

Aspectual oriented V-graph (AOV-graph) and the
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AspectualACME, an ADL based in Acme. This approach

does not address the adaptability softgoal. Each element

(goal/softgoal/task) present in an AOV-graph is mapped to

an element of AspectualACME, depending on its position in

the graph hierarchy. The information about the source of

each element in the AOV-graph is registered in the prop-

erties of a component or a port in AspectualACME. These

properties make it possible to keep the traceability and

propagation of change from AspectualACME to AOV-

graph models and vice versa. In our approach, this trace-

ability is implicitly defined by preserving the names of the

elements—actors and components; dependencies and con-

nectors—on the one-to-one transformations. However, we

acknowledge that this is not enough to provide robust

traceability and evolution control. Another approach that

handles aspectual goal models is presented in [1]. It enables

the expression of more modular goal models through the

definition of crosscutting concerns. However, it does not

tackle the derivation of architectures from the goal model.

In the context of this work, we are using i* models to

produce architectural models in Acme [21]. To the best of

our knowledge, there are no studies using i* as require-

ments models that generates architectural design descrip-

tions in Acme. Moreover, it is well-known that goal-

oriented requirements specifications tend to be complex.

The first activity of the STREAM-A process is a first step

to address this issue.

The i* modeling language is rich and expressive in

describing the system requirements [47]. The approaches

that use i* modeling language as the starting point of

software specification, such as RISD [25], Tropos [12], and

PRIM [26], do not support a systematic transition from

requirements specifications to architectural design

description. Architects often perform architectural design

in an ad hoc manner and do not benefit from all the

expressiveness and richness offered by the requirements

models. Filling this gap between requirements engineering

and architectural design activities will allow the i* models

to drive subsequent software development phases, relating

requirements models to architectural design models, in

order to make the developed software systems closer to the

stakeholders needs.

6.2 Adaptive approaches based on goal models

There are several approaches for developing adaptive

systems based on goal models. In this subsection, we are

going to discuss some of them, including those on which

our process is based.

Lapouchnian and Mylopoulos [33] and Ali et al. [2] use

the notion of context to express domain variability. The goal

model is annotated with context expressions that define

conditions on the model elements. During runtime, a system

may check whether a task being performed is allowed on

that context and, if not, it may change its behavior. Both

approaches are concerned with reasoning at requirements

level, without prescribing any specific architecture. The

approach of Ali et al. [2] is used in our process to define the

context annotations and models (see Sect. 4.2).

Dalpiaz et al. [16] also uses context-enriched goal

models, aiming to deploy adaptive systems. Besides con-

straining the selection of alternatives, the context is used to

define activation events and commitment conditions for

goals and preconditions to tasks. Compensations are also

defined to mitigate the occurrence of failures. Their

approach describes the architecture of a component

responsible for performing the adaptation-related reason-

ing. However, it does not prescribe how to define the

architecture of the system that will interact with this

component. Throughout the STREAM-A process, the

requirements model of a system is enriched to include all

the information necessary for the adaptation reasoning that

will be performed by the component (Context Annotation

and Analysis; Identification of Sensors and Actuators), the

architecture for the system is derived (Generate Architec-

ture Model; Refine Architectural Model), and then the self-

adaptation component is integrated onto the architecture

(Include the Self-Adaptation Component).

Morandini, Penserini, and Perini [38] propose to use

goal models enriched with environmental and fault mod-

eling. The goals status is expressed in terms of environment

conditions, similar to the context annotations. Fault mod-

eling is used to define situations on which recovery activ-

ities may be performed to prevent or mitigate a fault. This

is similar to the concept of obstacles that is part of KAOS.

Besides being a comprehensive approach, it is only suited

to develop multi-agent systems.

At another level of requirements engineering for adap-

tive systems [7], there are some approaches based on the

notion that requirements might change at runtime and that

the system should be able to respond to these changes with

minimal human intervention. However, as of today, there

are still too many open issues on these approaches, such as

how to express the new requirements in a way that is both

simple to the user to define and that can be understood by

the machine. Nonetheless, the STREAM-A process could

be further extended, in the future, to consider the new

developments originated from promising approaches, such

as the ones described below.

Jian et al. [27] allows the insertion of goals at runtime.

However, to respond to these changes, new modules must

be incorporated to the system as well. This approach also

uses a notation for expressing environmental conditions

similar to the contextual approaches above.

Qureshi et al. [42] also allows the changing of goal

models at runtime: add goal, add means-end, suspend
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means-end, resume means-end, and relax means-end. To

address these news goals, it uses a service-based architec-

ture, on which a lookup mechanism will identify services

that may satisfy the new requirements. The services may

either already exist on the system’s pool or may be found

through web service search mechanisms.

Bencomo et al. [6] also deals with the notion of

changing goal models at runtime, through requirements

reflection. Additionally, it uses a flexibility language to

deal with uncertainty.

Lastly, Baresi, and Pasquale [3] propose the use of

adaptive goals, in contrast to conventional goals. The

adaptive goals specify countermeasures to be performed

when a conventional goal is violated. The countermeasures

may involve the changing of the model at runtime, but this

is fundamentally different from the other approaches since

these changes are defined at design time.

7 Conclusion and future work

This paper presented STREAM-A, a process to generate an

architectural model addressing the adaptability require-

ment. The first activity prepares the requirements model to

balance the responsibilities of a system actor, delegating

them to other new system actors. It consists of a set of

horizontal transformation rules defined to support the

refactoring of goal models. Moreover, context annotations

are inserted in the goal model to specify which environ-

mental changes should be monitored and how they affect

the system behavior. In the third activity, the sensors and

actuators of the system are defined.

From this close to architecture goal model, the fourth

activity of the STREAM process derives an early architec-

tural model described in Acme. Then, the architecture is

refined with the sub-components that represent the sensor

and actuator devices. The selection of the sensor devices is

based on the non-functional requirements defined in the

requirements model. Finally, in the last activity, a specific

self-adaptation component is included in the architecture.

This allows the handling of adaptability in a high abstraction

level, without the need of coding the adaptation behavior.

As future work, we expect to develop tool support for

our approach. Besides the usual goal modeling and Acme

modeling, such a tool would need to allow context anno-

tation on the goal models and to implement both the hor-

izontal and vertical transformation rules here defined. Such

tool support would allow us to investigate the scalability of

our approach in some real life complex projects.

Our approach still needs to be improved to support other

architectural views. In the future, we intent to support

architectural models required to deal with behaviors of the

architecture and technological issues.

Traceability mechanisms will also be defined. This

would make it easier to maintain the consistency between

the requirements and the architecture models throughout

the system evolution. We are also interested in investi-

gating if the STREAM process could be extended to

address other non-functional requirements and their related

approaches—if any. Such non-functional requirements of

interest include security and accessibility.

Finally, we acknowledge that a thorough experimenta-

tion must be performed in order to evaluate and improve

the STREAM-A process. Such an experiment is being

defined using the framework proposed by Wohlin et al.

[46] for performing experiments in software engineering

and the Architecture Tradeoff Analysis Method (ATAM)

[4] for evaluating the resulting architecture.

Acknowledgments This work has been supported by the Brazilian

institutions National Council for Scientific and Technological

Development (CNPq), Coordination for the Perfecting of High Edu-

cation Personnel (CAPES), and by the Erasmus Mundus External

Cooperation Window - Lot 15 Brazil.

References

1. Alencar F, Castro J, Lucena M, Santos E, Silva C, Araújo J,
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