
On the Use of Metamodeling for Relating Requirements

and Architectural Design Decisions

Diego Dermeval1,2, Jaelson Castro1,
 Carla Silva1, João Pimentel1

1
CIn, Universidade Federal de Pernambuco (UFPE).

Recife, Pernambuco – Brazil

{ddmcm, jbc, ctlls, jhcp}@cin.ufpe.br

Ig Ibert Bittencourt2, Patrick Brito2,
Endhe Elias2, Thyago Tenório2, Alan Pedro2

2
IC, Universidade Federal de Alagoas (UFAL).

Maceió, Alagoas – Brazil

{ddmcm, ig.ibert, patrick, endhe.elias, ttmo,
alanpedro}@ic.ufal.br

ABSTRACT
Requirements models can be used to describe what is expected
from a software system. On the other hand, architectural models
can describe the structure of a system in terms of its components

and connectors. However, these models do not capture the
rationale of the decisions made during architectural design. This
knowledge is important throughout the maintenance and
evolution of the system, as it allows a better understanding of
the system as well as the impact of changes on it. In this paper,
we consider existing proposals for architectural decisions
documentation to define a template for recording the rationale of
architectural design decisions. This template is based on a

metamodel, which borrows concepts from the NFR Framework
to express such rationale. Documenting decisions enables the
evaluation of architectural design alternatives when
requirements evolve or when new alternatives are devised.
Moreover, the metamodel provides a relationship between
requirements and architectural design fragments, facilitating the
maintenance of traceability between the problem and the
solution. We illustrate and discuss the use of this metamodel in

the context of Acme architectural models and i* requirements
models.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications

D.2.2 [Software Engineering]: Design Tools and Techniques –

Decision tables

D.2.11 [Software Engineering]: Software Architecture

General Terms

Documentation, Design

Keywords

Requirements Engineering; Software Architecture; Architectural
Design Decisions;

1. INTRODUCTION
Requirements and architectural models are artifacts generated in
connection with two strongly related and intertwined activities
of a software development process, respectively, Requirements

Engineering (RE) and Architectural Design (AD). Hence, it is
critical to establish how these models are interconnected [1].
Indeed, some recent works, such as the STREAM (Strategy for
Transition between REquirements and Architectural Models)
process [2], present model-driven approaches for generating
early architectural models – in Acme [7] – from i* requirements
models [15].

However, specifying software architecture only in terms of
architectural models (e.g., Acme models) is not enough. In order
to allow a more effective integration between RE and AD
activities, the software architecture community highlights the

need to treat Architectural Design Decisions (ADD) and their
rationale as first class citizens in the software architecture design
specification [10] [14].

Explicit mechanisms to link the decision to both the
requirements and architectural models are required.
Establishing these relationships [6] are essential to answer
questions such as “how (well) does the architecture support the
satisfaction of this requirement?”, “why was this component
created?”, “what were the architectural design alternatives
considered regarding this model fragment?”

In this paper, we present a metamodel that can be used as basis
to build an ADD documentation template which can be used, for
example, to record the rationale of the decisions taken, the
requirements related to a specific decision as well as the

alternatives that were considered during the decision-making
process.

Our metamodel covers twelve documentation elements (as
proposed in [13]) and includes a contribution analysis model
(based on the NFR Framework [3]) to analyze how the
architectural alternatives contribute to the satisfaction of the
system’s non-functional requirements. It also relates the
requirements to the architectural design fragments responsible to
address them.

The expected benefits of using an ADD documentation template
are threefold: (i) traceability between requirements models and
architectural models is produced during the software lifecycle;
(ii) more precise estimation of the impact of requirements and

architecture changes; and (iii) better communication between the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’13, March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03…$10.00.

1278

stakeholders. Therefore, a reduction in the maintenance and
evolution costs is expected.

The remainder of this paper is organized as follows. Section 2
describes the ADD metamodel and its relation with i* and Acme
metamodels. Section 3 presents the ADD documentation
template based on the metamodel. Section 4 discusses related
works. Finally yet importantly, Section 5 summarizes our work,

presents our conclusions and points out future works.

2. ARCHITECTURAL DESIGN

DECISIONS METAMODEL
The elements and relations which are present in the ADD
metamodel are inspired by the analysis of existing architectural
design decisions models conducted by Shahin et al [13].
However, according to other authors (e.g. [9][10][14]) other
elements and relations should be considered in the ADD
documentation, such as the Design Fragment element.
Furthermore, it was also necessary to identify binding points
between elements used for documentation purposes and the ones

used for capturing requirements and architectural information.
As an example, in this paper we rely on the i* [15] and Acme
[7] languages to describe requirements and architectural models.

In the sequel, we describe the rationale involved in the definition
of the ADD metamodel as well as we explain each of its
elements and relations.

2.1 The ADD Documentation Elements
Shahin et al [13] identified 12 major elements addressed by
several ADD documentation models in the literature. These
elements are: Decision, Constraint, Solution, Rationale,

Problem, Group, Status, Dependency, Artifact, Consequence,
Stakeholder and Phase/Iteration.

All these elements were considered in the metamodel defined in
our work, but, in some cases, we preferred to change their names
to make them more appropriate to our context. For example, we
changed the name of three elements: Constraint, Solution and
Problem. The Constraint element was changed to NFR because,
according to [13], specific kinds of non-functional requirements
(NFRs) can be seen as constraints (this will be further explained

later). The Solution element is equivalent to the concept of
architectural alternative so that we preferred to change its name
to Alternative. The Problem element is now called Functional,
since a problem refers to a functional system requirement to be
satisfied [13].

Figure 1 presents the metamodel, including the elements of the
ADD metamodel (highlighted in yellow) and the i* and Acme
elements highlighted in red and blue, respectively. Firstly, we

will explain the elements and relationships present in the ADD
metamodel (highlighted in yellow).

An architectural alternative (Alternative metaclass) must satisfy

a set of requirements (Requirement metaclass). However, a
system requirement can be one of two types: functional
requirement (Functional metaclass) and non-functional
requirement (NFR metaclass). Functional requirements can be
achieved with a clear level of fulfillment. By contrast, non-
functional requirements are of qualitative nature, i.e. they are
fulfilled at some partial degree of satisfaction [15]. NFRs are
classified in three types [3]: Process NFRs, Product NFRs and

External NFRs. The first one refers to product release NFRs,

implementation constraints or standards that need to be
followed. The second type refers to system quality attributes –
for instance, performance, usability, security and so on. The last
one refers to legal, economic or interoperability issues.

In Figure 1, we represent the three types of NFRs through the
same metaclass. For this reason, the NFR metaclass has an
enumerator attribute named NFRType that encompasses the

three possible NFR types. Besides that, it has a boolean attribute
to indicate the NFR priority.

As we have explained before, a NFR has different degrees of

satisfaction. With this in mind, the architectural alternatives
(Alternative metaclass) contribute to some degree of satisfaction
to non-functional requirements (NFR metaclass). Hence, based
on the NFR Framework [3], we propose to represent the
contributions from the architectural alternatives to satisfy the
NFRs through the Contribution metaclass. In order to specify
the contribution degree to satisfy each NFR, the Contribution
metaclass has an enumerator attribute – named

ContributionType – indicating five possible contribution
degrees: Make, Break, Unknown, Help or Hurt.

In addition to that, we can see in Figure 1 that any requirement

(Requirement metaclass) must be proposed by one or more
Stakeholders (Stakeholder metaclass). In its turn, stakeholders
can be specialized to system users (SystemActor) and the
organizational stakeholders (OrganizationActor), which can be
for example, managers, requirements engineers, software
architects and so on. We will see in the next section that a
system actor is equivalent to an actor in i*.

The Decision metaclass is the key element of the ADD
metamodel; it clearly represents the alternative selected in the
decision-making process. In the metamodel proposed, we can
note that a Decision is a specialization of an Alternative, since a

decision is the architectural alternative selected among several
alternatives because it has the best contributions to satisfy the
NFRs. The Decision metaclass also includes three attributes:
group, status and phaseOrIteration. The group attribute
represents the group associated to a decision, i.e., the decisions
included in a group are related with each other by certain
characteristics as, for example, all decisions related to a system
graphical interface could indicate a graphical interface group.

The status enumerator attribute identifies the decision status. It
defines several kinds of status that a decision can assume [10],
such as: Idea, Tentative, Decided, Approved, Challenged,
Rejected and Obsolesced. The last attribute (phaseOrIteration)
documents the process phase or iteration on which a decision is
made (e.g., the software architecture phase).

Moreover, to capture the arguments that lead to the selection of
a specific architectural alternative, the Decision metaclass is
associated to the Rationale metaclass. The Rationale is
composed of a set of architectural alternatives and a set of NFRs
associated to each other through contribution links (instances of

the Contribution metaclass). The rationale records that the
decision made (i.e., the alternative selected) has the best
contributions to satisfy the NFRs. It is worth noting that the
purpose of recording the rationale is to provide an unambiguous
way to specify the alternatives contributions to satisfy the NFRs;
whilst the other ADD documentation models present in the
literature, represent this information only using natural
language.

1279

Figure 1. Unified metamodel that relates ADD, i* and Acme elements. Some i* elements are omitted for clarity.

Figure 1 also presents the DecisionDependency metaclass to
enable the documentation of the dependencies between different
architectural decisions made in the software architecture design.
For example, the “Use JavaServerFaces” decision depends on
the “Use Java” decision, i.e., the “Use Java” decision constrains
the “Use JavaServerFaces” decision. According to [10], there
are different types of decision dependencies, such as:

Constrains, Forbids, Enables, Subsumes, ConflictsWith,
Overrides, Comprises, IsAnAlternativeFor, IsBoundTo,
IsRelatedTo and Depends. Thus, the DecisionDependency
metaclass has an enumerator attribute (named DependencyType)
which represents all these dependency types.

An architectural design decision is also related to software
artifacts, so that in Figure 1 we represent this relationship
through an association between the Decision and the Artifact
metaclasses. Software artifacts may have different
specializations such as: requirements specifications
(RequirementsArtifact), architectural artifacts

(ArchitecturalArtifact), implementation artifacts
(ImplementationArtifact) or management documents
(ManagementArtifact).

The Consequence metaclass in Figure 1 is also mentioned in
[13] and corresponds to the concept of implications described in
[14]. This element depicts all the consequences related to a
decision made. For instance, a decision-making can introduce
the need to make other decisions, create new requirements or
new constraints in the environment, modify existing
requirements and so on.

An architectural decision can also be related to a design
fragment [9]. The DesignFragment metaclass represents this
concept in the ADD metamodel (Figure 1). A design fragment
consists of a set of architectural structure entities which are

associated to an architectural decision. In this work, this element
is directly related to Acme language constructs that will be
further described in Section 2.3. Besides – as we can see in

Figure 1 – a design fragment modifies the architectural artifact
which contains the architectural model.

2.2 Relating the ADD Metamodel to the i*

Metamodel
After identifying the core elements that compose the ADD
metamodel, we examine how they could be related to the
language used to describe requirements, in our case i* [15],
which is a popular goal oriented modeling language..

Among the various available i* metamodels, we considered in
this work the one used in a specific i* modeling tool [11].
However, some modifications were necessary. For example, the
intentional elements types (goal, softgoal, task and resource)
which originally were specified as an enumerator attribute are
now metaclasses. In fact, the need to link specific intentional
elements types to specific elements of the ADD metamodel led

to the exclusion of the enumerator type and the inclusion of
metaclasses to represent the intentional elements. Thus, as can
be seen in Figure 1 (see red elements) the intentional element
types are represented by the Goal, Softgoal, Task and Resource
metaclasses. Note that we have defined the i* elements
representing functional requirements as metaclasses (Goal,
Resource and Task) specializing the Functional metaclass.

Moreover, to capture the contributions from the architectural
alternatives to the softgoals present in the i* model, the Softgoal
metaclass is related to the NFR metaclass of the ADD
metamodel – as we can see in Figure 1. Nevertheless, process

and external NFRs are not usually modeled in i* models; they
are generally documented as external artifacts (e.g., project plan
document). Thus, softgoals elements represent only product
NFRs. Therefore, the relation between the NFR and Softgoal
metaclasses needs to be constrained by an OCL rule to specify
that the Softgoal metaclass is uniquely related to the
PRODUCTNFR type of the NFR metaclass.

1280

In i* models, system stakeholders are represented by actors
which are related to intentional elements. By contrast, in the
ADD metamodel described in the previous section, the
Stakeholder metaclass has two specializations: SystemActor and
OrganizationActor. Note that the SystemActor metaclass is

equivalent to an actor in i* models. As a result, we specified an
inheritance relationship from the Actor metaclass – present in
the i* metamodel – to the SystemActor metaclass.

Last but not least, a requirements artifact must contain in its
specification, among other information, an i* model which
specifies the system requirements. This way, as it can be seen in
Figure 1, the RequirementsArtifact metaclass has an association
relationship with the Model metaclass.

2.3 Relating the ADD Metamodel to the

Acme Metamodel
After the relationships between the architectural design decision
elements and the i* elements are identified, we now need to
relate the ADD elements to the architectural model elements of
the chosen Architectural Description Language. We opt for
Acme [7] because it is a generic ADL that can be used as a

common interchange format for architecture design tools and/or
as a foundation for developing new architectural design and
analysis tools. The blue elements of Figure 1 illustrate the Acme
metamodel defined in this work.

In the Acme metamodel, the System metaclass represents the
model which contains all Acme elements (AcmeElement
metaclass) that comprise a software architectural structure. An
Acme element can be one of two types: Connector or
Component. Any Acme element may have properties (Property
metaclass) [7]. Furthermore, Ports (Port metaclass) and Roles
(Role metaclass) are points of interaction, respectively, between

Components and Connectors – they are bound together through
attachments (Attachment metaclass) inside an acme System.
Besides, representations (Representation metaclass) allow a
component or connector to describe its design in detail by
specifying a sub-architecture (System) that refines the parent
element. The elements within a representation are linked to
(external) ports through bindings (Binding metaclass).

After defining the Acme metamodel, we specified its
relationship with the architectural design decision
documentation metamodel elements. This way, we identified
two link points between them. The first relationship links an

ADD fragment (DesignFragment metaclass) to an Acme system
(System metaclass). It happens because a design fragment can
only be an architecture specified according to the Acme
metamodel. The second one relates an architectural artifact
(ArchitecturalArtifact metaclass) to an Acme system (System
metaclass), since an architectural artifact represents the
architecture document which contains an Acme model.

The metamodel is specified in a semi-formal way (using the
ECORE notation - Eclipse Modeling Framework), which
facilitates the development of a tool to support the architectural
decisions documentation activities and to trace from
requirements to architectural design and vice-versa.

It is worth noting that the ADD metamodel borrows concepts
from the NFR Framework [3] in order to express the rationale

for a decision. This representation can assist the decision-
making process; since it enables to reason about the architectural
alternative whose contributions best satisfy the non-functional

requirements. The rationale is also of utmost importance when
requirements change (or evolve) or when new alternatives need
to be considered.

In the next section, we present an ADD documentation template
defined according to the elements of the proposed metamodel.

3. ADD Documentation Template
In the sequel, we rely on an example available in the literature

(see [2]) to explain the template proposed to record architectural
design decisions. BTW is a route-planning system that helps
users to define a specific route through advices given by another
user.

Table 1 illustrates a documentation template which was based
on the metamodel elements described in the previous section. It
will be used to record the decision related to the alternative
technologies used for visualization of maps and interaction in
the BTW system. The i* and Acme models of the BTW system
are suppressed in this paper; but they can be found in [2].
However, the i* and Acme elements involved in the

architectural design decision are recorded in the template and
will be explained in the sequel.

The functional requirement addressed by the decision present in

the Table 1 is the publication of the information in a map
(obtained from the Information Be Published in Map goal in the
i* model), which is recorded in the Functional Requirements
field of the template.

Table 1. ADD Documentation Template

Functional Req. Information be Published in Map

NFRs
Usability, Minimize Costs, Minimize Development Time,

Maximize Mashup Engineering

Stakeholders Traveller

Alternatives
Use Google Maps; Use Bing Maps; Implement Own Maps

Solution

Rationale

Usability

U
nk

no
w

n

Use Bing

Maps

Use Google

Maps

Minimize

Costs

Minimize

Developme

nt Time

Maximize

Mashup

Engineering

Implement

Own Maps

Solution

Help
Help

H
elp

H
elp

Help

Help

H
e
lp

Hurt

Hurt H
u
rt

U
n
k
n
o
w

n

! !

Decision Use Google Maps

Design

Fragment

Map Info

Publisher

Mapping

Handler

Google

Maps

Group Maps Visualization and Interaction Services

Status APPROVED

Related

Artifacts BTW i* Model; BTW Acme model

Phase/Iteration Architectural Design

Consequences Developers must learn how to use Google Maps API.

Dependencies --

1281

Regarding the associated non-functional requirements (NFRs
field of Table 1), the choice of a specific technology can affect
the Usability product NFR – which is also a softgoal element of
the BTW i* model. Besides, there are several process and
external NFRs affected by this decision, such as: Minimize

Costs, Minimize Development Time and Maximize Mashup
Engineering.

Concerning the Stakeholders field, in the BTW i* model, the
Traveller actor has a dependency relationship with Usability
softgoal and, therefore, it is inserted in this field of the ADD
template (Table 1).

Three possible architectural alternatives are considered to satisfy
the maps visualization and interaction requirement of the BTW
system. They were recorded in the template’s Alternatives field:
Use Google Maps, Use Bing Maps and Implement Own Maps
Solution.

The contribution analysis from the alternatives to the satisfaction
of the NFRs is recorded in the Rationale field of the
documentation template (see Table 1). Performing the
contribution analysis, the Use Google Maps alternative
contributes positively to all NFRs. The Use Bing Maps

alternative has a neutral (Unknown) contribution to the Minimize
Development Time and positive contributions to the other NFRs.
Last but not least, the Implement Own Maps Solution has a
neutral contribution to the Usability softgoal and negative
contributions to the other NFRs.

Once the contribution analysis from the architectural alternatives
to the NFRs is concluded, the NFRs are prioritized – in this
example, by assigning exclamation marks to them. As it can be
seen in the Rationale field of Table 1, the Usability and
Minimize Development Time NFRs have the highest priority.

Thus, some analysis can be performed (for example using some
of the current available reasoning techniques [8]) to define the
best alternative for the given preferences. In the scenario
presented, the Use Google Maps is the most suitable alternative

and, therefore, it is documented in the Decision field (see Table
1).

As a consequence, a design fragment for the Use Google Maps

decision is produced and presented in the Design Fragment field
of the documentation template. This fragment is composed of an
architectural configuration that shows how the Mapping
Handler and Map Info Publisher components of the BTW Acme
model [2] use the services of the Google Maps component (see
Table 1).

Finally, the additional information regarding the decision made
is going to be filled in the documentation template. Thus, the
Group field informs the requirements group addressed by this
architectural decision: Maps Visualization and Interaction
Services. The Status field is filled with the APPROVED

attribute, indicating that the decision was approved. The Related
Artifacts field records the project artifacts involved in this
decision, i.e., the BTW i* model and BTW Acme model. The
Phase/Iteration field is filled with Architectural Design.
Regarding the Consequences field, the decision made implies
that software developers must learn how to use Google Maps
services. Finally, it was not identified any dependencies between
this decision and others, so that the Dependencies field is empty.

The benefits of documenting architectural design decisions
using our template become clearer during the system

maintenance or evolution. For example, after implementing the
BTW system using the chosen technology, it may be noticed
that the system performance is not adequate. However,
analyzing the architectural decision documentation, it can be
seen that the performance quality attribute was not taken into

account during the decision-making process (see the NFRs
field). Hence, some new analysis may be required. Gratefully,
the information recorded in the Alternatives and Rationale fields
may help the architect to remember which architectural
alternatives were originally considered and how they were
related to some NFRs. In face to the new information available,
the performance quality attribute needs to be added to the
rationale and a new contribution analysis must be performed.

This new analysis can lead to the selection of another
architectural alternative (e.g., Use Bing Maps). Moreover, in the
case of an architectural change, the Design Fragment field
allows the architect to evaluate how the new decision impacts
the system architecture.

Documenting a set of architectural design decisions can also be
helpful in the self-adaptive systems domain. The information
recorded in the documentation template – mainly in the
Rationale field – can be used to reason about a suitable
architectural reconfiguration for accommodating environmental
changes both in real and development time.

4. RELATED WORK
The documentation of architectural design decisions has been
addressed by several works in the literature. For example,
Shahin et al [13] presents a survey on ADD documentation
models. It defines four major elements – decision, constraint,
solution, rationale – and eight secondary elements – problem,
group, status, dependency, artifact, consequence, stakeholder,
phase/iteration. In this context, with a few terminology

modifications, our metamodel covers all those twelve elements.
Besides, based on [9], we also included the design fragment
element in the set of entities supported by the metamodel. As a
result, in comparison to the nine models presented by that
survey, our metamodel encompasses a more comprehensive set
of ADD documentation elements which provide more
information that can aid the evolution or maintenance of a
system.

Furthermore, our approach uses the NFR contribution analysis
model, which not only describes and records the rationale, but
also may help in the decision-making process. Hence, we are

able to model the contributions from architectural alternatives to
a set of given NFRs in a far more precise way than the other
documentation strategies that rely on natural language to capture
these information. Thus, we can benefit from goal model
reasoning mechanisms [8], to select the most suitable
architectural alternative for a given set of NFRs. In particular,
for systems that frequently change (e.g., self-adaptive systems),
using a contribution analysis and, therefore, reasoning

mechanisms, are key features to enable architectural
reconfiguration from an ADD documentation.

Other works have also tried to identify traceability links between

requirements and architectural models. For instance, the Goal
Centric Traceability (GCT) approach [5] uses the Softgoal
Interdependency Graphs (SIGs) – from the NFR Framework [3]
– to monitor and to trace the impact of model changes in the
software lifecycle. However, compared to our proposal, the
GCT approach does not relate requirements elements to specific

1282

architectural fragments and only documents a rather limited set
elements involved in the decision-making process, such as:
alternatives, rationale and NFRs.

Moreover, both works presented in [12] and [4] propose a tool to
capture traceability between software models. However, these
approaches do not take into account the ADD documentation,
which can establish a trace link from requirements to

architectural fragments (and vice-versa) and can also aid the
decision-making process during the maintenance or evolution of
software systems.

Last but not least, although both the metamodel and the
template, presented in this work, were tied to specific
requirements and architectural languages, the ADD metamodel
is neutral and was specified in generic way. This way, the ADD
metamodel can be used by other architectural design approaches
by using metamodels of other requirements and architectural
languages and relating their elements to the ADD metamodel
elements. These relationships can be identified without much

effort, since the binding points between the requirements and
architectural languages with the ADD metamodel are already
identified. For requirements language, it is need to link its
elements with the Functional, NFR, SystemActor and
RequirementsArtifact ADD elements. While, for the
architectural language, it is only necessary to link its elements
with the DesignFragment and ArchitecturalArtifact elements.

5. CONCLUSIONS
This paper presented a unified metamodel for architectural
design decisions documentation as well as an architectural
design decisions documentation.

The unified metamodel specifies, in a semi-formal way (using
the ECORE - Eclipse Modeling Framework notation), a more
complete set of ADD documentation elements, as it covers the
twelve elements described in a comparative study on
architectural decisions documentation models [13] and also
includes the design fragment element (defined in [9]). To the
best of our knowledge, there is no ADD metamodel that
includes all those elements.

The unified metamodel also relates requirements (in i*) and
architecture (in Acme) models, so that it can enable to estimate
more precisely the impact of requirements change on the

architecture. In fact, the metamodel specifies what architecture
fragments are affected by the changing requirements.

A possible limitation to our approach may be the considerable

effort required to document each architectural decision.
However, the expected costs reduction in maintenance and
evolution, broadly reported by the literature [1], suggests that
the benefits of documenting ADD compensate its overhead.

To support the ADD documentation activities and to alleviate its
extra effort, we intend to develop a tool based on the metamodel
defined. We also expect to specify OCL rules to constrain, in a
more effective way, the relationships between the metaclasses
present in the unified metamodel. Finally, we plan to perform a
thorough experimentation aiming to evaluate and improve our
ADD documentation proposal and apply it in more complex
scenarios.

6. ACKNOWLEDGEMENTS
This work has been supported by the Brazilian institutions:

CNPq and CAPES; and by the ERC advanced grant 267856
"Lucretius: Foundations for Software Evolution''.

7. REFERENCES
[1] Avgeriou, P., Grundy, J., Hall, J.G., Lago, P. and Mistrík, I.

2011. Relating Software Requirements and Architectures.
Springer.

[2] Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E. and
Pimentel, J. Changing Attitudes Towards the Generation of
Architectural Models. Journal of Systems and Software.
(2012).

[3] Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J. 1999.
Non-Functional Requirements in Software Engineering.
Springer.

[4] Cysneiros, G. and Zisman, A. Traceability and

completeness checking for agent-oriented systems.
Proceedings of the 2008 ACM symposium on Applied
computing – SAC´08. (2008), 71.

[5] Cleland-Huang, J., Settimi, R., BenKhadra, O.,
Berezhanskaya, E. and Christina, S. Goal-centric
traceability for managing non-functional requirements.
Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005. (2005), 362-371.

[6] Dermeval, D., Pimentel, J., Silva, C., Castro, J., Santos, E.,
Guedes, G., Lucena, M. and Finkelstein, A. STREAM-
ADD: Supporting the Documentation of Architectural
Design Decisions in an Architecture Derivation Process.
Proceedings of the 36th Annual IEEE International
Computer Software and Applications Conference (2012).

[7] Garlan, D., Monroe, R. and Wile, D. Acme: An
Architecture Description Interchange Language.

Proceedings of the 1997 conference of the Centre for
Advanced Studies on Collaborative research (1997).

[8] Horkoff, J. and Yu, E. Comparison and evaluation of goal-
oriented satisfaction analysis techniques. Requirements
Engineering Journal. (Jan. 2012).

[9] Jansen, A. and Bosch, J. Software architecture as a set of
architectural design decisions. WICSA 2005. 5th Working
IEEE/IFIP Conference on (2005), 109–120.

[10] Kruchten, P., Lago, P. and van Vliet, H. Building up and

reasoning about architectural knowledge. Quality of
Software Architectures. (2006), 43–58.

[11] Malta, Á., Soares, M., Santos, E., Paes, J., Alencar, F. and
Castro, J. iStarTool: Modeling Requirements using the i*
Framework. Proceedings of the Fifth International i*
Workshop (2011), 163-165.

[12] Sardinha, A., Yu, Y., Niu, N. and Rashid, A. EA-tracer.
Proceedings of the 27th Annual ACM Symposium on
Applied Computing – SAC´12 (New York, New York,

USA, 2012), 1035.
[13] Shahin, M., Liang, P. and Khayyambashi, M.R.

Architectural design decision: Existing models and tools.
WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference
on (2009), 293–296.

[14] Tyree, J. and Akerman, A. Architecture decisions:
Demystifying architecture. Software, IEEE. 22, 2 (2005),
19–27.

[15] Yu, E. Modelling strategic relationships for process
reengineering. Ph.D. Thesis, University of Toronto,
Canada, 1995.

1283

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

