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ABSTRACT 
Requirements models can be used to describe what is expected 
from a software system. On the other hand, architectural models 
can describe the structure of a system in terms of its components 

and connectors. However, these models do not capture the 
rationale of the decisions made during architectural design. This 
knowledge is important throughout the maintenance and 
evolution of the system, as it allows a better understanding of 
the system as well as the impact of changes on it. In this paper, 
we consider existing proposals for architectural decisions 
documentation to define a template for recording the rationale of 
architectural design decisions. This template is based on a 

metamodel, which borrows concepts from the NFR Framework 
to express such rationale. Documenting decisions enables the 
evaluation of architectural design alternatives when 
requirements evolve or when new alternatives are devised. 
Moreover, the metamodel provides a relationship between 
requirements and architectural design fragments, facilitating the 
maintenance of traceability between the problem and the 
solution. We illustrate and discuss the use of this metamodel in 

the context of Acme architectural models and i* requirements 
models. 

Categories and Subject Descriptors 

D.2.1 [Software Engineering]: Requirements/Specifications 

D.2.2 [Software Engineering]: Design Tools and Techniques – 

Decision tables 

D.2.11 [Software Engineering]: Software Architecture 

General Terms 

Documentation, Design 

Keywords 

Requirements Engineering; Software Architecture; Architectural 
Design Decisions; 

1. INTRODUCTION 
Requirements and architectural models are artifacts generated in 
connection with two strongly related and intertwined activities 
of a software development process, respectively, Requirements 

Engineering (RE) and Architectural Design (AD). Hence, it is 
critical to establish how these models are interconnected [1]. 
Indeed, some recent works, such as the STREAM (Strategy for 
Transition between REquirements and Architectural Models) 
process [2], present model-driven approaches for generating 
early architectural models – in Acme [7] – from i* requirements 
models [15].  

However, specifying software architecture only in terms of 
architectural models (e.g., Acme models) is not enough. In order 
to allow a more effective integration between RE and AD 
activities, the software architecture community highlights the 

need to treat Architectural Design Decisions (ADD) and their 
rationale as first class citizens in the software architecture design 
specification [10] [14].  

Explicit mechanisms to link the decision to both the 
requirements and architectural models are required.  
Establishing these relationships [6] are essential to answer 
questions such as “how (well) does the architecture support the 
satisfaction of this requirement?”, “why was this component 
created?”, “what were the architectural design alternatives 
considered regarding this model fragment?” 

In this paper, we present a metamodel that can be used as basis 
to build an ADD documentation template which can be used, for 
example, to record the rationale of the decisions taken, the 
requirements related to a specific decision as well as the 

alternatives that were considered during the decision-making 
process.  

Our metamodel covers twelve documentation elements (as 
proposed in [13]) and includes a contribution analysis model 
(based on the NFR Framework [3]) to analyze how the 
architectural alternatives contribute to the satisfaction of the 
system’s non-functional requirements. It also relates the 
requirements to the architectural design fragments responsible to 
address them.   

The expected benefits of using an ADD documentation template 
are threefold: (i) traceability between requirements models and 
architectural models is produced during the software lifecycle; 
(ii) more precise estimation of the impact of requirements and 

architecture changes; and (iii) better communication between the 
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stakeholders. Therefore, a reduction in the maintenance and 
evolution costs is expected. 

The remainder of this paper is organized as follows. Section 2 
describes the ADD metamodel and its relation with i* and Acme 
metamodels. Section 3 presents the ADD documentation 
template based on the metamodel. Section 4 discusses related 
works. Finally yet importantly, Section 5 summarizes our work, 

presents our conclusions and points out future works.  

2. ARCHITECTURAL DESIGN 

DECISIONS METAMODEL 
The elements and relations which are present in the ADD 
metamodel are inspired by the analysis of existing architectural 
design decisions models conducted by Shahin et al [13]. 
However, according to other authors (e.g. [9][10][14]) other 
elements and relations should be considered in the ADD 
documentation, such as the Design Fragment element. 
Furthermore, it was also necessary to identify binding points 
between elements used for documentation purposes and the ones 

used for capturing requirements and architectural information. 
As an example, in this paper we rely on the i* [15] and Acme 
[7] languages to describe requirements and architectural models. 

In the sequel, we describe the rationale involved in the definition 
of the ADD metamodel as well as we explain each of its 
elements and relations.  

2.1 The ADD Documentation Elements 
Shahin et al [13] identified 12 major elements addressed by 
several ADD documentation models in the literature. These 
elements are: Decision, Constraint, Solution, Rationale, 

Problem, Group, Status, Dependency, Artifact, Consequence, 
Stakeholder and Phase/Iteration.  

All these elements were considered in the metamodel defined in 
our work, but, in some cases, we preferred to change their names 
to make them more appropriate to our context. For example, we 
changed the name of three elements: Constraint, Solution and 
Problem. The Constraint element was changed to NFR because, 
according to [13], specific kinds of non-functional requirements 
(NFRs) can be seen as constraints (this will be further explained 

later). The Solution element is equivalent to the concept of 
architectural alternative so that we preferred to change its name 
to Alternative. The Problem element is now called Functional, 
since a problem refers to a functional system requirement to be 
satisfied [13]. 

Figure 1 presents the metamodel, including the elements of the 
ADD metamodel (highlighted in yellow) and the i* and Acme 
elements highlighted in red and blue, respectively. Firstly, we 

will explain the elements and relationships present in the ADD 
metamodel (highlighted in yellow). 

An architectural alternative (Alternative metaclass) must satisfy 

a set of requirements (Requirement metaclass). However, a 
system requirement can be one of two types: functional 
requirement (Functional metaclass) and non-functional 
requirement (NFR metaclass). Functional requirements can be 
achieved with a clear level of fulfillment. By contrast, non-
functional requirements are of qualitative nature, i.e. they are 
fulfilled at some partial degree of satisfaction [15]. NFRs are 
classified in three types [3]: Process NFRs, Product NFRs and 

External NFRs. The first one refers to product release NFRs, 

implementation constraints or standards that need to be 
followed. The second type refers to system quality attributes – 
for instance, performance, usability, security and so on. The last 
one refers to legal, economic or interoperability issues. 

In Figure 1, we represent the three types of NFRs through the 
same metaclass. For this reason, the NFR metaclass has an 
enumerator attribute named NFRType that encompasses the 

three possible NFR types. Besides that, it has a boolean attribute 
to indicate the NFR priority.   

As we have explained before, a NFR has different degrees of 

satisfaction. With this in mind, the architectural alternatives 
(Alternative metaclass) contribute to some degree of satisfaction 
to non-functional requirements (NFR metaclass). Hence, based 
on the NFR Framework [3], we propose to represent the 
contributions from the architectural alternatives to satisfy the 
NFRs through the Contribution metaclass.  In order to specify 
the contribution degree to satisfy each NFR, the Contribution 
metaclass has an enumerator attribute – named 

ContributionType – indicating five possible contribution 
degrees: Make, Break, Unknown, Help or Hurt. 

In addition to that, we can see in Figure 1 that any requirement 

(Requirement metaclass) must be proposed by one or more 
Stakeholders (Stakeholder metaclass). In its turn, stakeholders 
can be specialized to system users (SystemActor) and the 
organizational stakeholders (OrganizationActor), which can be 
for example, managers, requirements engineers, software 
architects and so on. We will see in the next section that a 
system actor is equivalent to an actor in i*. 

The Decision metaclass is the key element of the ADD 
metamodel; it clearly represents the alternative selected in the 
decision-making process. In the metamodel proposed, we can 
note that a Decision is a specialization of an Alternative, since a 

decision is the architectural alternative selected among several 
alternatives because it has the best contributions to satisfy the 
NFRs. The Decision metaclass also includes three attributes: 
group, status and phaseOrIteration. The group attribute 
represents the group associated to a decision, i.e., the decisions 
included in a group are related with each other by certain 
characteristics as, for example, all decisions related to a system 
graphical interface could indicate a graphical interface group. 

The status enumerator attribute identifies the decision status. It 
defines several kinds of status that a decision can assume [10], 
such as: Idea, Tentative, Decided, Approved, Challenged, 
Rejected and Obsolesced. The last attribute (phaseOrIteration) 
documents the process phase or iteration on which a decision is 
made (e.g., the software architecture phase). 

Moreover, to capture the arguments that lead to the selection of 
a specific architectural alternative, the Decision metaclass is 
associated to the Rationale metaclass. The Rationale is 
composed of a set of architectural alternatives and a set of NFRs 
associated to each other through contribution links (instances of 

the Contribution metaclass). The rationale records that the 
decision made (i.e., the alternative selected) has the best 
contributions to satisfy the NFRs. It is worth noting that the 
purpose of recording the rationale is to provide an unambiguous 
way to specify the alternatives contributions to satisfy the NFRs; 
whilst the other ADD documentation models present in the 
literature, represent this information only using natural 
language. 
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Figure 1. Unified metamodel that relates ADD, i* and Acme elements. Some i* elements are omitted for clarity.

Figure 1 also presents the DecisionDependency metaclass to 
enable the documentation of the dependencies between different 
architectural decisions made in the software architecture design. 
For example, the “Use JavaServerFaces” decision depends on 
the “Use Java” decision, i.e., the “Use Java” decision constrains 
the “Use JavaServerFaces” decision. According to [10], there 
are different types of decision dependencies, such as: 

Constrains, Forbids, Enables, Subsumes, ConflictsWith, 
Overrides, Comprises, IsAnAlternativeFor, IsBoundTo, 
IsRelatedTo and Depends. Thus, the DecisionDependency 
metaclass has an enumerator attribute (named DependencyType) 
which represents all these dependency types. 

An architectural design decision is also related to software 
artifacts, so that in Figure 1 we represent this relationship 
through an association between the Decision and the Artifact 
metaclasses.  Software artifacts may have different 
specializations such as: requirements specifications 
(RequirementsArtifact), architectural artifacts 

(ArchitecturalArtifact), implementation artifacts 
(ImplementationArtifact) or management documents 
(ManagementArtifact). 

The Consequence metaclass in Figure 1 is also mentioned in 
[13] and corresponds to the concept of implications described in 
[14]. This element depicts all the consequences related to a 
decision made. For instance, a decision-making can introduce 
the need to make other decisions, create new requirements or 
new constraints in the environment, modify existing 
requirements and so on. 

An architectural decision can also be related to a design 
fragment [9]. The DesignFragment metaclass represents this 
concept in the ADD metamodel (Figure 1). A design fragment 
consists of a set of architectural structure entities which are 

associated to an architectural decision. In this work, this element 
is directly related to Acme language constructs that will be 
further described in Section 2.3. Besides – as we can see in 

Figure 1 – a design fragment modifies the architectural artifact 
which contains the architectural model.  

2.2 Relating the ADD Metamodel to the i* 

Metamodel 
After identifying the core elements that compose the ADD 
metamodel, we examine how they could be related to the 
language used to describe requirements, in our case i* [15], 
which is a popular goal oriented modeling language.. 

Among the various available i* metamodels, we considered in 
this work the one used in a specific i* modeling tool [11]. 
However, some modifications were necessary.  For example, the 
intentional elements types (goal, softgoal, task and resource) 
which originally were specified as an enumerator attribute are 
now metaclasses. In fact, the need to link specific intentional 
elements types to specific elements of the ADD metamodel led 

to the exclusion of the enumerator type and the inclusion of 
metaclasses to represent the intentional elements. Thus, as can 
be seen in Figure 1 (see red elements) the intentional element 
types are represented by the Goal, Softgoal, Task and Resource 
metaclasses.  Note that we have defined the i* elements 
representing functional requirements as metaclasses (Goal, 
Resource and Task) specializing the Functional metaclass. 

Moreover, to capture the contributions from the architectural 
alternatives to the softgoals present in the i* model, the Softgoal 
metaclass is related to the NFR metaclass of the ADD 
metamodel – as we can see in Figure 1. Nevertheless, process 

and external NFRs are not usually modeled in i* models; they 
are generally documented as external artifacts (e.g., project plan 
document). Thus, softgoals elements represent only product 
NFRs. Therefore, the relation between the NFR and Softgoal 
metaclasses needs to be constrained by an OCL  rule to specify 
that the Softgoal metaclass is uniquely related to the 
PRODUCTNFR type of the NFR metaclass. 
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In i* models, system stakeholders are represented by actors 
which are related to intentional elements. By contrast, in the 
ADD metamodel described in the previous section, the 
Stakeholder metaclass has two specializations: SystemActor and 
OrganizationActor. Note that the SystemActor metaclass is 

equivalent to an actor in i* models. As a result, we specified an 
inheritance relationship from the Actor metaclass – present in 
the i* metamodel – to the SystemActor metaclass. 

Last but not least, a requirements artifact must contain in its 
specification, among other information, an i* model which 
specifies the system requirements. This way, as it can be seen in 
Figure 1, the RequirementsArtifact metaclass has an association 
relationship with the Model metaclass. 

2.3 Relating the ADD Metamodel to the 

Acme Metamodel  
After the relationships between the architectural design decision 
elements and the i* elements are identified, we now need to 
relate the ADD elements to the architectural model elements of 
the chosen Architectural Description Language. We opt for 
Acme [7] because it is a generic ADL that can be used as a 

common interchange format for architecture design tools and/or 
as a foundation for developing new architectural design and 
analysis tools. The blue elements of Figure 1 illustrate the Acme 
metamodel defined in this work. 

In the Acme metamodel, the System metaclass represents the 
model which contains all Acme elements (AcmeElement 
metaclass) that comprise a software architectural structure. An 
Acme element can be one of two types: Connector or 
Component. Any Acme element may have properties (Property 
metaclass) [7]. Furthermore, Ports (Port metaclass) and Roles 
(Role metaclass) are points of interaction, respectively, between 

Components and Connectors – they are bound together through 
attachments (Attachment metaclass) inside an acme System. 
Besides, representations (Representation metaclass) allow a 
component or connector to describe its design in detail by 
specifying a sub-architecture (System) that refines the parent 
element. The elements within a representation are linked to 
(external) ports through bindings (Binding metaclass). 

After defining the Acme metamodel, we specified its 
relationship with the architectural design decision 
documentation metamodel elements. This way, we identified 
two link points between them. The first relationship links an 

ADD fragment (DesignFragment metaclass) to an Acme system 
(System metaclass). It happens because a design fragment can 
only be an architecture specified according to the Acme 
metamodel. The second one relates an architectural artifact 
(ArchitecturalArtifact metaclass) to an Acme system (System 
metaclass), since an architectural artifact represents the 
architecture document which contains an Acme model.  

The metamodel is specified in a semi-formal way (using the 
ECORE notation - Eclipse Modeling Framework), which 
facilitates the development of a tool to support the architectural 
decisions documentation activities and to trace from 
requirements to architectural design and vice-versa.  

It is worth noting that the ADD metamodel borrows concepts 
from the NFR Framework [3] in order to express the rationale 

for a decision. This representation can assist the decision-
making process; since it enables to reason about the architectural 
alternative whose contributions best satisfy the non-functional 

requirements. The rationale is also of utmost importance when 
requirements change (or evolve) or when new alternatives need 
to be considered. 

In the next section, we present an ADD documentation template 
defined according to the elements of the proposed metamodel.  

3. ADD Documentation Template 
In the sequel, we rely on an example available in the literature 

(see [2]) to explain the template proposed to record architectural 
design decisions. BTW is a route-planning system that helps 
users to define a specific route through advices given by another 
user. 

Table 1 illustrates a documentation template which was based 
on the metamodel elements described in the previous section. It 
will be used to record the decision related to the alternative 
technologies used for visualization of maps and interaction in 
the BTW system. The i* and Acme models of the BTW system 
are suppressed in this paper; but they can be found in [2]. 
However, the i* and Acme elements involved in the 

architectural design decision are recorded in the template and 
will be explained in the sequel. 

The functional requirement addressed by the decision present in 

the Table 1 is the publication of the information in a map 
(obtained from the Information Be Published in Map goal in the 
i* model), which is recorded in the Functional Requirements 
field of the template.  

Table 1. ADD Documentation Template  

Functional Req. Information be Published in Map 

NFRs 
Usability, Minimize Costs, Minimize Development Time, 

Maximize Mashup Engineering 

Stakeholders Traveller 

Alternatives 
Use Google Maps; Use Bing Maps; Implement Own Maps 

Solution 

Rationale 

Usability

U
nk

no
w

n

Use Bing 

Maps

Use Google 

Maps

Minimize 

Costs

Minimize 

Developme

nt Time

Maximize 

Mashup 

Engineering

Implement 

Own Maps 

Solution

Help
Help

H
elp

H
elp

Help

Help

H
e
lp

Hurt

Hurt H
u
rt

U
n
k
n
o
w

n

! !

 

Decision Use Google Maps 

Design 

Fragment 

Map Info 

Publisher

Mapping 

Handler

Google 

Maps

 

Group Maps Visualization and Interaction Services 

Status APPROVED 

Related 

Artifacts BTW i* Model; BTW Acme model 

Phase/Iteration Architectural Design 

Consequences Developers must learn how to use Google Maps API. 

Dependencies -- 
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Regarding the associated non-functional requirements (NFRs 
field of Table 1), the choice of a specific technology can affect 
the Usability product NFR – which is also a softgoal element of 
the BTW i* model. Besides, there are several process and 
external NFRs affected by this decision, such as: Minimize 

Costs, Minimize Development Time and Maximize Mashup 
Engineering.  

Concerning the Stakeholders field, in the BTW i* model, the 
Traveller actor has a dependency relationship with Usability 
softgoal and, therefore, it is inserted in this field of the ADD 
template (Table 1).  

Three possible architectural alternatives are considered to satisfy 
the maps visualization and interaction requirement of the BTW 
system. They were recorded in the template’s Alternatives field: 
Use Google Maps, Use Bing Maps and Implement Own Maps 
Solution. 

The contribution analysis from the alternatives to the satisfaction 
of the NFRs is recorded in the Rationale field of the 
documentation template (see Table 1). Performing the 
contribution analysis, the Use Google Maps alternative 
contributes positively to all NFRs. The Use Bing Maps 

alternative has a neutral (Unknown) contribution to the Minimize 
Development Time and positive contributions to the other NFRs. 
Last but not least, the Implement Own Maps Solution has a 
neutral contribution to the Usability softgoal and negative 
contributions to the other NFRs.  

Once the contribution analysis from the architectural alternatives 
to the NFRs is concluded, the NFRs are prioritized – in this 
example, by assigning exclamation marks to them. As it can be 
seen in the Rationale field of Table 1, the Usability and 
Minimize Development Time NFRs have the highest priority.  

Thus, some analysis can be performed (for example using some 
of the current available reasoning techniques [8]) to define the 
best alternative for the given preferences. In the scenario 
presented, the Use Google Maps is the most suitable alternative 

and, therefore, it is documented in the Decision field (see Table 
1). 

As a consequence, a design fragment for the Use Google Maps 

decision is produced and presented in the Design Fragment field 
of the documentation template. This fragment is composed of an 
architectural configuration that shows how the Mapping 
Handler and Map Info Publisher components of the BTW Acme 
model [2] use the services of the Google Maps component (see 
Table 1). 

Finally, the additional information regarding the decision made 
is going to be filled in the documentation template. Thus, the 
Group field informs the requirements group addressed by this 
architectural decision: Maps Visualization and Interaction 
Services. The Status field is filled with the APPROVED 

attribute, indicating that the decision was approved. The Related 
Artifacts field records the project artifacts involved in this 
decision, i.e., the BTW i* model and BTW Acme model. The 
Phase/Iteration field is filled with Architectural Design. 
Regarding the Consequences field, the decision made implies 
that software developers must learn how to use Google Maps 
services. Finally, it was not identified any dependencies between 
this decision and others, so that the Dependencies field is empty. 

The benefits of documenting architectural design decisions 
using our template become clearer during the system 

maintenance or evolution. For example, after implementing the 
BTW system using the chosen technology, it may be noticed 
that the system performance is not adequate.  However, 
analyzing the architectural decision documentation, it can be 
seen that the performance quality attribute was not taken into 

account during the decision-making process (see the NFRs 
field). Hence, some new analysis may be required. Gratefully, 
the information recorded in the Alternatives and Rationale fields 
may help the architect to remember which architectural 
alternatives were originally considered and how they were 
related to some NFRs. In face to the new information available, 
the performance quality attribute needs to be added to the 
rationale and a new contribution analysis must be performed. 

This new analysis can lead to the selection of another 
architectural alternative (e.g., Use Bing Maps). Moreover, in the 
case of an architectural change, the Design Fragment field 
allows the architect to evaluate how the new decision impacts 
the system architecture. 

Documenting a set of architectural design decisions can also be 
helpful in the self-adaptive systems domain. The information 
recorded in the documentation template – mainly in the 
Rationale field – can be used to reason about a suitable 
architectural reconfiguration for accommodating environmental 
changes both in real and development time. 

4. RELATED WORK 
The documentation of architectural design decisions has been 
addressed by several works in the literature. For example, 
Shahin et al [13] presents a survey on ADD documentation 
models. It defines four major elements – decision, constraint, 
solution, rationale – and eight secondary elements – problem, 
group, status, dependency, artifact, consequence, stakeholder, 
phase/iteration. In this context, with a few terminology 

modifications, our metamodel covers all those twelve elements. 
Besides, based on [9], we also included the design fragment 
element in the set of entities supported by the metamodel. As a 
result, in comparison to the nine models presented by that 
survey, our metamodel encompasses a more comprehensive set 
of ADD documentation elements which provide more 
information that can aid the evolution or maintenance of a 
system.  

Furthermore, our approach uses the NFR contribution analysis 
model, which not only describes and records the rationale, but 
also may help in the decision-making process. Hence, we are 

able to model the contributions from architectural alternatives to 
a set of given NFRs in a far more precise way than the other 
documentation strategies that rely on natural language to capture 
these information. Thus, we can benefit from goal model 
reasoning mechanisms [8], to select the most suitable 
architectural alternative for a given set of NFRs. In particular, 
for systems that frequently change (e.g., self-adaptive systems), 
using a contribution analysis and, therefore, reasoning 

mechanisms, are key features to enable architectural 
reconfiguration from an ADD documentation. 

Other works have also tried to identify traceability links between 

requirements and architectural models. For instance, the Goal 
Centric Traceability (GCT) approach [5] uses the Softgoal 
Interdependency Graphs (SIGs) – from the NFR Framework [3] 
– to monitor and to trace the impact of model changes in the 
software lifecycle. However, compared to our proposal, the 
GCT approach does not relate requirements elements to specific 

1282



architectural fragments and only documents a rather limited set 
elements involved in the decision-making process, such as: 
alternatives, rationale and NFRs. 

Moreover, both works presented in [12] and [4] propose a tool to 
capture traceability between software models. However, these 
approaches do not take into account the ADD documentation, 
which can establish a trace link from requirements to 

architectural fragments (and vice-versa) and can also aid the 
decision-making process during the maintenance or evolution of 
software systems. 

Last but not least, although both the metamodel and the 
template, presented in this work, were tied to specific 
requirements and architectural languages, the ADD metamodel 
is neutral and was specified in generic way. This way, the ADD 
metamodel can be used by other architectural design approaches 
by using metamodels of other requirements and architectural 
languages and relating their elements to the ADD metamodel 
elements. These relationships can be identified without much 

effort, since the binding points between the requirements and 
architectural languages with the ADD metamodel are already 
identified. For requirements language, it is need to link its 
elements with the Functional, NFR, SystemActor and 
RequirementsArtifact ADD elements. While, for the 
architectural language, it is only necessary to link its elements 
with the DesignFragment and ArchitecturalArtifact elements. 

5. CONCLUSIONS 
This paper presented a unified metamodel for architectural 
design decisions documentation as well as an architectural 
design decisions documentation.  

The unified metamodel specifies, in a semi-formal way (using 
the ECORE - Eclipse Modeling Framework notation), a more 
complete set of ADD documentation elements, as it covers the 
twelve elements described in a comparative study on 
architectural decisions documentation models [13] and also 
includes the design fragment element (defined in [9]). To the 
best of our knowledge, there is no ADD metamodel that 
includes all those elements. 

The unified metamodel also relates requirements (in i*) and 
architecture (in Acme) models, so that it can enable to estimate 
more precisely the impact of requirements change on the 

architecture. In fact, the metamodel specifies what architecture 
fragments are affected by the changing requirements.  

A possible limitation to our approach may be the considerable 

effort required to document each architectural decision. 
However, the expected costs reduction in maintenance and 
evolution, broadly reported by the literature [1], suggests that 
the benefits of documenting ADD compensate its overhead.  

To support the ADD documentation activities and to alleviate its 
extra effort, we intend to develop a tool based on the metamodel 
defined. We also expect to specify OCL rules to constrain, in a 
more effective way, the relationships between the metaclasses 
present in the unified metamodel. Finally, we plan to perform a 
thorough experimentation aiming to evaluate and improve our 
ADD documentation proposal and apply it in more complex 
scenarios. 
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