
On the Use of Package Managers by the C++ Open-Source
Community

André Miranda
Department of Computer Engineering

University of Pernambuco
Recife, Brazil

aldm@ecomp.poli.br

João Pimentel
Universidade Federal Rural de Pernambuco

Cabo de Santo Agostinho, Brazil
joao.hcpimentel@ufrpe.br

ABSTRACT
THIS IS A PRE-PRINT COPY

The use of package managers is commonplace for software devel-
opers working with programming languages such as Ruby, Python,
and JavaScript. This is not the case for C++ developers, which
present a low adoption rate of package managers.

The goal of this study is to understand what is preventing C++
developers from adopting package managers in the context of open-
source software (OSS) projects. In order to achieve this goal, we
performed a questionnaire survey with 343 developers from 42 OSS
projects. The survey participants answered a questionnaire with 29
questions.

After the analysis of the collected data, we could conclude that
most participants are not reluctant to use C++ package managers
and that Open-Source licensing, HighAvailability of Libraries, Good
Documentation, and Ease of Configuration can be considered cru-
cial factors for the successful adoption of C++ dependency man-
agement via language-specific package managers.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software configuration management and version control sys-
tems; • Information systems→ Open source software;

KEYWORDS
Open-source software; Software maintenance; Software tools; Em-
pirical study; Software engineering
ACM Reference Format:
André Miranda and João Pimentel. 2018. On the Use of Package Managers
by the C++ Open-Source Community. In Proceedings of ACM SAC Conference
(SAC’18). ACM, New York, NY, USA, Article 4, 9 pages. https://doi.org/10.
1145/3167132.3167290

1 INTRODUCTION
Since the introduction of CTAN and CPAN as early language-
specific package managers [10], developers of many programming
languages have been taking advantage of this type of tool in order
to facilitate the handling of dependencies.

Package managers promote reuse by providing easy access to
software packages, which may range from simple utility routines to
full-blown frameworks. One of the most popular package managers,
NPM, hosts more than 350.000 packages on its official registry,
serving more than 2.5 billion package downloads per week as of
July 20171.
1https://www.npmjs.com

In some cases, the package manager is introduced in tandemwith
a language, which leads to design decisions of the language being
made with the specific purpose of supporting the management of
code units, generally known as packages [17].

Unlike other languages such as Go and Rust, C++ appeared many
years before the first language-specific package managers, which
helps explain the lack of a standard package format, the lack of
precise semantics for modules, and the lack of support for the large
amount of existing tooling and legacy code that was developed
prior to the initial package management proposals.

The potential benefits of using third-party libraries are already
known: lower costs, reduced time to market, and higher quality
[13][7]. However, the lack of support for C++ modules and the het-
erogeneous landscape of the C++ environment2 featuring: multiple
compilers for different architectures, a handful of build systems,
and dependencies on operating systems make the development
and use of C++ package managers challenging. This complexity
is also noted by Neitsch et al. claiming that “C/C++ software has
complicated configuration and construction phases because of the
need to support enormous platform variation.” [11].

Additionally, Dos Reis and Hall [4] argue that the absence of
direct language support for componentization of C++ libraries and
programs has led to serious impediments regarding compile-time
scalability and programmer productivity.

These characteristics have brought to our attention the case
of open-source C++ projects. In spite of being written in one of
the most popular programming languages [1], dependency man-
agement in these projects is handled using several non-standard
methods, oftentimes resorting to system package managers for each
supported operational system. This is the case even though there
are at least nine language-specific package managers available for
C++. Hence, the goal of this study is to identify what are the
factors that prevent the adoption of language-specific pack-
age management tools in open-source C++ projects, from the
point of view of software developers.

In order to obtain information with the open-source community,
a 29-questions questionnaire was designed and applied as an online
survey, centered on the following research questions:

RQ1 Do developers use the existing C++ package managers?
RQ2 What obstacles prevent the use of such tools?

2The C++ development environments are heterogeneous and this has been dis-
cussed by developers throughout the web, some of them argue that the availabil-
ity of several tools, none of them being a de facto standard, as well as the large
legacy code base, make package management for C++ much harder than most lan-
guages. Here is a discussion from a prominent Q&A software engineering forum:
http://softwareengineering.stackexchange.com/q/170679

https://doi.org/10.1145/3167132.3167290
https://doi.org/10.1145/3167132.3167290


SAC’18, April 9-13, 2018, Pau,France André Miranda and João Pimentel

RQ3 Currently what are the preferred methods to handle depen-
dencies in C++ projects?

RQ4 What is expected of a C++ package manager?
RQ5 What is the community’s opinion towards C++ packagemana-

gers?

RQ1 examines how much this development community is aware
of the available tools. RQ2 aims to identify the most relevant fac-
tors that play a negative role in the low adoption of C++ package
managers. RQ3 investigates the current methods employed in C++
projects to handle external libraries. RQ4 summarizes the most
wanted features of a C++ package manager. Finally, RQ5 surveys
the opinion of the developers hoping to learn if they are favorable
or against this kind of package managers and how has been their
experience while using them.

In the next section, an overview of related work is presented.
The methodology of this study is described in Section 3. The results
are presented in Section 4 and discussed in Section 5. Threats to
its validity are presented in Section 6. Lastly, Section 7 presents
conclusions and future work.

2 RELATED STUDIES
Muhammad et al. [10] have briefly surveyed the history of pack-
age managers to compare and explain some design decisions for
LuaRocks, the standard package manager for Lua programming
language. Whereas that paper provides an overview on previously
developed package managers, here the focus is on the current opin-
ion of potential users of such tools.

A modular architecture for package managers is proposed in [2],
which might prove useful for a package manager dealing with the
complexities required by C++ projects. Whereas that paper may
help with the technical challenges of developing package managers,
it does not contribute to the understanding of adoption factors.

We were able to find numerous surveys about open-source soft-
ware development, primarily focused on social aspects and moti-
vation [8] [18]. Whereas not directly related to package managers,
these papers provide insights on the motivation of open-source soft-
ware developers and can assist the developers of package managers
to understand their potential users further. Additionally, Sojer and
Henkel conducted an extensive survey[16] in order to understand
how open-source code is reused. There, the focus is on why code is
reused, whereas here we analyze how code is reused.

The study by Krafft et al. [9] identified a set of 15 factors that
influence tools adoption by open-source developers: sedimentation,
marketing, ‘peercolation’, first impressions, elegance, resistance,
sustainability, quality documentation and examples, trialability
and scalability, compatibility and genericity, modularity and trans-
parency, maturity, network effects, consensus, and standards and
uniformity. Albeit not directly related to language-specific package
managers, these factors are likely to be relevant in this context as
well.

The work by Wu et al. [20] reports on an empirical study that
analyzed the usage of packages from the C++ standard library on
open source projects. Since that work is focused on the standard
library, it is not concerned with the mechanisms used to manage
these dependencies.

Lastly, some studies (for instance, [3] and [6]) describe the ar-
chitecture of operating systems package managers. While their
discussion of technical challenges can be helpful for package mana-
gers developers, they do not address the topic of software adoption.

3 METHODOLOGY
In this study, we intend to understand how dependencies are cur-
rently handled in C++ projects and what is preventing C++ devel-
opers from adopting C++ package managers.

This research was organized in four phases, as follows. In the
first phase, we mapped out the existing C++ package managers
tools, so that we know which tools are currently available for C++
developers. In Phase 2 we identified candidate open-source C++
projects to be studied. We also analyzed how those projects handle
their dependencies and identified their contributors. In Phase 3 we
designed and ran a survey pilot, collecting data and feedback to
improve the questionnaire. In Phase 4 the final survey was exe-
cuted, and data was gathered. Finally, in Phase 5 we processed and
analyzed the data gathered during the survey. These phases are
further described in the following subsections.

3.1 Existing C++ Package Managers
Before starting the survey proper, we searched for language-specific
package managers meant for C++ projects on GitHub, SourceForge,
projects forums and on programming-related social networks, as
well as through general web search engines. The following pro-
jects were identified: Biicode, Build2, Conan, CPM, Hunter, Mason,
Meson, Pacm, and Yotta.

All of these projects, except Biicode and CPM, were in active
development during the year previous to the survey (July 15, 2015,
to July 15, 2016). Nonetheless, these two tools were also included in
the survey questionnaire, as wewould like to hear from respondents
their experience with C++ package management tools in general.

3.2 Projects Selection and Current Practices
Nowadays, there are a diverse range of open-source software (OSS)
projects, from embedded systems to large, distributed systems.
Many of these projects are developed and managed openly on
online repositories, such as GitHub and SourceForge. In order to
have a sample of projects that is representative of this diversity,
the projects selection was stratified into the following categories:
Audio & Video, Database, Development Tools, Games, Graphics,
Home & Education, Internet & Communications, Library, Science
& Engineering, and Utility.

In order to filter projects for participation in the study, the fol-
lowing criteria were adopted:

(1) Open-Source License
(2) Mostly written in C++
(3) Active development during the year previous to the survey

(July 15, 2015, to July 15, 2016)
(4) Make use of at least 3 external libraries
The criterion of using at least three external libraries was adopted

since projects with little or no dependencies would most likely not
benefit from package management tools, and thus they are not the
target of our study.



On the Use of Package Managers by the C++ Open-Source Community SAC’18, April 9-13, 2018, Pau,France

The search was conducted on GitHub and SourceForge, two
of the largest public repositories of source code, resulting in 45
projects matching the criteria3. The list of selected projects, along
with the number of contributors active during the year previous to
the survey, is presented in Table 1.

Through an extensive analysis of these projects’ source code and
documentation, we observed that none of the projects were using
a C++ package manager. Instead, they used eight different methods
for dependency management:

(1) Header-only libraries
(2) Source code amalgamation
(3) Library sources in the repository
(4) Git submodules
(5) System package manager
(6) Manually compile and install libraries
(7) Custom script to fetch and install libraries
(8) Precompiled packages
Some projects adopt multiple dependency management meth-

ods. This may be due to, among other reasons, differences across
the supported platforms. For instance, Microsoft Windows does
not contain an official package manager, unlike most Linux dis-
tributions. Another possible reason is a difference of preferences
between contributors.

3.3 Survey Design & Pilot Questionnaire
Despite the relatively high number of tools for C++ package man-
agement, we have observed in our initial research that these tools
are seldom adopted. Thus, we set out to understand what factors in-
fluence the adoption of such tools. To answer the research questions
of this study, we performed a questionnaire survey with developers
of C++ open-source projects. Besides basing the survey design on
other existing surveys, we followed guidelines from The Survey Kit
[5] as well as from Pfleeger and Kitchenham’s series on principles
of survey research (which started on [12]).

The questionnaire was crafted on LimeSurvey [14], an open-
source survey tool. An early version of this questionnaire was
discussed with authors of C++ package management tools. The
questionnaire was further refined through multiple reviews by C++
development experts, as well as by experts on empirical studies.

Once the questionnaire was validated by experts, a pilot study
was executed with approximately 10% of the selected developers’
sample, kept available online for ten days. During this phase, 207
developers were contacted yielding 53 responses (25.60%), with 23
incomplete (11.10%) and 30 full responses (14.50%). After reviewing
the feedback and analyzing the generated data, we have performed
adjustments before reaching the final version of the questionnaire,
which is available in a static form at GitHub4.

The final version of the questionnaire is composed of 29 ques-
tions grouped into the following categories:
Characterization (Questions 1-4): We ask about the respondents’
age, if their main job requires programming skills and how many
years of experience with C++ they have, as well as with other
languages.

3Originally, the Chromium project was also included in this study, but it was later
excluded since our contact attempts were blocked by spam filters.
4https://github.com/andreldm/cpp-survey

Table 1: Projects Summary

Project Contributors
/ Respondents Category

Audacity 22 / 4

Audio & Video

Clementine 36 / 8
Hydrogen 11 / 1

Kodi 115 / 14
Mixxx 38 / 10

Tomahawk 13 / 1

EventQL 4 / 2

DatabaseMongoDB 89 / 9
RethinkDB 54 / 8

Scylla 21 / 4

LiveCode 27 / 2

Development

Mapnik 19 / 4
Redis Desktop

Manager 8 / 2

Torque2D 8 / 2
TortoiseGit 10 / 3

Minetest 150 / 16

Games
Simultrans 3 / 1
StepMania 22 / 4

SuperTuxKart 24 / 3
Warzone2100 7 / 0

Aseprite 12 / 4

Graphics

FreeCAD 50 / 7
Natron 6 / 2

OpenSCAD 18 / 6
SolveSpace 6 / 1
Synfig 5 / 1

GoldenDict 3 / 1
Home &
Education

Kiwix 12 / 2
LibreOffice 265 / 39

Lyx 19 / 3

Firefox 834 / 73 Internet &
CommunicationsMiranda NG 17 / 5

PSI 5 / 2

CEGUI 9 / 2

LibraryNanoGUI 12 / 3
OpenCV 176 / 47

OpenImageIO 19 / 7

Bosen 6 / 2
Science &
Engineering

Ceph 226 / 21
DeepDetect 2 / 0
Tesseract 27 / 7

CuteMarkEd 5 / 1

UtilityGParted 40 / 6
lnav 6 / 0

Newsbeuter 16 / 4

Total 2477/343



SAC’18, April 9-13, 2018, Pau,France André Miranda and João Pimentel

Project Participation (Questions 5-8): In this section, we ask the
participants which project they contribute to, whether it is related
to their job or it is a hobby, their role in the project, and when was
their first contribution.
Project Setup (Questions 9-14): We survey how easy it was to set
up the project, the operating systems used, what types of package
managers were used, and how satisfied the participants are with
the way dependencies are handled in the project. There are also
Likert scale questions about building and dependencies issues.
Experience with Package Managers (Questions 15-22): These
questions were designed to examine the participants’ experience
with package managers of any language and type, their stance to-
wards language-specific package managers and the most important
positive and negative features that might influence their usage of
package managers.
C++ Dependency Management (Questions 23-29): Finally, in
this section we ask the participants’ preferred way to add depen-
dencies to a C++ project, their preferred build systems, if they had
already used a C++ package manager, how was their experience
with them, a Likert scale question regarding the eventual usage of
a C++ package manager, and an open-ended question.

3.4 Survey Execution
The questionnaire was available online for 30 days. Invitations to
partake in the survey were sent by email. Aiming to improve par-
ticipation, we offered US$ 10 vouchers to be randomly distributed
to three respondents. Two weeks after the questionnaire launch,
we have sent reminders to participants — this proved to slightly
increase the response rate in the final days. A total of 2447 contrib-
utors were contacted, as per Table 1.

Three projects from the selection of 45 projects have yielded no
responses from any participant; they are: DeepDetect, lnav, and
Warzone2100.

3.5 Data Analysis
Once the questionnaire has expired, the data was exported from
LimeSurvey in CSV (comma separated values) format and then
curated into a SQL database, allowing greater flexibility in analysis.
In the end, there were 402 responses (15.72%), where 59 were incom-
plete (2.31%), and 343 were full responses (13.41%). The incomplete
responses were discarded. The results of this analysis are presented
in the next section and discussed in Section 5.

4 RESULTS AND FINDINGS
In this section, we present the results of our survey, grouped by
research question. These findings are discussed in Section 5.

4.1 RQ1: Do developers use the existing C++
package managers?

Based on the data collected during the survey, we could grasp
the usage frequency of C++ package managers. We also gathered
data about usage of language-specific package managers for other
languages that the developers also develop with, for comparison
sake. Both questions were asked considering a 3 months period. A
summary of these results is presented in Table 2 — the answers “I
don’t know what is a package manager” and “Never” are grouped

into the “Do not use” category, and the remaining (from “Rarely” to
“Always”) are grouped into “Use”. The four participants who claim
to use only C++ were not included in the row for other languages
in Table 2.

Table 2: Usage of packagemanagers during the last 3months
prior to the survey execution

Language Do not use Use

C++ 275 (80.17%) 68 (19.83%)
Other languages 46 (13.57%) 293 (86.43%)

We can see in Figure 1 the detailed landscape of package mana-
gers usage for other languages. The frequency is well distributed,
but we can observe that most participants made some use of pack-
agers managers.

0 20 40 60 80

Always
Very often
Fairly often
Sometimes

Almost never
Never

Do not know

Use C++ only

75
55

47
72

44
44

2
4

Figure 1: Frequency distribution of packagemanagers usage
for languages other than C++, during the last 3months prior
to the survey execution.

On the other hand, Figure 2 makes it clear that most participants
never used a C++ package manager during the same period. With
this data, we can state:

(1) 80% of participants have not used a C++ package manager
in the stated timeframe, or do not know what is a package
manager.

(2) About 15% of participants rarely used a C++ package man-
ager in the stated timeframe.

(3) Only 5% of participants use a C++ package managers at least
occasionally in the stated timeframe.

4.2 RQ2: What obstacles prevent the use of
such tools?

To answer this research question, we have asked in the survey what
are the five most important features that could negatively influence
the participants while using a package manager. The answers can
be seen in Figure 3.

The biggest concern of the participants regarding these tools is
about their license, as Closed Software was the negative feature
most selected. Probably this is due to the fact that the participants



On the Use of Package Managers by the C++ Open-Source Community SAC’18, April 9-13, 2018, Pau,France

0 50 100 150 200 250

Every time
Usually

Frequently
Sometimes

Occasionally
Rarely
Never

Do not know

2
2
2
5
7

50
259

16

Figure 2: Frequency distribution of packagemanagers usage
for C++, during the last 3 months prior to the survey execu-
tion.

0 50 100 150 200
Other

Not Written in C++

Requires Runtime
Does Not Build

Not IDE-Compatible

One More
Configuration

Builds

Difficult to Publish

Opinionated/Lack
Flexibility

Low Adoption

Change Build System

Low Availability
of Libraries

Bugs

Insufficient
Documentation

Complicated
Configuration

Closed Software

19

22

51

52

57

67

79

100

104

110

126

175

177

180

187

209

Figure 3: Negative features that may hurt the adoption of
package managers.

are collaborators of open-source projects – for this reason a propri-
etary solution would not befit their purposes or would be against
their philosophy. However, this is not a problem for any of the
existing tools we identified as all of them are open-source projects.

The participants were also concerned with Complicated Config-
uration, as this was the second most selected negative feature.

Insufficient Documentation was the third most picked negative
feature. This characteristic may be impacting the adoption of ex-
isting C++ package managers, since extensive documentation for
them is not available. Six of the identified tools provide manuals
in wiki-like format, while the others only offer brief instructions
on readme files. Their presence in question & answer sites and

programming forums is far smaller than what can be observed
regarding package managers for other languages. Also, to the best
of our knowledge, there is no published book or academic work
regarding C++ package management tools.

Moreover, the occurrence of Bugs is relevant to participants. Bugs
can affect the user experience and may range fromminor glitches to
blockers such as failure to handle dependency conflicts, compiling
and linking breakages, etc. Every C++ package manager considered
in this study is an open-source project, so bug reporting and push
requests mechanisms are in place and provide a way for dealing
with defects; nonetheless, some tools are currently unmaintained,
making bugs an even worse hindrance.

Regarding repositories, almost all tools maintain some sort of
official repository for packages. Nevertheless, they all allow the
use of private repositories or to fetch dependencies from user-
defined URLs. We perceive this feature as essential considering the
strong presence C++ maintains on corporate projects. Nonetheless,
hindrances tomake libraries available and tomaintain their versions
might undermine tools adoption in any type environment, be it
open-source projects where contributors usually rely on official
repositories or corporate projects that need to justify the time and
cost to maintain on-premises repositories. The Low Availability of
Features was the 5th most selected negative feature.

Considering the least selected negative features, it seems that
participants are not at large concerned in which language the tool
must be written or if it requires a runtime environment (such as it
is the case for Java or Python).

A bigger factor damaging the adoption of C++ packagemanagers,
however, may be the lack of awareness — when asking about the
usage of and satisfaction with C++ package managers, we observed
that these tools are unknown by 89.05% of participants.

4.3 RQ3: Currently what are the preferred
methods to handle dependencies in C++
projects?

In the survey, we asked the participants about their preferred
method to add dependencies to C++ projects; their answers are
depicted in Figure 4.

By far the most selected method to add dependencies is through
system package managers. This can be explained by the fact that
system package managers are widely adopted by Linux/BSD users
and macOS users, which correspond to 58.13% and 17.89% of re-
spondents, respectively.

While system package managers are available for numerous
Linux distributions and other Unixes, this is not the case for Win-
dows, which is used by 21.23% of respondents. This helps to under-
stand why the use of Header-only libraries was the second most
selected option, as this method is usually not affected by the avail-
ability or the lack thereof of a system-level package manager.

Perhaps because many open-source projects are nowadays using
Git as their Version Control System, some participants selected
the Git Submodules option. This method liberates developers from
system-level package managers and has the advantage of keeping
the repository as lean as possible, containing only project files and
no library sources in the repository. Unfortunately, this facility



SAC’18, April 9-13, 2018, Pau,France André Miranda and João Pimentel

0 50 100 150
Source code amalgamation

C++ package manager

Custom script to fetch
& install libraries

Use precompiled
packages

Library sources
in repository

Manually compile &
install libraries

Git submodules

Header-only libraries

System package
manager

5

9

15

27

32

36

40

62

117

Figure 4: Preferredmethods to add dependencies to C++ pro-
jects.

comes at the price of integrating the building of those Submodules
to the project’s own build configuration.

4.4 RQ4: What is expected of a C++ package
manager?

Similar to RQ2, we have asked what are the five most important
features that could positively influence the participants while using
a packagemanager, aiming to find out what features the participants
expect from package managers. The answers are summarized in
Figure 5.

Just like Closed Software was the major concern in RQ2, partici-
pants’ most expected aspect of a package manager is Open-Source
License. Again, this is most likely because of the respondents’ col-
laboration with open-source projects.

Very close to the former feature, Good Availability of Libraries is
also highly expected from package managers. Even though most of
the tools allow running private repositories or adding dependencies
from arbitrary locations, participants desire hassle-free use of this
kind of tool — in other words, they do not want to spend time
packaging each dependency that is not available in the official
repository. Currently, this is a problem for tools like Meson and
Build2, since at the time of writing their official repositories offer
no more than 20 packages. This is a bigger issue yet for tools such
as Pacm, which has no official repository.

A bit distant from the previously discussed features, we can find
the capability of Handling Dependency Conflicts. Such conflicts
arise, for instance, when different projects require different ver-
sions of the same library. Specifically for C++ projects, complexities
related to the build and dynamic linking processes may also play
a role in the Handling of Dependency Conflicts because both pro-
cesses are affected by system-wide libraries and their versions may
vary from system to system.

As also discussed in RQ2, the participants value Good Docu-
mentation for package managers, confirming that this feature is
crucial for a successful package manager. Even though the term
Good Documentation is too broad, we perceive it as a collection of
manuals and guides, books, tutorials, sensible example projects and

0 50 100 150 200

Commercial Support

Other

Decentralized
Repository

Central Repository

Easy Publish

Free of Cost

Handle Transi-
tive Dependencies

Broad Adoption

Easy to Integrate

Easy to
Install the Tool

Multiple Versions
of Dependency

Easy Set Up
Configuration

Easy Install/
Update Libraries

Good
Documentation

Handle Depen-
dency Conflicts

Good Avaliability
of Libraries

Open Source License

7

17

41

50

78

80

84

87

109

113

114

133

139

143

148

185

187

Figure 5: Positive features expected in package managers.

presence on forums and question & answers sites. Of course, this
cannot be expected from projects carried out by few individuals,
mostly volunteers — perhaps a strong community or a backing
company is required in order to address this concern.

Regarding the bottom section of this features list (Figure 5),
Commercial support was by far the least selected feature — perhaps
because of the open-source background of the participants. It is
also interesting to notice that both types of repositories (centralized
or decentralized) were similarly neglected.

Lastly, the survey questionnaire also included a question regard-
ing the use of Integrated Development Environments (IDEs). We
can conclude from the results presented in Figure 6 that participants
are unlikely to give up their preferred IDE, so we understand that
IDE support is an important feature for C++ package managers to
attract users.

4.5 RQ5: What is the community’s opinion
towards C++ package managers?

One of the survey’s questions asked the participants about their
stance regarding language-specific package managers. Their an-
swers are represented in Figure 7.

Besides this nominal closed question, we asked the participants
to explain their stance. The following quotes account well each
positioning (Pro and Against):

“C++ is a great language, but think about the life of a C++ de-
veloper compared to a developer of another language: If he is a new



On the Use of Package Managers by the C++ Open-Source Community SAC’18, April 9-13, 2018, Pau,France

Strongly
disagree

Disagree Neither agree
or disagree

Agree Strongly
agree

0

50

100
117

95
80

43
8

Figure 6: How willing are the participants to give up their
preferred IDE.

Against

18.95%

Pro
52.48%

I don’t know

28.57%

Figure 7: Stance regarding language-specific package mana-
gers.

user, the barrier of entry is massive. Not only must he learn a new
language, but also the intricacies of linking and compiling dependent
libraries into his project. Because of the former, even for an experienced
developer, the time to set up a new project is greatly exasperated by
having to write a ton of build files and link dependencies manually.
Some libraries don’t list their dependencies or don’t have a How-to
on importing it to your project. Then you are stuck with trying to
reverse-engineer their dependencies and how to use it in your project.
There are way better things to spend your time on than that! (...) This
is why I support language-specific package managers.” – Participant
#230, Pro.

“Language-specific package managers may be useful on Windows,
but on Linux, I prefer to have software packaged on the system level.
On Fedora, most of the libraries are provided as RPMs from official
repositories. Typically, if I need anything outside of that, it is due
to different version requirements, and I end up setting up a separate
build environment anyway.” – Participant #223, Against.

We have also asked whether the participants would use C++
package managers if they were as mature as the ones for other
languages. Figure 8 tells us that 51.31% of participants would use a
C++ package manager, not surprising since about 52.48% of them
are pro language-specific package managers. This reveals that C++
package managers have a significant user base waiting for a tool
that can elegantly manage dependencies for C++ projects.

Lastly, we have asked participants if they would like to split the
source modules into packages and assemble them via a C++ pack-
age manager. This is an interesting approach observed in projects
written in other languages, e.g., Java and JavaScript. This approach
takes advantage of package management not only to incorporate

Strongly
disagree

Disagree Neither agree
or disagree

Agree Strongly
agree

50

100

20 30

117 122

54

Figure 8: How willing are the participants to use a C++ pack-
agemanager if they were as mature as are the ones for other
languages.

third-party code but also to affect the project’s design, promoting
modularization. The answers are summarized in Figure 9. We can
deduce by a slight margin that most participants would like to use
this approach, but the portion that is not willing cannot be disre-
garded. Perhaps people might be persuaded if this pattern becomes
commonplace as happened for other languages.

Strongly
disagree

Disagree Neither agree
or disagree

Agree Strongly
agree

50

100

35
60

126

93

29

Figure 9: How willing are the participants to split source
code into modules and integrate them via a C++ package
manager

5 ANALYSIS AND DISCUSSION
This section presents some considerations on the survey results. A
discussion of validity threats is presented in Section 6.

Based on the results for RQ1, we could observe a great discrep-
ancy between the use of package managers (19.83% of the respon-
dents) in C++ and their use in other languages (86.43%). This is even
more evident when analyzing the frequency of use, since 73.91% of
the former use C++ package managers rarely.

Contrary to our expectations, the language on which the C++
package management tool is developed was not considered a rele-
vant factor for its adoption (only 22 votes for it being a negative
factor, out of 1715). The most voted negative features are: low
availability of libraries (175 votes), bugs (177 votes), insufficient
documentation (180 votes), complicated configuration (187), and
closed software (209 votes).

Analyzing the characteristics that could be seen as positive, the
least voted one (with seven votes out of 1715) was commercial
support. This lack of interest on commercial support is also corrob-
orated by the anecdotal evidence of Biicode, which was supported
by a company but then became unmaintained as the company went



SAC’18, April 9-13, 2018, Pau,France André Miranda and João Pimentel

out of business5 after failing to sell services and thus to get enough
paying customers. Nevertheless, this result may be biased since
our survey was performed with developers of open-source projects
only.

Whether the package repository is centralized or decentralized
does not seem to be a relevant factor, with a similar amount of
votes for each option (41 respondents considered decentralized
repository a positive feature, whereas 50 respondents considered
a central repository a positive feature). The broad adoption of the
tool was also not considered particularly relevant, with only 87
votes. Thus, even though the popularity of a package manager tool
may increase the number of people that are aware of the tool, it
does not seem to be a relevant factor in making them actually adopt
the tool.

The characteristics that are most considered positive are: ease to
install and update libraries (139 votes), good documentation (143
votes), handling of dependency conflicts (148), good availability of
libraries (185 votes), and open-source license (187 votes).

Contrasting the results for negative and positive characteristics,
it can be observed that theymostly corroborate each other, as shown
in Figure 10. The most positive one (187 votes) is open-source licens-
ing, which is the opposite of the most negative one (closed software,
209 votes). Good availability of libraries, considered positive with
185 votes, is the opposite of low availability of libraries, which had
175 votes as a negative feature. Good documentation was consid-
ered positive with 143 votes, while insufficient documentation was
considered negative with 180 votes. Lastly, complicated configura-
tion (187 votes for negative characteristic) can be contrasted with
easy to setup configuration and easy to install/update libraries, with
133 and 139 positive votes, respectively.

Besides these features, a factor that may be hurting the adoption
of C++ package managers is the lack of awareness. It was observed
that the developers of C++ open-source projects are not aware of
the existing tools: Biicode, Build2, Conan, CPM, Hunter, Mason,
Meson, Pacm, and Yotta. In fact, 89.05% of respondents do not know
any of these tools.

Considering the current methods for handling dependencies,
the favorite ones are: system package manager (117 votes, 34.11%),
header-only libraries (62 votes, 18.08%), and git submodules (40
votes, 11.66%). This result confirms the participants’ preference for
system packagemanagers, which is themethod adopted in 69.05% of
the surveyed projects. On the other hand, only five projects (14.29%)
make use of git submodules to handle dependencies, and none of
them use third-party header-only libraries. Moreover, during this
study, none of the analyzed projects were using any of the presented
C++ package managers. This is further evidence of the low adoption
of C++ package management tools.

In the next section, the discussion continues with considerations
regarding validity threats.

6 THREATS TO VALIDITY
In order to prevent inadequate explication of constructs, the ques-
tionnaire was checked for consistency; alternative answers were
precisely specified; and synonyms and examples were provided.
Additionally, slangs and popular expressions were removed. The

5http://blog.biicode.com/biicode-just-the-company-post-mortem

questionnaire was validated by native and non-native English speak-
ers. Additionally, a pilot study was conducted in order to verify
potential confusing points. The consistency between answers in-
dicates that the respondents were able to understand the intent of
the questions.

In order to reduce the odds of bias from researchers’ expectan-
cies or hypothesis guessing, the following measures were taken:
balanced scales were provided; the text of the questions was care-
fully written as to not influence the answers; the questionnaire was
revised by experts with no stakes in the study.

In order to mitigate the threat of non-response by specific groups,
recommendations from Sivo et al. [15] were adopted: follow-up
reminders were dispatched, incentives were provided, authoritywas
evidenced, confidentiality was explicitly declared, and anonymity
was made possible.

Aiming to mitigate researchers’ conclusions bias, we opted to
present a full breakdown of the answers here discussed, instead of
just reporting descriptive statistics.

When analyzing the results of this survey, it is pertinent to
consider the characteristics of the sample. Most of the projects
they contributed to are very small: the outliers are MongoDB (89),
Kodi (115), Minetest (150), OpenCV (176), Ceph (226), LibreOffice
(265), and Firefox (834). It is also important to consider the response
rate for each project — a higher number of responses from Firefox
(21.28%) may have influenced the results of this survey. Additional
analysis is required in order to measure and handle such influence.
Therefore, generalization of the findings here reported should be
made with caution.

Moreover, the survey was restricted to open-source projects,
even though C++ is still largely used in closed-source commercial
projects. As all considered tools in this study are open-source, we
do not see this as a major threat since in many cases an open-source
technology first gains traction within open-source communities
before its adoption by the closed-source industry.

7 CONCLUSIONS AND FUTUREWORK
In this empirical study, we have presented a survey on C++ de-
pendency management, aiming to elucidate the factors that are
hurting the adoption of C++ package managers. The survey had
responses from 343 contributors of 42 OSS projects, spread across
ten categories, and of varying sizes.

Through preliminary observations, we had noticed that C++
package managers are hardly adopted in practice. This impression
found corroborating evidence in this study: none of the surveyed
projects adopt a C++ package management tool, and 89.05% of
respondents do not know any of these existing tools. This lack of
awareness might be an important driver of this low adoption since
respondents seem to have a positive stance regarding this kind of
tool, as discussed in section 4.5. Being open source tools, without
formal backing from companies, these tools’ future are endangered
if they remain unknown to the broad audience, since it is hard
for them to evolve without feedback and contributions from the
developer community.

According to our survey, system package managers are currently
the most used method for handling C++ dependencies. While it
has advantages (e.g., ease of use and large availability of packages),



On the Use of Package Managers by the C++ Open-Source Community SAC’18, April 9-13, 2018, Pau,France

200 100 0 100 200

1) Open-Source License

2) Good Availability of Libraries

3) Good Documentation

4) Easy Install/Update Libraries

5) Easy Set Up Configuration

1) Closed Software

5) Low Availability of Libraries

3) Insufficient Documentation

2) Complicated Configuration

2) Complicated Configuration

187

185

143

139

133

209

175

180

187

187

Top positive Top negative

Figure 10: Top positive and top negative features presented side by side.

there are several different operating systems with their own reposi-
tories and policies, thus it is not an optimal cross-platform solution,
so inflicting more effort and cost to maintain different sets of con-
figurations, requiring workarounds for cases where features are not
supported in some platforms and missing packages. In particular,
some software development methodologies [19] recommend avoid-
ing reliance on implicit system-wide packages, endorsing explicit
dependency declaration and dependency isolation tools during exe-
cution.

In future work, we plan to perform statistical analysis on the
gathered data in order to identify significant correlations. For in-
stance, is there a correlation between respondents’ stance towards
language-specific package managers and their age, experience, or
their usage of other languages? Additionally, we expect to perform
follow-up interviews with selected respondents and professional
developers in order to further explore the adoption factors.

Some aspects of C++ dependency management were not consid-
ered in this study, such as dynamic vs. static linking, packaging,
and security. This was intentional as our focus is on understanding
the low adoption of C++ package managers. If usage of these tools
gains traction, however, the aforementioned issues will become
even more relevant.

The C++ ecosystem is a thriving and heterogeneous one. The
accidental complexity of managing dependencies may be undermin-
ing innovation and reducing maintainability, especially for cross-
platform projects. We look forward to more homogeneity in de-
pendency management for C++ projects across the many possible
combinations of operating systems, compilers, and build systems.

ACKNOWLEDGMENTS
The authors would like to thank all survey participants for their
collaboration and feedback.

REFERENCES
[1] Tiobe index for ranking the popularity of programming languages, august 2016,

2016.
[2] P. Abate, R. DiCosmo, R. Treinen, and S. Zacchiroli. MPM: a modular pack-

age manager. Proceedings of the 14th international ACM Sigsoft symposium on
Component based software engineering, pages 179–188, 2011.

[3] L. Courtès. Functional package management with Guix. European Lisp Sympo-
sium, 2013.

[4] G. Dos Reis, M. Hall, and G. Nishanov. A module system for C++ (revision 2).
2014.

[5] A. Fink. The survey kit (Vols. 1–9). Thousand Oaks, CA: Sage, 1995.
[6] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski,

and S. Futral. The Spack package manager: Bringing order to HPC software

chaos. Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015.

[7] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and M. Irlbeck. On the
extent and nature of software reuse in open source Java projects. Top productivity
through software reuse, pages 207–222, 2011.

[8] G. Hertel, S. Niedner, and S. Herrmann. Motivation of software developers in
open source projects: an internet-based survey of contributors to the Linux kernel.
Research policy, 32(7):1159–1177, 2003.

[9] M. F. Krafft, K.-J. Stol, and B. Fitzgerald. How do free/open source developers
pick their tools? a delphi study of the Debian project. International Conference
on Software Engineering (SEIP Track), pages 232–241, 2016.

[10] H. Muhammad, F. Mascarenhas, and R. Ierusalimschy. LuaRocks - a declarative
and extensible package management system for Lua. Brazilian Symposium on
Programming Languages, pages 16–30, 2013.

[11] A. Neitsch, K. Wong, and M. W. Godfrey. Build system issues in multilanguage
software. 28th IEEE International Conference on Software Maintenance (ICSM),
pages 140–149, 2012.

[12] S. L. Pfleeger and B. A. Kitchenham. Principles of survey research: part 1: turning
lemons into lemonade. ACM SIGSOFT Software Engineering Notes, 26(6):16–18,
2001.

[13] S. Raemaekers, A. van Deursen, and J. Visser. An analysis of dependence on
third-party libraries in open source and proprietary systems. Sixth International
Workshop on Software Quality and Maintainability, SQM, 12:64–67, 2012.

[14] C. Schmitz et al. LimeSurvey: An open source survey tool, 2012.
[15] S. A. Sivo, C. Saunders, Q. Chang, and J. J. Jiang. How low should you go? low

response rates and the validity of inference in is questionnaire research. Journal
of the Association for Information Systems, 7(6):17, 2006.

[16] M. Sojer and J. Henkel. Code reuse in open source software development: Quan-
titative evidence, drivers, and impediments. Journal of the Association for Infor-
mation Systems, 11(12):868–901, 2010.

[17] M. Tiller and D. Winkler. impact - a Modelica package manager. Proceedings
of the 10 th International Modelica Conference; March 10-12; 2014; Lund; Sweden,
(096):543–548, 2014.

[18] G. Von Krogh, S. Haefliger, S. Spaeth, andM.W.Wallin. Carrots and rainbows: Mo-
tivation and social practice in open source software development. MIS Quarterly,
36(2):649–676, 2012.

[19] A. Wiggins. The twelve-factor app, 2017.
[20] D. Wu, L. Chen, Y. Zhou, and B. Xu. How do developers use C++ libraries? an

empirical study. Proceedings of the Twenty-Seventh International Conference on
Software Engineering and Knowledge Engineering, pages 260–265, 2015.


	Abstract
	1 Introduction
	2 Related Studies
	3 Methodology
	3.1 Existing C++ Package Managers
	3.2 Projects Selection and Current Practices
	3.3 Survey Design & Pilot Questionnaire
	3.4 Survey Execution
	3.5 Data Analysis

	4 Results and Findings
	4.1 RQ1: Do developers use the existing C++ package managers?
	4.2 RQ2: What obstacles prevent the use of such tools?
	4.3 RQ3: Currently what are the preferred methods to handle dependencies in C++ projects?
	4.4 RQ4: What is expected of a C++ package manager?
	4.5 RQ5: What is the community's opinion towards C++ package managers?

	5 Analysis and Discussion
	6 Threats to Validity
	7 Conclusions and Future Work
	Acknowledgments
	References

