
Conditions for ignoring failures based on a requirements model

João Pimentel
1
, Emanuel Santos

1
, Jaelson Castro

1

1
Universidade Federal de Pernambuco, Centro de Informática, Recife, Brazil

{jhcp, ebs, jbc}@cin.ufpe.br

Abstract

Ideally, all system failures should be compensated.

In fact, most failure-prone systems try to compensate

all their failures. However, sometimes a compensation

is not essential. Hence, diagnosing and compensating

each and every one of their failures may be ineffective.

Thus, this work aims to increase the flexibility of

failure handling in self-configuring systems, using

tolerance policies based on requirements models. We

allow the expression of conditions in which certain

failures may be ignored – i.e., conditions in which a

failure will not be compensated. Such policies may

lead to reduced costs and performance improvement.

 The FAST
1
 framework consists of the definition of

a tolerance policy, the mechanisms to evaluate this

policy and a tool to aid the creation and maintenance

of policies. We use a Smart Office system to show the

several types of policy rules in action.

1. Introduction

The increasingly complexity of software systems

led to the proposal of Autonomic Computing, in which

the systems are capable of maintaining its ideal

behavior requiring only a minimal amount of human

intervention, even in dynamic environments [1].

Autonomic systems present four basic characteristics:

self-configuration, self-healing, self-protection and

self-optimization [2][3]. In particular, self-

configuration is seen as the main characteristic [4][5],

partially because of the support it provides for

implementing the other characteristics.

In this work we are considering a specific

architecture for self-configurable systems [6], in which

the system execution is monitored at the requirements

level. This architecture performs a Monitoring –

Diagnosing – Compensating (MDC) cycle. It monitors

the execution of a system, diagnoses the failures that

may happen and proposes reconfigurations in order to

1 Failure handling for Autonomic Systems

avoid these failures. This monitoring and diagnosing is

performed regarding the system requirements,

expressed with goal models. The goals are modeled

using the Tropos notation [7], which captures the social

and intentional relationships in the system

organizational environment, as well as quality

attributes and functionalities of the system.

Ideally, all system failures should be compensated.

However, sometimes compensation is not essential - it

depends on the failure’s criticality. For instance, let us

consider that a research group has weekly meetings

every Wednesday. If one of the meetings happens to

coincide with a holiday, the group may just cancel

that meeting and gather together in the following

Wednesday. On the other hand, if there are three

consecutive cancelations of the meeting (due to

holidays or other motives), the time gap between one

meeting and the next one would be too large. Hence, it

would probably be better to reschedule some meetings

to an alternative day of the week (eg. Thursdays). In

this scenario, the failure – cancellation of a meeting -

does not always need to be compensated. For example

it is allowed to happen two times in sequence, but no

more than that.

In contrast, the MDC cycle expects that each system

failure will lead to compensation. Thus, this work aims

to increase the flexibility of failure handling in self-

configuring systems, allowing the expression of

conditions in which certain failures may be ignored –

i.e., conditions in which a failure will not be

compensated. To discover the types of conditions, we

performed an extensive analysis of goal models

presented in the academic literature.

The concept of policies is used in Software

Engineering to allow users or system administrators to

control some characteristics of a system, without

having to deal with implementation details [8]. In

particular, this concept has often been used by the

network community [9][10]. In this work we are

defining a policy to enable the customization of the

way that a system handles its failures.

This paper is organized as follows. Section 2

presents the background of this research, which is a

context-enriched Tropos notation. Section 3 presents

our approach for expressing conditions in which a

failure may be ignored – namely, the Tolerance Policy.

The algorithm for processing this policy is presented in

Section 4. Section 5 illustrates the use of our approach

and the tools developed to support the policy. In

section 6 we compare our research with related works.

Finally, Section 7 summarizes our work and points out

open issues.

2. Background

Our architecture is based on some previous work [6]

which considers the requirements model as a goal

model and a context model. With this information and

the data provided during a system execution a self-

configuration component is able to monitor and

diagnose failures at runtime.

A goal model is a model that depicts the intentions

of actors in a system, along with the means - tasks - to

achieve these goals and the interdependencies among

the actors. In particular, the self-reconfiguration

architecture [6] adopted uses a Tropos [7] goal model

consisting of actors, their goals, goals and/or-

decompositions, tasks, means-end links (from a task to

a goal) and dependency links (from an actor to another

actor). Below (Figure 1) we describe the example to be

used throughout the paper.

G2: Assist work
execution

G1: Provide
News

Download
Emails

Download
Feeds

Smart
Office

System

Provide a
report template

Download
Tweets

Goal Task

Actor

Actor boundary

Means-ends
link

L
e
g

e
n

d

-day

-hour

Calendar

-isAtOffice

-isAtAMeeting

User

(a) Context Model (b) Goal Model

Figure 1 - Goal and context model for a Smart

Office System

The example in Figure 1 (b), of a Smart Office

system, shows some of these concepts. This system has

two goals: provide news (to its user) and assist (a user)

when performing his work. The Download Emails,

Download Feeds and Download Tweets tasks are

means to the Provide News end. Similarly, the Provide

a report template task is a means to the Assist work

execution end. We are considering that when

downloading e-mail an Ethernet connection is used.

When this connection is down, the reconfiguration

strategy is to connect to the Internet through a mobile

phone - which is more expensive than using the

Ethernet connection.

The context model defines the data that context

sensors will have to monitor, in order to assess the

tasks execution. In Figure 1 (a) we show the context

model for the Smart Office system. In this example, the

context sensors would need to know the day and

current hour of the calendar and if the user is at his/her

office or at a meeting.

3. Tolerance Policy

Given the overview of the models we are taking into

consideration, in this section we are going to describe

our tolerance policy. It is concerned with the definition

of conditions for task failures to be ignored. A failure,

in this case, is the unsuccessful execution of a task. By

default, on the MDC cycle, all failures must be

compensated through some reconfiguration - only

those tasks explicitly mentioned in some rule of this

policy will have its failures disregarded. Failures will

be ignored depending on conditions that may be related

to the system's context, to the system goals or to the

amount of time elapsed since the occurrence of a

failure. For each of these types of conditions, there is a

specific rule type: t.context, t.goal and t.limit. The 't' in

these type names stands for 'tolerance'. In the following

sub-sections we describe each one of all types in detail.

3.1 Tolerance Rule Type 1 (t.context)

In order to express in which contexts the failure of

certain tasks may be ignored we use t.context rules. It

has the following structure:

tasksSet isAllowedToFailIf contextExpression

tasksSet is a set of tasks divided by a colon (:),

and that has at least one task - i.e., it can not be an

empty set. The allTasks reserved word may be used

to refer to all the tasks of the goal model, without

needing to name them one by one. This definition of

tasksSet and of the allTasks reserved word is

shared with all the remaining types.

isAllowedToFailIf is a fixed string to identify the

rule type. contextExpression is a logic expression,

with the following structure:

ContextEntity.AttributeName operator

AttributeValue

contextEntity is any entity of the system's

context model, and AttributeName is the name of an

attribute of that entity. operator is a logic

comparator, among the following: equals (=), greater

than (>), greater equals than (>=), lower than (<),

lower equals than (<=) and different (<>).

AttributeValue is any possible value that entity

attribute may have. During the system execution, this

value will be compared with the actual value of that

attribute, in order to evaluate if this context applies or

not.

A rule of the t.context type has the following

meaning: if a task that is an element of the taksSet

fails and the contextExpression currently applies,

then that failure will be ignored. In other words, no

compensation will be performed for that failure.

Usual situations in which a failure can be ignored

are those related to date and time, as in examples 1 and

2. Considering the Smart Office System, that

periodically download the e-mails and feeds for its

user, Example 1 states that the failure of the

downloadEmail task will be ignored if it happens

before 8a.m., as well as the failure of the

downloadFeeds task. Example 2 defines that the failure

of any task of the system will be ignored if it occurs on

a Sunday. Example 3 illustrates that any context entity

of the context model can be part of the context

expression - the failure of the downloadEmail task will

be ignored whenever the user is away from his office.

Ex.1: downloadEmail:downloadFeeds

isAllowedToFailIf calendar.hour<=8

Ex.2: allTasks isAllowedToFailIf

calendar.day=Sunday

Ex.3: downloadEmail isAllowedToFailIf

user.isAtOffice=false

3.2 Tolerance Rule Type 2 (t.goal)

This type of rule uses the goal model to define when

a task failure will be ignored. The status of a goal, or a

set of goals will be examined. Its structure is similar to

the structure of t.goal:

tasksSet isAllowedToFailWhen goalExpressions

tasksSet is defined similarly to the t.context.

goalExpressions is a non-empty set of logic

expressions, separated by a colon (:). Each expression

is an equality comparison: goalName=satisfied or

goalName=unsatisfied. In the first case, the

expression will apply if the given goal is currently

satisfied, and in the second case if the given goal is

currently unsatisfied. The rule will apply if and only if

all its goalExpressions apply.

The string isAllowedToFailWhen is the identifier

for this rule type. The t.goal rule states that whenever a

task in the tasksSet fails, if all expressions of

goalExpressions apply then this failure will be

ignored.

In Example 4 we have that the failure of the

downloadFeeds task will not be compensated if the

system did not help the user in executing his/her work.

In Example 5 the failure of the downloadEmail task

will be ignored if both the assistWorkExecution goal is

satisfied and the goal provideNews is satisfied.

Ex.4: downloadFeeds isAllowedToFailWhen

assistWorkExecution=unsatisfied

Ex.5: downloadEmail isAllowedToFailWhen

assistWorkExecution=satisfied:provideNews=s

atisfied

3.3 Tolerance Rule Type 3 (t.limit)

In this rule type we are not concerned in defining

specific conditions in which a failure will be ignored.

Instead, the concern is to define a maximum number of

times that some task will fail without being

compensated. This type has the following structure:

tasksSet isAllowedToFailAtMost limit

tasksSet is defined similarly to the t.context and

t.goal cases. The isAllowedToFailAtMost name

uniquely identifies this rule type. limit is a positive

integer number that indicates how many times the

failures of each task of the tasksSet will be ignored,

before a compensation is required.

A rule of this type means that each task of the

tasksSet will have a limit number of failures

ignored. The failure number limit + 1 will be

compensated, and the failure counting of that task will

be reset.

Note that we do not define a limit of failures for a

set of tasks, but the limit for each task of the

tasksSet. For instance, in Example 6 the limit of 5

failures is not for the two tasks altogether, it is for each

task separately (downloadEmail and downloadFeeds).

The rule of the Example 6 can be split in other two

rules (examples 7 and 8), keeping the same meaning.

Ex.6: downloadEmail:downloadFeeds

isAllowedToFailAtMost 5

Ex.7: downloadEmail isAllowedToFailAtMost 5

Ex.8: downloadFeeds isAllowedToFailAtMost 5

4. Policy Processing

The goal of the Tolerance Policy processing is to

define all failures that will be ignored. For that, the

procedure described in Figure 2 is used. Initially, there

is a list of failed elements - i.e., the tasks that were not

successfully completed. There is also a list of tolerance

rules, extracted from the policy file, and a list of

context entities, from which we can get the current

attribute values of that entities. The result of this

procedure is a list of failed elements without those

which failure will be ignored.

Figure 2 - Algorithm for failure ignoring evaluation

For each failed element (line 1), we check if there is

a rule of the type t.context (t1) or t.goal (t2) which

tasksSet contains that element (line 2). If there is

such a rule, we are going to analyze each one of these

rules (lines 3 and 4). If the rule is of the type t.context

(t1) and its context expression applies, we will remove

this element from the list of failed elements and mark

that element as ignored (lines 5 to 9). If the rule is of

the type t.goal (t2) and its goal expressions apply, we

also remove this element from the list of failed

elements and mark that element as ignored (lines 10 to

17). The analysis of the context expressions and of the

goal expressions are performed, respectively, by the

procedures EvaluateContext and EvaluateGoals. After

analyzing all t.context and t.goal rules for the element,

if it is not yet marked as ignored (line 21), we will

check if there is a rule of the type t.limit (t3) which

tasksSet contains that element (line 22). If there is

such a rule, we will check if the failure limit for that

element was reached (line 23). If the limit was not

reached yet, we will increase the failure counter of that

element and mark it as ignored (lines 24 to 26). If the

limit was reached, we will not ignore that failure - i.e,

the compensation will be required - but we will reset

the failure counter (line 28). As a result we return the

list of failed elements (line 33), from which we

removed all elements which failures were supposed to

be ignored.

The EvaluateContext and EvaluateGoals procedures

simply check if the rules conditions apply [14]. These

procedures will not be detailed here for the sake of

space.

In summary, the t.context and t.goal rules define

conditions when the failure of a given task may be

ignored, and t.limit rules define an amount of failures

of a given task that will be ignored. However, the

amount of failures defined with a t.limit rule does not

take into account the failures already ignored by the

t.context and t.goal rules.

In this sense, we can state that the rule types

t.context and t.goal prevails upon the type t.limit.

Given a t.context rule, the failure of a task in its

tasksSet will always be ignored if its context

expression is satisfied, despite how many times this

failure had been ignored before. In a similar way, given

a t.goal rule, the failure of a task in its tasksSet will

always be ignored if its goal expressions hold.

The t.limit rules are concerned only with the failures

that were not ignored during the evaluation of the

t.context and t.goal rules. Note that the failures ignored

due to a t.context or a t.goal rule will not change the

failures counting of a task.

Rules can interact. For example three rule types,

from examples 9 (a t.context rule), 10 (a t.goal rule)

and 11 (a t.limit rule) and the failure log depicted in

Table 1. That table shows a log of failures of the

downloadEmail task, together with the number of the

failure, the value of the calendar.day attribute and the

status of the assistWorkExecution goal at the moment

of the failure. It also indicates if the failure was ignored

as well as the rationale (the rule used for ignoring the

failure).

Ex.9: downloadEmail isAllowedToFailIf

calendar.day=sunday

Ex.10: downloadEmail isAllowedToFailWhen

assistWorkExecution=satisfied

Ex.11: downloadEmail isAllowedToFailAtMost 3

In this example, the failures for which the rule of

the example 9 applies were ignored: 2 and 3. In the

same way, the failures 1, 3 and 6 were ignored due to

the rule of the example 10. These rules do not apply for

failures 4, 5, 7, 8 and 9, so we may evaluate the rule of

the example 11 for these failures. The failures 4, 5 and

7 were ignored, since they were below the limit of 3

failures expressed in the rule. The failure 8, being the

fourth failure of that task that were not ignored by a

t.context or t.goal rule, shall be compensated, and the

failure counter for that task shall be reset. Since the

failure counter was reset, the failure 9 was also ignored

for being below the limit of three failures.

5. Application

In order to use our approach we implemented all

algorithms needed to evaluate the proposed policy.

They were integrated with a simulator of our chosen

self-configuration architecture [6]. We can provide a

goal model, a context model and a log of context

events, from which the simulator will run the Monitor -

Diagnoses - Compensation cycle. We added to the

simulator the ability to receive the Tolerance Policy as

input as well.

We also developed wizards for making it easier to

create the policy rules. Figure 3 shows an example of

the creation of a t.context rule. The user selects tasks,

which are extracted from the goal model, and then

defines in which context that task can fail without

compensation. As an example, the following rule is

defined: downloadEmail isAllowedToFailIf

user.isAtAMeeting=true. With these wizards we

prevent some syntax errors that could otherwise occur.

We applied the policy rules in the example of a

Smart Office system introduced in Section 2. In order

to avoid the cost of downloading e-mails through a

mobile phone connection at times when the e-mails are

unnecessary, we defined some tolerance rules, as

follows.

Assuming that when the user is at a meeting he may

not need to check his e-mails, we define the following

t.context rule: downloadEmail isAllowedToFailIf

user.isAtAMeeting=true. Assuming also that it is not

required to have his e-mails updated when the system

has already finished assistang the user in performing

his work, we define this t.goal rule: downloadEmail

isAllowedToFailWhen assistWorkExecution=satisfied.

Finally, accepting that the e-mail downloading can fail

at most three times consecutively, the following t.limit

rule is stated: downloadEmail isAllowedToFailAtMost

3.

Figure 3 - Screenshot of the wizard for creating a

t.context rule

We ran the simulator applying only one rule at a

time, considering the scenario of one typical day of

work, but on which the Ethernet connection was

always down. The average result was a decrease of

46% on the number of required compensations. This

result shows that, in some situations, the use of a

tolerance policy can reduce the overall cost of using a

Table 1 - Failures log of the task downloadEmail

failure calendar.day assistWorkExecution Ignore failure? Rationale

1 Saturday Satisfied Yes Ex. 10

2 Sunday Not satisfied Yes Ex. 9

3 Sunday Satisfied Yes Ex. 9, Ex. 10

4 Monday Not satisfied Yes Ex. 11 (1
st
 failure)

5 Monday Not satisfied Yes Ex. 11 (2
nd

 failure)

6 Monday Satisfied Yes Ex. 10

7 Tuesday Not satisfied Yes Ex. 11 (3
rd

 failure)

8 Tuesday Not satisfied No

9 Tuesday Not satisfied Yes Ex. 11 (1
st
 failure)

system, without a significant impact on the system

behavior.

6. Related Work

In this work we applied the Tolerance Policy in

connection with Dalpiaz architecture [6]. Despite the

existence of a Tolerance Policy component in the

original architecture, their work did not define a set of

rule types, neither how they could be applied. Thus, in

our work we have provided a more fine-grained control

on the failure handling mechanism of that architecture,

which results in a smaller amount of compensations to

be performed during a system execution.

There are some other architectures for self-

configuring, self-managing and autonomic systems

[11][12][13]. However, for the best of our knowledge,

none of them provide this level of failure control.

7. Conclusions

In this paper it was presented a tolerance policy that

deals with failure occurrences. The objective was to

increase the flexibility of failure handling in self-

configuring systems, using tolerance policies based on

requirements models. In particular we can express

conditions in which a failure may be ignored. These

conditions are related to requirements models – more

specifically, a goal model and a context model. In

order to make a proof of the concept, we defined

algorithms and proposed a Policy Editor tool. This

editor makes it easier for the user to create and

maintain the rules of a policy. A simple example was

used to explain our approach.

For the future, we plan to increase the

expressiveness of the policy rules, allowing the usage

of logic operators like AND, OR and XOR to create

more complex conditions. Furthermore, we want to

handle more complex rules, which can mix different

types of a rule. We also need to apply these policies

mechanisms in a real-world software system, analyzing

the usefulness and the effectiveness of our approach.

Lastly, we are interested in investigating how our

policy could be used in different architectures, i.e.

moving towards a more generic tolerance policy.

8. Acknowledgements

We are thankful to Fabiano Dalpiaz, Paolo Giorgini

and John Mylopoulos, for inspiring this work and for

their continuous feedback. This work was partially

sponsored by FACEPE, CNPQ and CAPES.

9. References

[1] Horn, P. Autonomic computing: IBM's Perspective on the

State of Information Technology. [S.l.]: IBM, 2001.

[2] Kephart, J. O.; Chess, D. M. The vision of autonomic

computing. Computer, IEEE Computer Society Press, Los

Alamitos, CA, USA, v. 36, n. 1, p. 41-50, 2003. ISSN 0018-

9162.

[3] Müller, H. A.; O'Brien, L.; Klein, M.; Wood, B.

Autonomic Computing. CMU/SEI-2006-TN-006. [S.l.],

2006.

[4] Salehie, M.; Tahvildari, L. Autonomic computing:

emerging trends and open problems. SIGSOFT Softw.

Eng. Notes, ACM, New York, NY, USA, v. 30, n. 4, p.

1-7, Julho 2005. ISSN 0163-5948. Available in

http://dx.doi.org/10.1145/1082983.1083082

[5] Parekh, J.; Kaiser, G.; Gross, P.; Valetto, G. Retrofitting

autonomic capabilities onto legacy systems. Cluster

Computing, Kluwer Academic Publishers, Hingham, MA,

USA, v. 9, n. 2, p. 141-159, 2006. ISSN 1386-7857.

[6] Dalpiaz, F.; Giorgini, P.; Mylopoulos, J. An architecture

for requirements-driven self-reconfiguration. In: ECK, P.

van; GORDIJN, J.; WIERINGA, R. (Ed.). CAiSE. [S.l.]:

Springer, 2009. (Lecture Notes in Computer Science, v.

5565), p. 246-260. ISBN 978-3-642-02143-5.

[7] Giorgini, P.; Mylopoulos,, J.; Perini, A.; Susi, A. The

Tropos Metamodel and its Use. In: Informatica journal, 2005.

[8] Damianou, N. Dulay, N.; Lupu, E.; Sloman, M.;

Tonouchi, T. Tools for domain-based policy management of

distributed systems. In: Proceedings of the IEEE/IFIP

Network Operations and Management Symposium (NOMS

2002), pages 203–217, 2002.

[9] Strassner, J.; Samudrala, S.; Cox, G.; Liu, Y.; Jiang, M.;

Zhang, J.; Meer, S.; Foghl´u, M.; Donnelly, W. The design of

a new context-aware policy model for autonomic networking.

In ICAC ’08: Proceedings of the 2008 International

Conference on Autonomic Computing, pages 119–128,

Washington, DC, USA, 2008. IEEE Computer Society.

[10] Stone, G.; Lundy, B.; Xie, G. Network policy languages:

A survey and a new approach. Technical report, Defense

Technical Information Center OAI-PMH Repository, 2003.

[11] Anthony, R.; Pelc, M.; Ward, P.; Hawthorne, J.; Pulnah,

K. A run-time configurable software architecture for self-

managing systems. Autonomic Computing, International

Conference on, IEEE Computer Society, Los Alamitos, CA,

USA, v. 0, p. 207-208, 2008.

[12] Ouda, A.; Lutfiyya, H.; Bauer, M. Towards self-

configuring policy-based management systems. In: POLICY

'08: Proceedings of the 2008 IEEE Workshop on Policies for

Distributed Systems and Networks. Washington, DC, USA:

IEEE Computer Society, 2008. p. 215-218. ISBN 978-0-

7695-3133-5.

[13] Subramanian, L.; Katz, R. H. An architecture for

building self-configurable systems. In: MobiHoc '00:

Proceedings of the 1st ACM international symposium on

Mobile ad hoc networking & computing. Piscataway, NJ,

USA: IEEE Press, 2000. p. 63-73. ISBN 0-7803-6534-8.

[14] Pimentel, J.H.C. High Level Failure Treatment for Self-

Configuring Systems: The FAST Approach (In Portuguese:

Tratamento de Falhas de Alto-Nível para Sistemas Auto-

Configuráveis: A abordagem FAST). MSc Dissertation.

Federal University of Pernambuco, 2010.

