·
Bioinformática:
o
Joel
B. Hagen (2000). The
origins of bioinformatics. Nature
Reviews (Genetics), v. 1, pp. 231.
o
João
C. Setúbal (2003). A
origem e o sentido da Bioinformática. ComCiencia.
Campinas, SP.
o
Russell Doolittle (2010). The
roots of bioinformatics in protein evolution. PLoS Computational Biology, 6(7), pp. 1.
o
Paulien Hogeweg (2011). The
roots of bioinformatics in theoretical biology. PLoS
Computational Biology, 7(3), pp. 1.
o
R. B. Altman (1998). A
Curriculum for Bioinformatics: the Time is Ripe. Bioinformatics,
14(7), pp. 549-550.
o
David B. Searls (2002). The
language of genes. Nature, v. 420, pp. 211-218.
·
Banco
de Dados Biológicos
o
Andreas D. Baxenavins
(2003). The
Molecular Biology Database Collection: 2003 update -- Nucleic Acids
Research, 31(1):1-12.
o
L. Stein (2001). Genome
Annotation: from sequence to biology, Nature Reviews: Genetics, v.
23, pp. 493-503.
o
J. B. L. Bard and S. Y. Rhee (2004). Ontologies in Biology: design, applications and future challenges,
Nature Reviews: Genetics, v. 5, 213-222.
·
Predição
de Genes
o
M. W. Craven and J. W. Shavlik
(1994). Machine
learning approaches to gene recognition, IEEE Expert, 9(2), pp.
2-10.
o
C. Mathé et al. (2002). Current
methods of gene prediction, their strengths and weaknesses, Nucleic
Acids Research, 30(19), pp. 4103-4117.
o
A. G. Pedersen et al. (1999).The
biology of eukaryotic promoter prediction: a review. Comput
Chem. 23(3-4), pp. 191-207.
·
Agrupamento
e Interpretação de Dados de Expressão Gênica
o
Jain, A. K., Murty, M. N., e
Flynn, P. (1999). Data
clustering: a review. ACM Computing Surveys, 3(31):264–323.
o
Molla,
M. et al. (2003). Using
machine learning to design and interpret gene expression microarrays. AI
Magazine (Special Issue on Bioinformatics). A ser publicado.
o
Quackenbush,
J. (2001). Computational
analysis of cDNA microarray data. Nature
Reviews, 6(2):418–428.
o
A. A. Alizadeh et al.
(2000). Distinct
types of diffuse large B-cell lymphoma identified by gene expression profiling.
Nature, 403:503–511.
o
Altman, R. B. e Raychaudhuri,
S. (2001). Whole-genome
expression analysis: challenges beyond clustering. Curr.
Opin. Struct. Biol.,
6(11):340–347.
o
Eisen,
M. B. et al. (1998). Cluster
analysis and display of genome-wide expression pattern. In Proc. of
National Academy of Sciences USA, volume 95, pp. 14863–14868.
o
Tamayo, P. et al. (1999). Interpreting
patterns of gene expression with self-organizing maps: methods and application
to hematopoietic differentiation. In Proc. Natl. Acad. Sci. USA,
96:2907–2912.
·
Classificação
com Dados de Expressão Gênica
o
Golub,
T. et al. (1999). Molecular
classification of cancer: class discovery and class prediction by gene
expression monitoring. Science, 5439(286):531–537.
o
Khan, J. et al. (2001). Classification
and diagnostic prediction of cancers using gene expression profiling and
artificial neural networks. Nature Medicine, 7:673–679.
·
Predição
de Estrutura Secundária de Proteínas
o
B. Rost (2001). Review:
protein secondary structure prediction continues to rise. J Struct Biol. May-Jun;134(2-3):204-18.
·
Computação
com Literatura Biomédica
o
S. Raychaudhuri et al.
(2003). The
computational analysis of scientific literature to define and recognize gene
expression clusters. Nucleic Acids Research, 31(15), 4553-4560.
o
M. D. Yandle and W. H. Majoros (2002). Genomics
and natural language processing. Nature Reviews: Genetics, v. 3, pp.
601-610.
o
L. Hirschman et al. (2002). Accomplishments
and challenges in literature data mining for biology. Bioinformatics,
18(12), pp. 1553-1561.