
An Automated Technique for Risk-based Test Case
Generation and Prioritization

Heiko Stallbaum
University of Duisburg-Essen

Software Systems Engineering
Schützenbahn 70

45117 Essen, Germany
heiko.stallbaum@sse.uni-due.de

Andreas Metzger
University of Duisburg-Essen

Software Systems Engineering
Schützenbahn 70

45117 Essen, Germany
andreas.metzger@sse.uni-due.de

Klaus Pohl
University of Duisburg-Essen

Software Systems Engineering
Schützenbahn 70

45117 Essen, Germany
klaus.pohl@sse.uni-due.de

ABSTRACT
In practice, available testing budgets limit the number of test cases
that can be executed. Thus, a representative subset of all possible
test cases must be chosen to guarantee adequate coverage of a test
object. In risk-based testing, the probability of a fault and the
damage that this fault can cause when leading to a failure is
considered for test case prioritization. Existing approaches for risk-
based testing provide guidelines for deriving test cases. However,
those guidelines lack the level of detail and precision needed for
automation. In this contribution, we introduce the risk-based testing
technique RiteDAP, which automatically generates system test
cases from activity diagrams and prioritizes those test cases based
on risk. The results of applying the technique to a practical example
are presented and the ability of different prioritization strategies to
uncover faults is evaluated.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Management, Measurement, Reliability, Verification

Keywords
Model-based Testing, Risk-based Testing, Test Case Generation

1. INTRODUCTION
Exhaustive testing is infeasible except for trivial cases. Thus, a
subset of all possible test cases is typically determined based one or
more coverage criteria. Examples for such criteria are statement
coverage, branch coverage (e.g., see [6]) or transition coverage (e.g.,
see [15]). Although applying those criteria leads to a tractable subset
of test cases, in practice, limited testing budgets can prevent some of
those test cases from being executed.

With risk-based testing, testers can face the challenge of reducing
the chances for the occurrence of faults that lead to high damage.
When determining the priority of test cases – and thus the order in
which to execute test cases – risk-based testing considers both the

damage that would be caused by faults as well as the probability
that those faults are contained in the test object. In general, the goal
of a risk-based testing strategy is “to find the most important defects
as early as possible against the lowest cost” [1]. Thus, even when
testing budgets run out, risk-based testing will have helped testers to
spend these budgets in an efficient way.

Existing approaches for risk-based testing suggest strategies for
prioritizing test cases, which either provide only rough guidelines
for actually deriving test cases, or assume that test cases already
exist (regression testing). In contrast to that, our RiteDAP technique,
which is presented in this contribution, allows for the automatic
derivation of system test cases from activity diagrams as well as
their prioritization based on risk.

2. RELATED WORK
Bach [3] proposes different heuristics to assess risks and suggests
taking the identified risks into account during the testing process.
However, no indication is given on how to actually derive test cases.
Van der Aalst [1] resp. Amland [2] propose calculating a risk score
resp. risk exposure for each module based on the chance of failure
and damage. Based on the result, tests are derived and executed.
Yet, how to derive test cases is not covered by the approaches.
Pinkster et al. [17] associate risks with a priority regarding testing.
Then, test cases are derived and executed for modules which
achieve the highest priority. However, no detailed technique for
how to derive test cases according to prioritization of risks is
presented. Chen & Probert [10] and Srikanth et al. [21, 22] suggest
risk-based regression test case prioritization approaches.
Furthermore, Elbaum et al. [13] present a prioritization technique
for regression testing that has similarities to risk-based testing,
because fault severity is considered. Obviously, the initial derivation
of test cases is not covered by these regression testing approaches.

In addition, the following related non-risk-based approaches exist:
The CoWTeSt-approach [4] presented by Basanieri et al. assigns a
relative weight to different system functionalities. Although the
criteria, which are proposed for determining the weight, can have an
influence on risk, risk is not explicitly addressed. The Cow_Suite
approach [5] from the same authors combines CoWTeSt with Usage
Interaction Testing (UIT). The test model used in Cow_Suite does
not express risks which results in insufficient consideration of risks.
Statistical Usage Testing [24] allows deriving test cases according to
a usage profile. Although this approach employs usage probabilities,
which may influence risk, it does not comprehensively address
risks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AST’08, May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-030-2/08/05...$5.00.

67

3. APPROACH
We propose RiteDAP (Risk-based test case Derivation And
Prioritization) as a model-based approach to risk-based system
testing. RiteDAP uses test models, which are augmented with risk
information, for test case generation and prioritization.

3.1 Test Model Used for RiteDAP
RiteDAP uses activity diagrams (ADs) as test models. Such ADs
already exist as a result from requirements engineering, or they can
be specifically created for testing purposes. In this respect we follow
other authors who have successfully employed ADs for model-
based system testing (see [8, 9]) and build on our own positive
experience in applying ADs as test models (see [18, 19]).

In RiteDAP risks are determined by the function R(P, D) = P ⋅ D,
where P is the probability that an entity contains a fault and D is the
total damage caused by this fault (cf. [1, 2, 10, 20]). Many
researchers have addressed the problem of risk assessment using
guidelines, checklists, heuristics and risk criteria (e.g., see [1, 3,
17]). All these risk assessment approaches rely on experts that
perform the assessment. Other approaches enable automation in risk
assessment by employing metrics based on code artifacts (e.g., see
[7, 20]. In previous work, we have shown how to automatically
determine the probability of risks in the early stages of software
development by employing requirements metrics [23]. To allow for
risk-based prioritization, the test model has to be augmented with
risk information resulting from risk assessment. Figure 1 shows an
AD where the stereotype <<raAction>> is applied to actions that
have been augmented with risks.

<< raAction>>
1

<< raAction>>
2

<< raAction>>
3

<<raAction>>
{P=1; D=5; R=5}

<< raAction>>
4

<< raAction>>
5

<< raAction>>
6

<<raAction>>
{P=4; D=4; R=16}

<<raAction>>
{P=3; D=5; R=15}

D1

D2

D7

D4

D5

<< raAction>>
7

<< raAction>>
8

D6

D3

<<raAction>>
{P=2; D=2; R=4}

<<raAction>>
{P=2; D=1; R=2}

<<raAction>>
{P=5; D=2; R=10}

<<raAction>>
{P=2; D=4; R=8}

a

b
gc

d

p

i

kj
o t

n

q

e

s

f

h

l

<<raAction>>
{P=2; D=3; R=6}

m

r

Figure 1. Sample test model augmented with risk information

3.2 Activities of RiteDAP
RiteDAP consists of two main activities. First, a set of unordered
test case scenarios is derived from the test model. After that, the test
case scenarios are ordered based on the risk information in the test
model. This separation of concerns between the two activities
enables us to use existing non-risk-based techniques for generating a
potential set of test cases and then choosing different risk-based
prioritization strategies for ordering the test cases.

Deriving potential test case scenarios: RiteDAP does not directly
generate test cases but generates test case scenarios (TCSs), which
abstract from concrete test data and represent a path through the test
model. TCSs provide the starting point for defining concrete test
cases by augmenting the TCSs with concrete test data. Test data can
be either determined manually by the testers or automatically, if the
test model is detailed enough (e.g., see [11, 14]). In RiteDAP
possible TCSs are derived with the boundary interior criterion. The
boundary interior criterion subsumes transition coverage which is a
typical criterion for non-risk-based approaches [15]. The criterion
produces a sufficient and manageable number of TCSs that can be
used as input for the prioritization. It requires that across the set of
TCSs the following three requirements are met: 1) the body of each
loop is not executed, 2) the body of each loop is executed once, and
3) the body of each loop is executed more than once. The TCSs
generated by RiteDAP will execute a loop twice to satisfy the third
requirement. In order to derive possible TCSs, we use the node
reduction algorithm [6] as a starting point. Applying this algorithm
together with the boundary interior criterion to the sample test
model in Figure 1 leads to the TCSs listed in Table 1.

Prioritizing and ordering test case scenarios: To derive the
execution order for the TCSs, their priority is determined. For each
TCS the sum of the risks of all actions that are covered by the TCS
is calculated. For this step of the approach we follow the solution
that has been chosen in [10, 21, 22]. Table 1 shows the derived
TCSs together with the sum of the risks.

Table 1. Possible test case scenarios and associated risks
TCS Path ∑ Risk
S1 abghklmnopef 17
S2 abghklmntlmnopqrsf 41
S3 abghijpef 27
S4 abghijpqrsf 45
S5 abcdef 19
S6 abcdqrsf 38
S7 abghklmntlmntlmnopef 29

To derive an ordering of TCSs, two different risk-based
prioritization strategies have been implemented in RiteDAP:

– Total Risk Score Prioritization (TRSP): This prioritization has
been presented in [21, 22]. TCSs are scheduled in the
descending order of their associated risks. This results in a TCS
order S4, S2, S6, S7, S3, S5, S1 for the example.

– Additional Risk Score Prioritization (ARSP): In this
prioritization (see [10]), the first TCS is chosen according to the
total risk score. Then, only risks not already covered by a
selected TCS are taken into account for further prioritization. In
the example, S4 is chosen first. After that, S7 with an additional
risk score of 18 has the highest score and thus S7 is chosen next.
Now, S5 and S6 both have an additional risk score of 15,
whereas all others are tied with a score of 0. Whenever two or
more TCSs have the same score, one of those TCSs can be
selected by another strategy, e.g. randomly. After selecting e.g.
S5, no TCS provides additional risk coverage.

4. VALIDATION
The basis for the validation of RiteDAP is the hypothesis that
prioritizing test case scenarios according to a risk-based strategy can
uncover critical faults earlier than existing prioritization strategies
that do not explicitly consider risk; especially, when the testing

68

resources are limited. To support this hypothesis, we have carried
out a case study, based on a practical example.

4.1 Validation Approach
To evaluate the effectiveness of RiteDAP, we use the following
non-risk-based prioritization strategies as a baseline:

– Random Prioritization (RP): RP is achieved when TCSs are
chosen randomly from the set of generated TCSs.

– Optimal Prioritization (OP): OP can only be determined in
retrospective when all faults that are uncovered using the initial
TCS set and possibly additional (manual) inspections of the test
object have been performed. OP can be seen as an upper bound
for prioritization strategies (cf. [12]).

– Total Action Coverage Prioritization (TACP): We use total
coverage prioritization based on the achieved coverage of
actions in the activity diagram. It can be compared to the
functional coverage described in [12]. TCSs are ordered with
respect to the number of actions they cover. A possible TCS
order according to TACP is S7, S2, S4, S1, S6, S3, S5.

– Additional Action Coverage Prioritization (AACP): This
strategy prioritizes TCSs with respect to the number of
previously uncovered actions. Thus, S7 or S2 is the first TCS to
be used. After selection of e.g. S7, each action covered is
marked and not further taken into account. Therefore, S4 or S6
is chosen next (they both cover 3 new actions). A possible TCS
order according to AACP is S7, S6, S4, S5, S3, S2, S1.

To measure the effectiveness of the different prioritization strategies
we introduce the metric Average Percentage of Damage Prevented
(APDP) which corresponds to the APFDC metric presented in [13].
In contrast to APFDC the APDP is adapted for a risk-based
approach and we abstract from varying test costs. Damage takes the
role that fault severities have in APFDC.

In the style of [13], the APDP metric can quantitatively be described
as follows. Let T be a test suite containing n test case scenarios. Let
F be a set of m faults revealed by T, and let d1, d2, …, dm be the
damages caused by those faults. Let TFi be the number of the first
test case scenario in an ordering T’ of T that reveals fault i. The
weighted average percentage of damage prevented during the
execution of T’ is defined as follows:

∑ =⋅∑ = ⎟
⎠
⎞

⎜
⎝
⎛ +−⋅= m

i idnm
ii iTFnidAPDP 12

1

To evaluate prioritization strategies, the damage associated with a
detected fault must be estimated. We do this based on the damage
estimation assigned to an action during risk assessment (i.e., we use
the value D which is a parameter of the risk function, cf. Section
3.1). Whenever a fault in an action (more precisely, in the
implementation of that action) is discovered, we assume a prevented
damage that is the same as the damage that has been assigned to the
action during risk assessment. If there is a more complex
relationship between faults and their severity and this relationship is
essential to be considered during testing, the actions in the activity
diagram should be refined and annotated with more precise risk
(including damage) information.

4.2 Case Study
To validate our approach, we have implemented the RiteDAP
technique in a prototype tool and applied it to a practical example.
The German Federal Ministry of Finance annually publishes a
program flow chart defining how to calculate the income tax for the
upcoming fiscal year. Software companies use this flow chart to
implement income tax calculation software. Thus, the program flow
chart of the income tax calculation is widely used and provides a
realistic basis for our validation.

Augmenting the activities of the test model with risk information is
a first step in achieving our validation example. Since in RiteDAP
risk is quantified by the function R(P, D) = P ⋅ D, values for P and
D have to be determined for each activity. We draw on income tax
statistics to collect these values. The probability P that an action will
lead to a failure is, among others, determined by the usage
frequency of that action (cf. e.g. [1, 2, 3, 16]). The usage frequency
of an activity can be calculated with respect to the number of tax-
payers that are affected by that action. As an example, two million
of the overall 25.7 million taxpayers in Germany have profited by a
specific tax exemption in 2001. The total damage D caused by a
fault in such an activity thus strongly depends on the resulting
financial losses for the tax payers (cf. e.g. [1, 16]). The average
financial loss for a tax payer can be estimated by relating each
activity to the number of tax payers affected by that activity and the
amount of taxes calculated by that activity. The resulting activity
diagram for the fiscal year 2002 contains 17 activities and 5
decisions.

The final step to achieve a complete validation example is to
identify actual faults and to determine which activities of the test
model are affected by those faults. Software products that
implemented the program flow chart for the income tax calculation
provide a crucial source of realistic faults. Based on the fault data of
those software products, four of the reported faults could be related
to specific activities in the test model.

4.3 Results
The ADAP values of the non-risk-based strategies are listed in
Table 2. For random prioritization and in cases where a choice
between several test case scenarios was necessary, the results of the
best and the worst choice are shown.

Table 2. ADAP values with non-risk-based prioritization
ADAP value Non-risk-based

prioritization strategy worst
choice

best
choice

random
choice

Random (RP) 0.670 0.994 0.954
Optimal (OP) - - 0.994
Total Action Coverage (TACP) 0.957 0.986 0.979
Additional Action Coverage (AACP) 0.986 0.992 0.988

For the validation example, 80 TCSs have been generated. With
total risk score prioritization (TRSP) all faults have been identified
after the first 8 TCSs. The corresponding APDP value is 0.981.
Additional risk score prioritization (ARSP) achieves a better ADAP
value of 0.988, because all faults are already detected after 4 TCSs.

The ADAP values of the prioritization strategies investigated in this
case study indicate that risk-based approaches provide early fault
detection and thus effective damage prevention. Whereas optimal
prioritization (which is not applicable in practice) has reached a

69

higher ADAP value, the ADAP value of random prioritization was
considerably lower (in the worst case, the ADAP value for RP could
be 0.67).

The ADAP value of total action coverage prioritization (TACP) is
lower than the risk-based alternative of total risk score prioritization
(TRSP). For the random choice, TACP and TRSP are exceeded by
additional action coverage prioritization (AACP) and additional risk
score prioritization (ARSP), which both have an ADAP value of
0.988. However, where, in our validation example, AACP relies on
choices to be taken, the ARSP was independent of such a choice.
This means that when the wrong choices are taken in AACP, ARSP
(the risk-based strategy) will outperform AACP (the non-risk-based
strategy), because ARSP always has an ADAP value of 0.988.

5. CONCLUSION AND PERSPECTIVES
In this paper, we have presented RiteDAP, a model-based technique
for risk-based system testing. RiteDAP automatically generates and
prioritizes system test cases by employing test models that have
been augmented with information about risks. RiteDAP has been
implemented in a prototype tool, which has been applied to a
practical example. The results of the validation of RiteDAP have
shown that generating and prioritizing test case scenarios based on
augmented test models enable the early detection of critical faults
during the development process.

We are aware that the presented results are only a first evidence of
the efficiency of our approach. Therefore, based on the presented
validation approach, we plan to perform additional case studies and
experiments within the German research project ranTEST, which
involves industrial partners from rail automation and financial
information and portfolio management. Our future work also
includes investigating additional methods of calculating risk values
for the test case scenarios that go beyond summing the risks of all
actions that are covered by a scenario.

6. ACKNOWLEDGMENTS
The authors thank Thomas Rinke and Dennis Chotsko for their
valuable contribution to the RiteDAP technique. We thank the
anonymous reviewers for their helpful comments. The research
presented was partially funded by the German Federal Ministry of
Education and Research under grant 01 IS E09 B (ranTEST).

7. REFERENCES
[1] van der Aalst, L. 2006. Risk Based Test Strategy Judged. 7th

ICSTEST, Düsseldorf, Germany, May 2006.
[2] Amland, S. 2000. Risk-based testing: Risk analysis

fundamentals and metrics for software testing including a
financial application case study. JSS 53(3), Sept 2000.

[3] Bach, J. 1999. Heuristic Risk-Based Testing. STQE Magazine
1(6), Nov 1999.

[4] Basanieri, F.; Bertolino, A.; Machetti, E. 2001. CoWTeSt: A
Cost Weighted Test Strategy. Escom-Scope 2001, London,
England, Apr 2001, pp. 387-396.

[5] Basanieri, F.; Bertolino, A.; Machetti, E. 2002. The Cow_
Suite Approach to Planning and Deriving Test Suites in UML
Projects. 5th UML, Dresden, Germany, Sept/Oct 2002.

[6] Beizer, B. 1990. Software Testing Techniques. Van Nostrand
Reinhold, New York, NY, 1990.

[7] Benlarbi, S.; El Emam, K.; Goel, N. 1999. Issues in Validating
Object-Oriented Metrics for Early Risk Prediction. 10th ISSRE,
Boca Raton, FL, USA, Nov 1999.

[8] Briand, L.C. Labiche, Y 2001. A UML-Based Approach to
System Testing. 4th UML, Toronto, Canada, Oct 2001.

[9] Chen, M.; Qiu, X.; Li, X. 2007. Automatic Test Case
Generation for UML Activity Diagrams. 1st AST, Shanghai,
China, May 2006.

[10] Chen, Y.; Probert, R. L. 2003. A Risk-based Regression Test
Selection Strategy. 14th ISSRE, Denver, USA, Nov 2003.

[11] Edvardsson, J. 1999. A survey on automatic test data
generation. 2nd ECSEL, Linköping, Sweden, Oct 1999.

[12] Elbaum, S.; Malishevsky, A.; Rothermel, G. 2000. Prioritizing
Test Cases for Regression Testing. Technical Report 00-60-03,
Oregon State University, Feb 2000.

[13] Elbaum, S.; Malishevsky, A.; Rothermel, G. 2001. Incorp-
orating Varying Test Costs and Fault Severities into Test Case
Prioritization. 23rd ICSE, Toronto, Canada, May 2001.

[14] Ferguson, R.; Korel, B. 1996. The chaining approach for
software test data generation. ACM TOSEM 5(1), Jan 1996.

[15] Offutt, A.J.; Xiong, Y.; Liu, S. 1999. Criteria for generating
specification-based tests. 5th ICECCS, Las Vegas, NV, USA,
Oct 1999, pp. 119-129.

[16] Ottevanger, I. 1999. A Risk-Based Test Strategy. STARWest,
San Jose, CA, USA, Oct 1999.

[17] Pinkster, I.; van de Burgt, B.; Janssen, D.; van Veenendaal, E.
2004. Successful Test Management – An Integral Approach.
Springer, Berlin, 2004.

[18] Reis, S.; Metzger, A.; Pohl, K. 2007. Integration Testing in
Software Product Line Engineering: A Model-Based
Technique. 10th FASE, Braga, Portugal, Mar/Apr 2007.

[19] Reuys, A.; Kamsties, E.; Pohl, K.; Reis, S. 2005. Model-Based
System Testing of Software Product Families. 17th CAiSE,
Porto, Portugal, June 2005.

[20] Rosenberg, L.H.; Stapko, R.; Gallo, A. 1999. Risk-based
Object Oriented Testing. 24th SWE, NASA, Greenbelt, MD,
USA, Dec 1999.

[21] Srikanth, H.; Williams, L. 2005. On the economics of
requirements-based test case prioritization. 7th EDSER,
Shanghai, China, May 2005.

[22] Srikanth, H. 2005. Value-Driven System Level Test Case
Prioritization. North Carolina State University, 2005.

[23] Stallbaum, H.; Metzger, A. 2007. Employing Requirements
Metrics for Automating Early Risk Assessment. 1st MeReP,
Palma, Spain, Nov 2007.

[24] Walton, G. H.; Poore, J. H.; Trammell, C. J. 1995. Statistical
Testing of Software Based on a Usage Model. SPE 25(1), Jan
1995, pp. 97-108.

70

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

