
Expert Systems with Applications 40 (2013) 4887–4896
Contents lists available at SciVerse ScienceDi rect

Expert Systems with Applic ations

journal homepage: www.elsevier .com/locate /eswa
Search based constrained test case selection using execution effort

Luciano S. de Souza a, Ricardo B.C. Prudêncio a,⇑, Flavia de A. Barros a, Eduardo H. da S. Aranha b

a Center of Informatics (CIn), Federal University of Pernambuco, Recife – PE, Brazil
b Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal – RN, Brazil

a r t i c l e i n f o
Keywords:
Search Based Test Case Selection
Software Testing
Execution effort
Search based software engineering
0957-4174/$ - see front matter � 2013 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.eswa.2013.02.018

⇑ Corresponding author.
E-mail addresses: lss2@cin.ufpe.br (L.S. de

(R.B.C. Prudêncio), fab@cin.ufpe.br (F.d.A. Barros), e
(E.H.d.S. Aranha).
a b s t r a c t

Software testing is essential to guarantee high quality products. However, it is a very expens ive activity,
particularly when manually performed. One way to cut down costs is by reducing the input test suites,
which are usually large in order to fully satisfy the test goals. Yet, since large test suites usually contain
redundancies (i.e., two or more test cases (TC) covering the same requirement/piece of code), it is possible
to reduce them in order to respect time/people constraints without seve rely compromising coverage. In
this light, we formulated the TC selection problem as a constrained search based optimization task, using
requirements coverage as the fitness function to be maximized (quality of the resultant suite), and the
execution effort (time) of the selected TCs as a constraint in the search process. Our work is based on
the Particle Swarm Optim ization (PSO) algorithm, which is simple and efficient when compared to other
widespread search techniques. Despite that, besides our previous works, we did not find any other pro-
posals using PSO for TC selection, neither we found solutions treating this task as a constrained optimi-
zation problem. We implemented a Binary Constrained PSO (BCPSO) for functional TC selection, and two
hybrid algorithms integrating BCPSO with local search mechanisms, in order to refine the solutions pro-
vided by BCPSO. These algorithms were eval uated using two different real-world test suites of functional
TCs related to the mobile devices domain. In the performed experiments, the BCPSO obtained promising
results for the optimization tasks considered. Also, the hybrid algorithms obtained statistically better
results than the individual search techniques.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The demand for high quality products has imposed a growing
emphasis on testing activities in the software developmen t process
(Beizer, 1990). However, Software Testing is a very expensive
activity, sometimes reaching 40% of the final developmen t cost
(Ramler & Wolfmaier, 2006). In this scenario, automation seems
to be the key solution for improvin g the efficiency and effective-
ness of the testing process.

We can identify in the related literature several techniques and
tools aimed at the (partial or total) automation of the testing tasks,
ranging from test generation to its automatic execution. Usually,
each technique/tool focuses on only one of the main software test-
ing approach es: either White Box (structural) or Black Box (func-
tional) testing. Regardless the approach , the testing process relies
on the (manual or automatic) generation and execution of a Test
Suite (TS). A TS comprises a set of Test Cases (TC), each one consist-
ll rights reserved.

Souza), rbcp@cin.ufpe.br
duardoaranha@dimap.ufrn.br
ing of a set of inputs/ac tions to test the software, execution pre-
condition s, and a pass/fail condition (expected results).

When analyzing the existing tools for automatic TC generation,
we observe that they usually deliver very large test suits, trying to
cover all possible scenarios (e.g. Borba, Torres, Marques, & Wetzel,
2007; Kissoum & Sahnoun, 2007). The aim is to provide a good cov-
erage of the adopted test adequacy criterion (e.g., code coverage,
requiremen ts coverage) in order to satisfy the test goal. Note that
manually created test suits may also be large, for the same reason
mentioned above.

Although it is desirable to fully satisfy the test goal, the exe-
cution of large suites is a very expensive task, demanding a great
deal of the available resources (time and people) (Harold, Gupta,
& Soffa, 1993). However, large test suites usually contain redun-
dancies regarding the adopted test adequacy criterion (i.e., two
or more TCs covering the same requiremen t/piece of code).
Therefore, it is possible to reduce the test suite in order to re-
spect time/people constrain ts, however without severely com-
promising coverage. The task of reducing a test suite based on
a given selection criterion is known as Test Case selection (Borba,
Cavalcan ti, Sampaio , & Woodcock, 2007). Notice that the test
selection criterion is dependent upon the adopted test adequacy
criterion.

http://dx.doi.org/10.1016/j.eswa.2013.02.018
mailto:lss2@cin.ufpe.br
mailto:rbcp@cin.ufpe.br
mailto:fab@cin.ufpe.br
mailto:eduardoaranha@dimap.ufrn.br
http://dx.doi.org/10.1016/j.eswa.2013.02.018
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

4888 L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896
In this light, our work investigated strategies to select an ade-
quate subset of a given test suite having as selection criterion the
functional requirements coverage (quality of the resultant suite),
and the execution effort (time/cost of the selected subset) as a
constraint.

TC selection is known to be a hard task, since there may be a
huge number of TC combinations to consider when searching for
an adequate TC subset. In this scenario, manual TC selection does
not seem to be a good choice. Besides being a slow process, manual
selection is usually an ad hoc process, relying too much on the test
engineer’s previous knowled ge. This way, it does not guarante e to
preserve coverage of the adopted test adequacy criterion (Cartaxo,
Machado, & Oliveira Neto, 2009). Thus, manual TC selection is gen-
erally adopted when there are no available tools to automaticall y
perform this task.

When analyzing the works on automatic TC selection , we iden-
tify different techniqu es for systematically performi ng this task.
First, we cite heuristic and greedy solutions (see Borba et al.,
2007; Chen & Lau, 1998; Cartaxo et al., 2009; Harold et al., 1993;
Lin & Huang, 2009), which provide potentially good TC subsets
regarding the coverage of the test adequacy criterion. However,
these non-optimizat ion strategies are not always applicabl e when
dealing with large test suites, since they are computati onally
expensive (Yoo & Harman, 2010; Lin & Huang, 2009).

A very promising approach to treat the TC selection problem re-
lies on the use of optimization search techniques (Barltrop, Clement,
Horvath, & Lee, 2010; Mansour & El-Fakih, 1999; Ma, Sheng, & Ye,
2005; Souza, Prudencio, & Barros, 2010; Yoo & Harman, 2007). The
aim here is to select a TC subset that optimizes a given objective
function (i.e., the given selection criterion). We highlight here the
work of Yoo and Harman (2010), Yoo and Harman (2007), which
uses Genetic Algorithm s for structural TC selection .

Our work formulated the TC selection problem as constrain ed
optimization task, where requiremen ts coverage is the fitness
function to be optimized , and the execution cost (time) of the se-
lected TCs is used as a explicit constrain t in the search process.
We investigated the use of Particle Swarm Optimization (PSO)
(Kennedy & Eberhart, 1995) algorithm for this problem. PSO is a
population-bas ed search algorithm inspired by the social behavior
of bird flocks.

PSO has shown to be a simple and efficient algorithm when
compared to other search techniques, including for instance the
widespread Genetic Algorithms (Hodgson, 2002; Eberhart & Shi,
1998). Despite that, besides our previous works (Souza et al.,
2010, Souza, Miranda, Prudencio, & Barros, 2011), we did not find
in the related literature any other work using PSO for TC selection.
Therefore, it is worthwh ile to further evaluate the use of PSO for
this task.

We impleme nted a Binary Constrain ed PSO (BCPSO) (Hu &
Eberhart, 2002; Kennedy & Eberhart, 1997) and two hybrid PSO
algorithms, which integrate BCPSO with local search mechanisms
to refine the solutions provided by the BCPSO. The proposed algo-
rithms were evaluated using two different real-world test suites of
functional TCs related to the mobile devices domain.1 The BCPSO-
FS hybrid algorithm obtained statistical ly better or at least equiva-
lent results than the individual search techniques.

In our preliminary work (Souza et al., 2010), we performed
some experime nts to evaluate the BCPSO for constrained TC selec-
tion, having obtained promising results. In the current paper, we
present the new developments of our research – in particular,
the hybrid algorithms -, a more detailed discussion of the con-
1 In order to allow the selection based on requirements coverage, each TC registers/
indicates the covered requirements.
ducted case studies, and the statistical analysis of the performed
experime nts.

As mentioned before, so far we did not find in the related liter-
ature any solution consideri ng requirements coverage as test selec-
tion criterion together with execution effort (cost) as an explicit
constrain t for functiona l test case selection. The previous works
of Elbaum, Malishevsky , and Rothermel (2001) and Walcott, Soffa,
Kapfhamm er, and Roos (2006)also combine cost constraints with
requiremen ts coverage, but they are used for structural test suite
prioritizati on, and the work of Yoo and Harman (2007) for struc-
tural test case selection .

In what follows, Section 2 briefly discusses strategies for Test
Case selection , and Section 3 brings a detailed presentation of
our proposed approach for this problem. Section 4 brings the
experime nts and obtained results. Finally, Section 5 presents some
conclusio ns and future work.
2. Strategies for Search Based Test Case Selection

As discussed before, although testing is central in the software
developmen t process, it is sometimes neglected due to its high
cost. A primary way to reduce software testing cost is by reducing
test suites.

Given an input test suit, Test Case selection aims to find a rele-
vant subset of TCs regarding some test adequacy criterion (such as
the amount of code or functional requiremen ts covered by the cho-
sen TC subset, for instance). Clearly, this task should not be per-
formed at random, since a random choice not always returns a
representat ive TC subset.

A very promising approach for TC selection is to treat this task
as a search optimization problem (Yoo & Harman, 2010). In this ap-
proach, search techniques explore the space of possible solutions
(subsets of TCs), seeking the solution that best matches the test
objectives .

When analyzing which search based approach to use, we ini-
tially disregard the exhaustive (brute-force) search techniqu es,
since we are facing an NP-compl ete problem (Lin & Huang,
2009). We also disregard random search since, when dealing with
large search spaces, random choices seldom deliver a representa-
tive TC subset regarding the adopted test adequacy criterion. In
this scenario, more sophisticated approach es, as search based opti-
mization techniques, should be considered to treat this problem.

As known, optimization techniques in general demand the use
of one or more fitness functions, which will determine the quality
of each possible solution (a TC subset) regarding some chosen
search criterion. Each fitness function corresponds to a different
search objective.

Regarding single-objecti ve search techniques applied to test
case selection, we highlight the use of Simulate d Annealin g (Man-
sour & El-Fakih, 1999), conventional Genetic Algorithms (Ma et al.,
2005; Mansour & El-Fakih, 1999) and PSO (Souza et al., 2010).
Regarding multi-objective techniques, we highlight (Souza et al.,
2011; Yoo & Harman, 2010, 2007).

Regardles s the technique to use in the selection process, before
defining the search objectives, it is necessar y to formulate the
selection problem considering the chosen test adequacy criterion,
which depends on the type of test being performed – whether
functiona l or structural. Structural testing relies on the code struc-
ture to derive test cases, which are used to monitor the software
behavior during implementation time. On the other hand, func-
tional testing relies on (natural language or formal) specifications
of the software, aiming to investigate the behavior of the imple-
mented SW functiona lities.

For structural testing, the most usual adequacy criterion is code
coverage , which considers the amount of pieces of program code

L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896 4889
(e.g., blocks, statements , decisions) exercised by selected TCs (Har-
old et al., 1993). On the other hand, functional TC selection usually
adopts as selection criterion the amount of functiona l require-
ments covered by the TC suites (Borba et al., 2007; Souza et al.,
2011).

Besides the test adequacy criterion, another issue to be consid-
ered in TC selection is the existence of constrain ts that must be ob-
served. For instance, in some software testing environments , the
test engineers have a restricted time to (manually) execute the test
suits. In such cases, it is necessar y to incorporate these restrictions
as a constraint in the formulation of the search problem. This way,
the ordinary search problem becomes a constrained search prob-
lem, and the techniques to be used must be able to account for this.

Among existing testing constraints, we highlight the cost (ef-
fort) to execute a TC suit, so that it fits within the available time
for testing the product. Despite its importance , this constraint
has been neglected by researche s in the field, mainly due to the dif-
ficulties to previously estimate the cost of manually performing
each TC in the input suite (Aranha & Borba, 2007). In fact, few
works have taken this into account, i.e., have used this measure
for TC selection (Malishevsky, Ruthruff, Rothermel, & Elbaum,
2006; Souza et al., 2010, 2011; Yoo & Harman, 2007, 2010).

As said, the work presente d here investigates the use of TC exe-
cution effort as an explicit constraint in the search process, in order
to deliver functional TC subsets respecting the available execution
time. Here, we use the Test Execution Effort Estimation Tool (Aranha
& Borba, 2008) to estimate the time (cost) for manually executing
each test case in the input suites before starting the search process
(see Section 4.1.1).

Following, Section 3 presents details of our approach for test
case selection, and Section 4 brings the experiments performed
to evaluate the proposed algorithms.
3. Constrained TC selection based on optimizati on search
techniques

As said, TC selection has been treated by several authors as an
optimization task in which a chosen testing criterion has to be
optimized. Besides, there are constraints on the testing process to
be considered (e.g., the effort to execute the test cases).

In our work, we formulated the TC selection problem as a con-
strained optimizati on task in which functiona l requirements cov-
erage is the fitness function to be optimized, and the execution
effort of the selected TCs is used as a constrain t in the search
process.

Few works that deploy search techniques to TC selection con-
sidered the execution cost of the selected TCs. This is mainly due
the difficulty of estimating execution effort for functional test
cases. Also, these works do not treat cost constraints in an explicit
and systematic way. Yet, besides our previous work (Souza et al.,
2010), we did not find any other work on cost-constra ined TC
selection in the context of functional software testing, as said in
Section 1. Hence, we believe that our research work is an original
contribution to the area.

We implemented a number of different algorithms for con-
strained TC selection , including global, local and hybrid search
techniques. More specifically, we highlight the use of Particle
Swarm Optimiza tion (PSO) (Kennedy & Eberhart, 1995), a global
optimization technique which has been poorly investigated in
the context of TC selection.

This section is dedicated to present our work in detail. Initially,
we have a brief overview of the develope d work, including some
background information on the PSO algorithm (Section 3.1). Fol-
lowing, Section 3.2 shows the problem formulation in the light of
the search optimizati on approach. Then, Sections 3.3, 3.4, 3.5, 3.6
present the different search techniques investigated here, in order
to compare results.

3.1. Overview of the developed work

As said, in this work we investigate the use of PSO applied to the
problem of TC selection . PSO has shown to be a simple and efficient
algorithm when compared to other search techniques, including
for instance the widespread Genetic Algorithms (Eberhart & Shi,
1998; Hodgson, 2002).

We can point out some applications of PSO in Software Testing,
particular ly for test case generation (Windisch, Wappler, &
Wegener , 2007) and regression testing (Kaur & Bhatt, 2011). How-
ever, to the best of our knowled ge, our previous works (Souza et al.,
2010, 2011) are the only ones using PSO for TC selection.

The PSO algorithm is a population-bas ed search technique in-
spired by the bird flocks. The basic PSO algorithm initially defines
a random population of particles, each one having a position in the
search space and a velocity. The position codifies a candidat e solu-
tion for the problem being solved, and the velocity indicates the
direction of the search performed by the particle. The particles
are evaluated by a fitness function to be optimized . For a parameter-
ized number of iteration s, the particles fly through the search
space, being influenced by each one’s own experience and by the
experience of their neighbors. Particles change position and veloc-
ity continuously, aiming to reach a better position. The algorithm
stops when a stopping criterion is reached (usually, a predefined
number of iteration s or number of fitness evaluations).

We implemented seven different algorithms for TC selection , in
order to compare results. Initially, we developed a Binary Con-
strained PSO (BCPSO) by merging two versions of PSO (see Sec-
tion 3.3): (1) the binary version of PSO proposed in Kennedy and
Eberhart (1997), since the TC selection problem under consider-
ation has a binary search space; and (2) the PSO version which
deals with constrain ed problems, proposed in Hu and Eberhart
(2002). Following, three local search algorithms were develope d:
Forward Selection, Backward Elimination and the Hill-Clim bing
algorithms.

Finally, hybrid implementati ons of BCPSO were developed by
combinin g it with local search algorithms (namely, the Forward
Selection and the Hill-Climbing algorithms). The aim was to verify
whether some improvement in PSO performanc e could be obtained
by using a local search mechanis m for each particle (see Sec-
tion 3.5). In different optimization contexts, the combinati on of
global and local techniqu es has shown performanc e gains when
compare d to its individual components (Lvbjerg, Rasmussen, &
Krink, 2001 and Juang, 2004).

The develope d algorithms were evaluated in an experiment
with two case studies using real functional test suites (Section 4).
In the experiments, the Tukey HSD multiple comparison analysis
(Tukey, 1949) was applied to verify statistical differenc es among
the impleme nted search techniques.

As said, the work presented here extends our previous work
(Souza et al., 2010) with new implementations , putting emphasis
on the hybrid algorithms , the statistical analysis of the performed
experime nts and a more detailed discussion of our case studies.
The remaining of this section presents how the Test Case selection
problem was formulat ed, and details of the implemented solutions.

3.2. Problem formulation

In this section, we show how the TC selection task was formu-
lated as a search (optimization) problem in our work. The follow-
ing formulation was used in all the implemented techniques.

Given a test suite T = {T1, . . . ,Tn} of n test cases, a candidate (sub-
set) solution is represented as a binary vector t = (t1, . . . , tn), in

2 By followi ng the nomenclature of the feature selection area (see Kohavi & John,
1997), we referred the implemented techniques as Forward Selection and Backward
Elimination.

4890 L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896
which tj 2 {0,1} indicates the presence (1) or absence (0) of the test
case Tj among the subset of selected TCs.

The fitness (quality) of a solution is measured as the percentage
of requiremen ts covered by it. Formally, let R = {R1, . . . ,Rk} be a gi-
ven set of k requirements. Let F(Tj) be a function that returns the
subset of requiremen ts in R covered by the individual test case
Tj. Then, the fitness function of a solution represented by t is given
by:

FitnessðtÞ ¼ 100 �

[
tj¼1

fFðTjÞg

������
������

k
ð1Þ

In Eq. (1),
S

tj¼1fFðTjÞg is the union of requireme nts subsets covered
by the selected test cases (i.e., Tj for which tj = 1).

As said, the execution effort of the selected TCs is used as a con-
straint in the search process. Formally, each test case Tj 2 T has a
cost score cj. The total cost of a solution t is then defined as:

CostðtÞ ¼
X
j;tj¼1

cj ð2Þ

In our work, the cost cj was compute d for each test case by using the
Test Execution Effort Estimation Tool developed by Aranha and
Borba (2008) (see Section 4.1.1 for details).

Finally, we formulated the search (optimization) problem as
follows:

maximize : FitnessðtÞ ð3Þ
subject to : CostðtÞ < h ð4Þ

In Eq. (3), h is a threshold execution time given by the user, which
reflects the search constraint (i.e., the maximum amount of time
available to perform the Software Testing).

3.3. The binary constrained PSO

The impleme nted Binary Constrained PSO (BCPSO) algorithm
was developed by merging the binary PSO of Kennedy and Eberhart
(1997) and the constrained PSO of Hu and Eberhart (2002). As seen
above, each particle in the PSO algorithm has a position in the
search space and a velocity. Each particle explores the search space
by updating its position accordin g to a velocity vector v = (v1, . . . ,vn),
which indicates the direction of the search performed by the par-
ticle. The velocity vector is updated at each PSO iteration using
the following equation:

v ¼ xv þ C1r1ðt̂� tÞ þ C2r2ðĝ� tÞ ð5Þ

In Eq. (5), t̂ indicate s the best position achieved by the particle, and
ĝ is the best position achieved by its neighbor s. r1 and r2 are random
values in the interv al [0,1]. C1 and C2 are the accelerat ion consta nts.
The first term of the right side expression represents the inertia fac-
tor, the second term represents the cognitive component of the
search (own experience), and the third term represents the social
component of the search (neighborhood experien ce).

Hence, each particle progressive ly changes its direction towards
the best global positions achieved by the neighborhood and the
best local positions obtained by the particle itself.

The parameters x, C1 and C2 control the trade-off between the
cognitive and the social behavior of the particles. In our work, x
linearly decreases from 0.9 to 0.4, and C1 = C2 = 2 (as suggested
by Shi & Eberhart (1998)).

Finally, in order to define neighborho od, the particles in the PSO
algorithm are organized in a particular chosen topology that indi-
cates their social structure. In our implementation, we adopted the
ring topology (a widespread PSO topology), in a way that the
neighborho od of a particle consists solely of its predecessor and
its successo r in the topology.

In PSO, the particle position is updated according to its velocity.
In BCPSO, the update of the particle positions used the same oper-
ations originally proposed in the binary PSO (Kennedy & Eberhart,
1997). First, the sigmoid function is used to normalize the velocity
values within the interval [0,1] as follows:

sigðv jÞ ¼
1

1þ e�v j
ð6Þ

Finally , the new particle position is updated as follows:

tj ¼
1; if rj 6 sigðv jÞ
0; otherwise

�
ð7Þ

In Eq. (7), rj is a random number sampled from the interv al [0,1].
This equation was proposed by Kennedy and Eberhart (1997) in or-
der to certify that the new positions are still binary vectors. The po-
sition value tj tends to 1 when the velocity assumes higher values
(closer to 1). In its turn, tj tends to 0 for lower values of velocity
(vj close to 0).

In the constrain ed PSO proposed by Kennedy and Eberhart
(1997), when a particle violates the constraint (i.e., when it repre-
sents an infeasible solution), its fitness is penalized. The fitness
function penalization was defined in our work by Eq. (8):

FitnessPenaltyðtÞ ¼ FitnessðtÞ � 100 ð8Þ

Whene ver a solution violates the problem constra int, the fitness
values initiall y computed using Eq. (1) are replaced by the values
compute d by the penalized function in Eq. (8), assuming non-pos i-
tive values.

As it can be observed in Section 4 (Experiments and Results),
the BCPSO delivered good results when applied to the TC selection
problem. The following section presents the local search tech-
niques which were impleme nted as a basis of comparis on.

3.4. Local search

In our work, we also investiga ted some well known local search
algorithms , aiming to create hybrid algorithms by combining local
search with our global search BCPSO algorithm (see Section 3.3).
This section presents three local search algorithms adapted to
the TC selection problem.

Briefly speaking, local search algorithms choose, at each step,
the locally best node (which yields the best fitness) aiming to find
the best solution to the problem. The local search algorithms used
in our work are the Hill Climbing, the Forward Selection and the
Backward Elimination algorithms.2

3.4.1. Forward selection
According to Webb (2002), the Forward Selection (FS) tech-

nique, also known as Sequential Forward Selection, is a bottom-
up search procedure which builds a solution by iteratively adding
new nodes to an initially empty set, until a stopping criteria is
reached. The current solution is then returned as the solution for
the search process.

In our work, the solution is represented by a binary vector t. The
algorithm starts with an empty solution (i.e., with all tj = 0), and
then performs several iteration s, each one potential ly producing
a new better solution, until the adopted stopping criterion (defined
below) is reached.

At each iteration, the algorithm receives as input the current
solution, and produces new candidate solutions that are evaluated

Fig. 1. Search process of Forward Selection .

L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896 4891
based on the adopted fitness function, also considering the cost
constraint. Each candidate solution is produced by including one
different test case in the current solution. This way, for a vector
solution of size n, each iteration may produce a maximum of n can-
didate solutions.

The best candidat e solution in one iteration becomes the cur-
rent solution, and is used as input by the next iteration until the
overall search process resumes (see Fig. 1).

More formally, new candidate solutions are produced as fol-
lows: for each test case tj not yet present in the current solution
t (i.e., for each tj = 0), a new candidate solution t

0
is produced by

setting tj 1. For each candidate solution, the fitness function Fit-
ness(t

0
) is computed. We also verify whether the candidat e solution

under analysis is feasible consideri ng the cost constraint (i.e.,
whether its cost is not higher than the threshold h). The feasible
candidate solution which yields the highest fitness value is then
adopted as the new current solution in the search process.

The algorithm stops (1) when no feasible solution is found at an
iteration, or (2) when all test cases have been already added to the
current solution. An example of this process is shown in Fig. 1.

The FS strategy is simpler to impleme nt and computational ly
faster than the BCPSO algorithm. In our experime nts, this tech-
nique obtained better results than the BCPSO in isolation. However ,
it was overcome by the hybrid BCPSO-FS algorithm (see Sections
3.5 and 4).

The main disadvantag e of this techniqu e is that it does not pro-
vide a mechanism for excluding a test case in the candidat e solu-
tion that was added to the solution set at a previous iteration.
Note that, in our context, further additions may turn a particular
test case unnecessary .3
3.4.2. Backward Eliminatio n
Backward Elimination (BE), or Sequential Backward Selection, is

the topdown analogy to forward selection (Webb, 2002).
Applied to our context, the BE algorithm starts with a complete

solution (i.e., with all tj = 1), and iteratively removes one test case
from the current solution until a stopping criterion is reached.

For each test case present in the current solution (i.e., for each
tj = 1), a candidate solution t

0
is produced by setting tj 0 in t.

The fitness function (Eq. (1)) is computed and the candidate solu-
tion which yields the highest value of fitness is considered as the
current solution for the next iteration .

This process is repeated until the first feasible solution is found.
Fig. 2 illustrates this process.

In the performed experime nts, both BE and FS delivered better
results than the BCPSO in isolation. However , BE is computation-
ally more expensive than FS, since the fitness function must be
3 See (Webb, 2002) for more details about this problem.
evaluated over larger sets of test cases (Webb, 2002). Yet, the BE
algorithm was also overcome by the hybrid BCPSO-FS (see
Section 4).

Finally, note that this algorithm does not aim to improve an al-
ready feasible solution. As said, it stops when the first feasible solu-
tion regarding cost constraint is generated. This way, it was not
worthy to implement a hybrid BCPSO-BE, since the number of
infeasible particles during the BCPSO search process is low.

3.4.3. Hill Climbing
The Hill Climbing (referred in this work as HC) is a simple iter-

ative local search algorithm that starts with a random solution to a
problem, and progressive ly tries to find better solutions by using a
local search operator . At each iteration, this algorithm generate s
candidat e solutions by performi ng small changes to the current
solution (these solutions are said to be the neighbors of the current
solution). The best candidate solution of one iteration becomes the
new current solution only if it yields a better fitness value than the
previous one. This process stops when no better neighbors to the
current solution can be found.

The HC algorithm starts with a random feasible solution t with
each tj randomly chosen (i.e., each tj receives 0 or 1 value with
the same probability). At each iteration, a set of n neighbors
S = s1, . . . ,sn are generated. Each neighbor is derived from the cur-
rent solution by inverting the value of a randomly chosen tj 2 t.
This operator performs local changes in the current solution t in
order to refine the search in the region being currently explored.
The solution t is updated as:

t ¼
ŝ if FitnessðŝÞ > FitnessðtÞ
t otherwise

�
ð9Þ

where ŝ is given by:

ŝ ¼ fmaxfFitnessðs1Þ; . . . ; FitnessðsnÞgjCostðsjÞ 6 hg ð10Þ

The algorithm stops when (1) ŝ ¼ Ø (i.e., no generated neighbor sat-
isfies the cost constrai nt defined by the user), or (2)
FitnessðŝÞ < FitnessðtÞ. The search process is then restarted with a
new random solution (see Russell & Norvig , 2009 for details). This
process is repeated until a maximum number of restarts is per-
formed. The final solution returne d by the algorithm is the best
solution of all random restarts.

In the performed experiments, the HC was overcome by all
other impleme nted algorithms. Nevertheles s, the hybrid BCPSO-
HC performed better than the BCPSO in isolation (see Section 4).

3.5. Hybrid algorithms

According to Chen, Qin, Liu, and Lu (2005), hybrid algorithms
combinin g global search with local search (also named Memetic

Fig. 2. Search process of Backward Elimination .

Table 1
Characteristics of the test suites.

Integration suite Regression suite

Total effort to execute all test cases 1053.91 min 699.31 min
of Requirements 410 248
Redundancy (%) 0.36 14.09
of Test Cases 80 80

4892 L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896
algorithms) have shown to be very successful in solving several
optimization problems .

In this light, we developed two PSO hybrid algorithms aiming to
verify whether some improvement in PSO performance could be
obtained by using a local search mechanism for each particle. We
developed (1) the BCPSO-FS, by combing the BCPSO with the For-
ward Selection algorithm; and (2) the BCPSO-HC, by using the Hill
Climbing algorithm as a local search mechanism.

The BCPSO-FS algorithm is similar to BSPSO, however , at each
BCPSO iteration , the FS algorithm is used as a local search mecha-
nism in order to refine each particle (solution). Each particle pro-
duced by a BCPSO iteration is given as an initial solution to the
FS, which refines it until the FS’ stopping criterion is reached. The
solutions optimized by FS algorithm are then used as the particles
population of the next BCPSO iteration. This way, this hybrid algo-
rithm alternates the use of BCPSO and FS during the search: BCPSO
performs a global exploration of the search space, whereas FS re-
fines the solutions provided by BCPSO by performing a local search.

Similarly to the BCPSO-FS algorithm, the BCPSO-HC uses the Hill
Climbing algorithm as the local mechanism, trying to refine each
particle (i.e., each solution). In this case, we do not use the random
restart when performing the HC because our aim here is just to re-
fine the current solution, and not to generate a completely new
particle.

Our experime nts indicated that the combination of the BCPSO
with FS and with HC mechanis ms indeed improved the quality of
the search results (see Section 4).

As said before, we did not impleme nt a hybrid BCPSO-BE be-
cause the BE algorithm can only improve infeasible solutions,
which are very reduced in the BCPSO search process.
3.6. Random approach

Finally, as a basis of comparis on, we also performed experi-
ments using a purely random search algorithm, which, despite its
simplicity, has the advantag e of performing a uniform exploration
of the search space, being very competitive in other contexts of
Software Testing (Takaki et al., 2010).

Basically, it operates by generating random solutions t and eval-
uating their fitness values. The algorithm returns the best feasible
solution among all generated ones. It is important to highlight that
sometimes the random algorithm does not generate any feasible
solution after all iteration s. In this case, we consider that no solu-
tion was returned by this algorithm.

All the algorithms presente d in this section were tested using
two real world functional test suites. As expected, the Random
algorithm was overcome by all other implemented algorithms in
this work.
4 These suites were created by test engineers of the Motorola CIn-BT C (Brazil Test
Center) research project.
4. Experiments and results

This section presents the experime nts performed in order to
evaluate the search algorithms implemented in this work. The
experiments were performed on a case study related to mobile de-
vices. Other case studies in different domains will be performed as
future work.
4.1. Experimen ts preparati on

Initially, we selected two test suites related to different features
in the context of mobile devices 4: an Integration Suite and a Regres-
sion Suite. Both suites have 80 TCs, each one representing an exhaus-
tive test case scenario (see Table 1). The Integrat ion Suite (which
covers 410 requiremen ts) is focused on testing whethe r the various
features of a mobile device can work togethe r, i.e., whether the inte-
gration of the features behaves as expected . The Regression Suite
(covering 248 require ments), in turn, is aimed at testing whethe r up-
dates to a specific main feature (e.g., the message feature) have not
introduc ed faults into the already developed (and previously tested)
feature functionalit ies.

Here, test cases are written in a controlled natural language , and
contain annotations which allow us to identify which require-
ments are covered by each test case.

Due to their nature, it is expected that the test suites used in our
experime nts are different regarding the redundancy in the require-
ments covered by their test cases. Here, we measure redundancy in
a test suite by averaging the Jaccard similarity (Eq. (11)) between
the sets of requiremen ts covered by each pair of TCs in the suite.
Given two test cases respectivel y covering the requiremen ts sets
A and B, the Jaccard measure is defined as:

JðA;BÞ ¼ jA \ Bj
jA [Bj ð11Þ

The above measure was averag ed over all pairs of TCs in each suite,
in order to indicate the amount of requireme nts simultan eously
covere d by different test cases in the suite. The results of this mea-
sure are presented in Table 1.

We can observe that the Integration Suite is less redundant (i.e.,
two distinct test cases rarely cover the same requiremen ts). Hence,
for this suite, it is expected to be more difficult to find a solution
(subset of test cases) with a good fitness evaluation, since in this
case it is more difficult to eliminate a test case without losing
coverage .

In the Regression Suite, in turn, each test case individually cov-
ers a higher number of requiremen ts. The higher level of redun-

Fig. 3. Integration suite-execution effort � Requirements.

Fig. 4. Regression suite-execution effort � Requirements.

Table 2
Mean fitness, standard deviation and ranking groups for integration suite.

Mean fitness Std. Deviation Ranking group

BCPSO-FS 71.8126 1.9362 1
FS 70.7783 1.3300 2
BCPSO-HC 70.6149 1.3674 2
BE 70.5721 1.1559 2
BCPSO 68.7574 1.5392 3
HC 67.2191 3.6401 4
Random 55.2375 7.1359 5

L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896 4893
dancy makes it easier to eliminate test cases in the Regressio n
Suite preserving good coverage .

It is important to highlight that the requiremen ts covered by
the suites have no overlap (i.e., the requiremen ts covered by the
Integration Suite are distinct from the requiremen ts covered by
the Regression Suite). Our aim here was to evaluate independen t
selection scenarios with different internal redundancie s to verify
the performanc e of the algorithms.

The used test suites are also different regarding their execution
effort. The effort to execute each test case was measured in our
work by the Test Execution Effort Estimation Tool, develope d by
Aranha and Borba (2008). The effort represents the cost (in time)
needed to manually execute each test case on a particular mobile
device. More details about this tool can be seen in Section 4.1.1.
Both suites have 80 test cases, however the Integration Suite is
more complex, since the total effort needed to execute its test cases
is higher when compared to the total effort associated to Regres-
sion Suite (see Table 1).

Finally, Figs. 3 and 4 show the relation between the number of
requiremen ts and the execution effort for each test case of each
suite. By inspecting these figures, it is not possible to verify a linear
relationship between number of requiremen ts and the execution
effort. In fact, the correlation coefficient values observed for each
suite (0.27 for the Integration Suite and 0.10 for the Regression
Suite) are relatively low.
5 The test execution complexity reflects the difficulty of interaction of the tester
with the product under test during test execution.
4.1.1. Test Execution Effort Estimation Tool
This section briefly presents the estimation model for test exe-

cution effort proposed by Aranha and Borba (2007), used in the
present work to compute the test suites execution time (which is
the constraint in our optimization search process). This model
was implemented in the Test Execution Effort Estimation Tool
(Aranha & Borba, 2008), and was evaluated through an empirical
study on the mobile phone application domain, having obtained
higher accuracy than estimation models based on historical test
productivity .

In this model, the execution effort of a test suite is computed
based on the estimated time spent to manually execute each of
its tests. The cost of executing each test is calculated based on its
specification -usually, a test specification includes pre-conditions ,
procedure (steps, inputs and expected outputs) and post-
conditions.

This model defines a measure of size and execution complexity
of a test case (its costs) in terms of Execution Points (EP) associated
to each of its step (as presente d below). The execution time of an
EP (in seconds) is given as an input parameter, and it may be cal-
culated based on historical data of test execution in a particular
application domain (see Aranha & Borba, 2008 for details).
The test size is given by the total amount of test steps – or test
actions (each action correspondi ng to one EP), whereas the test
execution complexity is calculated based on the estimated cost of
executing each functional (e.g., number of pressed keys and num-
ber of screen navigation) and non-functional (e.g., use of network)
feature appearing in the test steps.5 The cost of each feature will
correspon d to a certain number of EPs, and this amount may be ad-
justed by experts in testing, according to the test conditions and the
application domain (see Aranha & Borba, 2008 for details). Remind
that the value of the EP is given as a parameter, and may also be ad-
justed according to the application domain.

Finally, the cost (in terms of time) of a test suit is obtained by
summing up the total amount of EPs of its test cases – which rep-
resent the size and execution complexity of the whole test suite.
4.2. Experimen ts execution

Each impleme nted search techniqu e was executed in each test
suite, also varying the execution effort threshold. Each experiment
setting was replicated 30 times (in order to allow statistical com-
parison), thus yielding 7980 executions. The execution settings
are seen below:

� 2 test suites: Integration and Regression test suites;
� 7 search techniqu es: BCPSO, BCPSO-FS, BCPSO-HC, HC, FS, BE

and Random;
� 19 execution effort thresholds: varying from 5% to 95% of total

effort, with increments of 5%. Each value represents a boundary
(limit) which has to be attended by the subsets yielded by each
search techniqu e;
� 30 replications .

Table 3
Mean differences between techniques for integration suite.

Table 4
Mean fitness, standard deviation and ranking groups for regression suite.

Mean fitness Std. deviation Ranking group

BCPSO-FS 91.7409 4.1195 1
FS 91.4976 3.9220 1
BE 91.0349 3.4438 1
BCPSO-HC 90.7506 3.0293 1
BCPSO 89.2487 2.1378 2
HC 88.5781 4.5878 2
Random 74.3930 18.3534 3

4894 L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896
Depending on the search techniqu e, it was necessar y to define
some additional settings. As suggested in Shi and Eberhart
(1998), for PSO based techniques the additional settings were:

� Population size: 20
� Acceleration constants: 1.5
� Topology: Ring (lbest)
� Inertia Weight: linearly decreasing from 0.9 to 0.4

The Hill Climbing was implemented with random restart (see
Russell & Norvig, 2009). Finally, for all algorithms (when applica-
ble), the stop criterion was the maximum number of fitness evalu-
ations (FEs), here defined as 200,000 FEs. This number showed to
be big enough to allow the convergence of the techniques.

4.3. Results

In this section, we start by presenting the results for the Inte-
gration Suite, followed by the results achieved for the Regression
Suite. We highlight that all presented results were statistically
evaluated by using the Tukey HSD multiple comparis on test.6

4.3.1. Integration Suite Results
Table 2 shows the mean fitness (requirements coverage) and

standard deviation of each search technique for the Integration
Suite. The ranking groups identified by the Tukey HSD test are
shown. The techniques arranged in the same group obtained statis-
tically equivalent results (with a 95% level of confidence).

Additionally , the comparison between each individua l pair of
techniques can be seen in Table 3. The symbol * along the p-values
indicates that the mean difference is significant (with 95% of con-
6 Using the SAS JMP tool.
fidence). Table 3 also presents the 95% confidence intervals of these
differenc es.

It is possible to observe that the BCPSO-FS technique obtained
the best average results, outperform ing the other techniques. The
second ranking group contains the FS, BCPSO-HC and BE algo-
rithms, which were outperform ed only by the BCPSO-FS techniqu e.
The experiments also revealed the good results achieved by the hy-
brid techniques compare d to their individual components. Both
BCPSO-FS and BCPSO-HC were better than BCPSO and than their lo-
cal search components. Based on our experime nts, the hybrid
strategie s have shown to be very promising to treat the TC selec-
tion problem, and thus they should be further researched.

Finally, we highlight that good results were also achieved by the
local search techniques FS and BE. These techniques have the
advantag e of being simpler to implement and less computati onally
expensive. Hence, they should be indicated when the user needs a
result quickly.
4.3.2. Regression Suite Results
Table 4 shows the mean fitness and standard deviation of each

search technique for the Regression Suite, as well as the 3 ranking
groups derived from the Tukey HSD test. Following, Table 5 shows
the mean differenc es between the search techniques in a pairwise
comparis on.

Different ly from the Integration Suite, it was not possible to
identify a single best search technique for the Regression Suite.
As seen in Table 4, the BCPSO-FS , FS, BE and BCPSO-HC were con-
sidered statistically equivalent (Group 1). The second group was
compose d by the BCPSO and HC algorithms, followed by the Ran-
dom techniqu e in Group 3.

Yet, similarly to the results observed in the Integration Suite,
the hybrid techniques outperformed their individual components
in absolute terms. However , the performanc e gain was not statisti-
cally confirmed in all cases. In this suite, only the hybrid BCPSO-HC
was statistically superior to its individual components.

When comparing the obtained results for the Integration and
the Regression suites, we observed a significant different level of
performanc e. For the Integration Suite, the average fitness ob-
tained by the algorithms was 67.85 (see Fig. 5). In turn, for the
Regressio n suite, the average fitness was 88.17.

This result confirmed our initial expectati ons (see Section 4.1).
Since the Regressio n Suite is more redundant regarding require-
ments coverage than the Integration Suite, the task of selecting
TCs from the latter better preserving requiremen ts coverage would
be easier.

Table 5
Mean differences betwe en techniques for regression suite.

Integration Suite Regression Suite
0

10

20

30

40

50

60

70

80

90

100

Fi
tn

es
s

Fig. 5. Average fitness over all executions for each test suite.

Fig. 6. Fitness by execution effort threshold per Suite.

L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896 4895
In fact, for redundan t suites, a greater variety of search tech-
niques can be used with good results. For a more complex suite,
however , a careful decision should be made regarding which algo-
rithms to adopt for TC selection.

Finally, Fig. 6 presents the average fitness over the search tech-
niques considering different values of effort threshold. As ex-
pected, the chosen value of effort threshold has an impact in the
general quality of the subsets of test cases returned by the search
techniqu es. When the effort threshold is too low (thus imposing
a stronger constraint), the space of feasible solutions is reduced
and, hence, the optimization task becomes more difficult.

However , the quality of the solution is also dependent on the
complexi ty of test suite at hand. For the Regression Suite, high val-
ues of fitness (greater than 90%) can be actually obtained by adopt-
ing relatively low effort limits (from 40% to 50%). For the
Integration Suite, in turn, good solutions in terms of coverage can
only be obtained using more relaxed constraints.

5. Conclusion

In this work, we investigated the use of hybrid search tech-
niques for the constrain ed TC selection problem. We can point
out some contributions of the current work. First of all, to the best
of our knowledge, PSO was not yet investiga ted in the context of TC
selection . Hybrid search techniques were developed and validated
in our work. Also, we considered the effort in executing the se-
lected test cases by formulating TC selection as a constrained opti-
mization task and by proposin g specific versions of PSO to treat
this task.

We implemented a Binary Constrained PSO (BCPSO), and two
hybrid algorithms which integrated local search techniqu es (FS
and HC Climbing) to improve the performance of the BCPSO. In
the experiments performed using two different test suites related
to mobile devices, the hybrid techniques obtained better results
when compare d to their individual components.

In our experiments, the quality of the test case selection process
depende d upon: (1) the effectiveness of the used search technique,
(2) the constraints imposed by the user (i.e., the effort threshold),
and (3) the features (e.g., redundan cy) of the test suites at hand.

We observed that a more complex (less redundan t) suite re-
quired the use of more powerful search techniques in order to
achieve satisfactory results in statistical terms. For the simpler
suite, a greater variety of algorithms were found to be statistically
equivalent in the test case selection task and, in this case, simpler
algorithms would be more indicated. The execution effort con-
straint imposed by the user also influenced the quality of the re-
turned solutions, but the observed impact varied depending on
the features of the test suites.

4896 L.S. de Souza et al. / Expert Systems with Applications 40 (2013) 4887–4896
The benefits of using more complex and effective search tech-
niques will vary by organization. However, even when small, an in-
crease in requiremen ts coverage may be critical in some contexts
(e.g., large test suites and/or strong resources constraints). Yet,
the effort required to use the proposed algorithms/tec hniques is
not so high, since the complexity of PSO and the hybrid techniques
(when compared to simpler search techniques) is transparent to
the final user (the software engineer responsible for the automatic
selection process). Hence, the increase in fitness can be obtained
without extra human effort. Note that the only process that could
demand human attention would be the design (values assignment)
of parameters. However, in our work we observed good results by
adopting the PSO default parameters values suggested in the liter-
ature (i.e., no parameter optimization was performed).

The current research provides a framewor k for future develop-
ments that are intended to progressive ly improve the quality of
the selection process. Several extensions of the current work can
be considered in the near future. First, we intend to perform exper-
iments on more test suites. Second, our work was focused on a con-
strained formulation of TC selection using only one objective
function (requirements coverage) in the optimization process. How-
ever, other criteria can be deployed, which will require the use of
constrained multi-obj ective techniques. Finally, we will investiga te
new strategie s to combine search techniques, in order to provide
more robust hybrid algorithms for TC selection. In fact, the approach
of alternating global and local search adopted in our work is only one
specific strategy to produce hybrid search algorithms.

Acknowled gements

This work was partially supported by the National Institute of
Science and Technology for Software Engineering (INES www.
ines.org.br), CNPq, CAPES and FACEPE.

References

Aranha, E., & Borba, P. (2007). An estimation model for test execution effort. In
Proceedings of the 1st international symposium on empirical software engineering
and measurement (pp. 107–116).

Aranha, E., & Borba, P. (2008). Using process simulation to assess the test design
effort reduction of a model-based testing approach. In ICSP, (pp. 282–293).

Barltrop, K., Clement, B., Horvath, G., & Lee, C.-Y. (2010). Automated test case
selection for flight systems using genetic algorithms. In Proceedings of the AIAA
Infotech@Aerospace conference (I@A 2010) Atlanta, GA.

Beizer, B. (1990). Software testing techniques . International Thomson Computer
Press.

Borba, P., Torres, D., Marques, R., & Wetzel, L. (2007). Target – test and requirements
generation tool. In Motorola’s 2007 innovation conference (IC’2007).

Borba, P., Cavalcanti, A., Sampaio, A., & Woodcock, J. (2007). Testing techniques in
software engineering, Second Pernambuco summer school on software
engineering, PSSE 2007, Recife, Brazil, December 3–7, Revised Lectures,
Lecture notes in computer science, Springer, Vol. 6153, 2010.

Cartaxo, G. E., Machado, D. L. P., & Oliveira Neto, G. F. (2009). On the use of a
similarity function for test case selection in the context of model-based testing.
Software Testing, Verification and Reliability, 21(2), 270–285.

Chen, J., Qin, Z., Liu, Y., & Lu, J. (2005). Particle swarm optimization with local search.
In International conference on neural networks and brain, ICNN B ’05 (Vol. 1, pp.
481–484).

Chen, T. Y., & Lau, M. F. (1998). A new heuristic for test suite reduction. Information
& Software Technology, 40(5–6), 347–354.

Eberhart, R. C., & Shi, Y. (1998). Comparison between genetic algorithms and
particle swarm optimization. LNCS, 1447 , 611–616.

Elbaum, S., Malishevsky, A., & Rothermel, G. (2001). Incorporating varying test costs
and fault severities into test case prioritization. In Proceedings of the 23rd
international conference on software engineering, ICSE ’01 (pp. 329–338).
Washington, DC, USA: IEEE Computer Society.
Harold, M. J., Gupta, R., & Soffa, M. L. (1993). A methodology for controlling the size
of a test suite. ACM Transactions on Software Engineering Methodology, 2(3),
270–285.

Hodgson, R. J. W. (2002). Partical swarm optimization applied to the atomic cluster
optimization problem. In Proceedings of the genetic and evolutionary computation
conference, GECCO ’02 (pp. 68–73). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Hu, X., & Eberhart, R. (2002). Solving constrained nonlinear optimization problems
with particle swarm optimization. In 6th world multiconference on systemics,
cybernetics and informatics (pp. 203–206).

Juang, C.-F. F. (2004). A hybrid of genetic algorithm and particle swarm
optimization for recurrent network design. IEEE Transactions on Systems, Man,
and Cybernetics. Part B, 34(2), 997–1006.

Kaur, A., & Bhatt, D. (2011). Hybrid particle swarm optimization for regression
testing. International Journal on Computer Science and Engineering, 3(5),
1815–1824.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of
the IEEE international joint conference on neural networks (pp. 1942–1948).

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm
algorithm. In Proceedings of the world multiconference on systemics, cybernetics
and informatics (pp. 4104–4109).

Kissoum, Y., & Sahnoun, Z. (2007). A formal approach for functional and structural
test case generation in multi-agent systems. In IEEE/ACS international conference
on computer systems and applications (pp. 76–83).

Kohavi, R., & John, G. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2), 273–324.

Lin, J.-W., & Huang, C.-Y. (2009). Analysis of test suite reduction with enhanced tie-
breaking techniques. Information and Software Technology, 51(4), 679–690.

Lvbjerg, M., Rasmussen, T. K., & Krink, T. (2001). Hybrid particle swarm optimiser
with breeding and subpopulations. In Proceedings of the genetic and evolutionary
computation conference (GECCO-2001) (pp. 469–476). Morgan Kaufmann.

Malishevsky, A. G., Ruthruff, J. R., Rothermel, G., & Elbaum, S. (2006). Cost-cognizant
test case prioritization, Tech. rep., Department of Computer Science and
Engineering, University of Nebraska-Lincoln.

Mansour, N., & El-Fakih, K. (1999). Simulated annealing and genetic algorithms for
optimal regression testing. Journal of Software Maintenance, 11(1), 19–34.

Ma, X.-Y., Sheng, B.-K., & Ye, C.-Q. (2005). Test-suite reduction using genetic
algorithm. Lecture Notes in Computer Science, 3756 , 253–262.

Ramler, R., & Wolfmaier, K. (2006). Economic perspectives in test automation –
balancing automated and manual testing with opportunity cost. In Workshop on
automation of software test, ICSE 2006 .

Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.).
Prentice Hall.

Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization.
In Proceedings of the 7th international conference on evolutionary programming
(pp. 591–600).

Souza, L. S., Prudencio, R. B. C., & Barros, F. D. A. (2010) A constrained particle swarm
optimization approach for test case selection. In Proceedings of the 22nd
international conference on software engineering and knowledge engineering (SEKE
2010) Redwood City, CA, USA .

Souza, L. S., Miranda, P. B. C., Prudencio, R. B. C., & Barros, F. D. A. (2011). A multi-
objective particle swarm optimization for test case selection based on
functional requirements coverage and execution effort. In Proceedings of the
23rd international conference on tools with artificial intelligence (ICTAI 2011) Boca
Raton, FL, USA .

Takaki, M., Cavalcanti, D., Gheyi, R., Iyoda, J., d’Amorim, M., & Prudêncio, R. B. (2010).
Randomized constraint solvers: A comparative study. Innovations in Systems and
Software Engineering: A NASA Journal, 6(3), 243–253.

Tukey, J. W. (1949). Comparing Individual Means in the Analysis of Variance.
Biometrics, 5(2), 99–114.

Walcott, K. R., Soffa, M. L., Kapfhammer, G. M., & Roos, R. S. (2006). Timeaware test
suite prioritization. In Proceedings of the 2006 international symposium on
software testing and analysis (pp. 1–12).

Webb, A. R. (2002). Statistical pattern recognition (2nd ed.). John Wiley & Sons.
Windisch, A., Wappler, S., & Wegener, J. (2007). Applying particle swarm

optimization to software testing. In Proceedings of the 9th annual conference
on genetic and evolutionary computation, GECCO’07 (pp. 1121–1128). New York,
NY, USA: ACM.

Yoo, S., & Harman, M. (2007). Pareto efficient multi-objective test case selection. In
Proceedings of the 2007 international symposium on software testing and analysis
(pp. 140–150).

Yoo, S., & Harman, M. (2010). Using hybrid algorithm for parento efficient multi-
objective test suite minimisation. Journal of Systems and Software, 83, 689–701.

Yoo, S., & Harman, M. (2010). Regression testing minimization, selection and
prioritization: A survey. Software Testing, Verification and Reliability, 22(2),
67–120.

http://www.ines.org.br
http://www.ines.org.br

	Search based constrained test case selection using execution effort
	1 Introduction
	2 Strategies for Search Based Test Case Selection
	3 Constrained TC selection based on optimization search techniques
	3.1 Overview of the developed work
	3.2 Problem formulation
	3.3 The binary constrained PSO
	3.4 Local search
	3.4.1 Forward selection
	3.4.2 Backward Elimination
	3.4.3 Hill Climbing

	3.5 Hybrid algorithms
	3.6 Random approach

	4 Experiments and results
	4.1 Experiments preparation
	4.1.1 Test Execution Effort Estimation Tool

	4.2 Experiments execution
	4.3 Results
	4.3.1 Integration Suite Results
	4.3.2 Regression Suite Results

	5 Conclusion
	Acknowledgements
	References

