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a b s t r a c t

Software testing is essential to guarantee high quality products. However, it is a very expens ive activity,
particularly when manually performed. One way to cut down costs is by reducing the input test suites,
which are usually large in order to fully satisfy the test goals. Yet, since large test suites usually contain 
redundancies (i.e., two or more test cases (TC) covering the same requirement/piece of code), it is possible 
to reduce them in order to respect time/people constraints without seve rely compromising coverage. In
this light, we formulated the TC selection problem as a constrained search based optimization task, using 
requirements coverage as the fitness function to be maximized (quality of the resultant suite), and the 
execution effort (time) of the selected TCs as a constraint in the search process. Our work is based on
the Particle Swarm Optim ization (PSO) algorithm, which is simple and efficient when compared to other 
widespread search techniques. Despite that, besides our previous works, we did not find any other pro- 
posals using PSO for TC selection, neither we found solutions treating this task as a constrained optimi- 
zation problem. We implemented a Binary Constrained PSO (BCPSO) for functional TC selection, and two 
hybrid algorithms integrating BCPSO with local search mechanisms, in order to refine the solutions pro- 
vided by BCPSO. These algorithms were eval uated using two different real-world test suites of functional 
TCs related to the mobile devices domain. In the performed experiments, the BCPSO obtained promising 
results for the optimization tasks considered. Also, the hybrid algorithms obtained statistically better 
results than the individual search techniques.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

The demand for high quality products has imposed a growing 
emphasis on testing activities in the software developmen t process 
(Beizer, 1990 ). However, Software Testing is a very expensive 
activity, sometimes reaching 40% of the final developmen t cost 
(Ramler & Wolfmaier, 2006 ). In this scenario, automation seems 
to be the key solution for improvin g the efficiency and effective- 
ness of the testing process.

We can identify in the related literature several techniques and 
tools aimed at the (partial or total) automation of the testing tasks,
ranging from test generation to its automatic execution. Usually,
each technique/tool focuses on only one of the main software test- 
ing approach es: either White Box (structural) or Black Box (func-
tional) testing. Regardless the approach , the testing process relies 
on the (manual or automatic) generation and execution of a Test 
Suite (TS). A TS comprises a set of Test Cases (TC), each one consist- 
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ing of a set of inputs/ac tions to test the software, execution pre- 
condition s, and a pass/fail condition (expected results).

When analyzing the existing tools for automatic TC generation,
we observe that they usually deliver very large test suits, trying to
cover all possible scenarios (e.g. Borba, Torres, Marques, & Wetzel,
2007; Kissoum & Sahnoun, 2007 ). The aim is to provide a good cov- 
erage of the adopted test adequacy criterion (e.g., code coverage,
requiremen ts coverage) in order to satisfy the test goal. Note that 
manually created test suits may also be large, for the same reason 
mentioned above.

Although it is desirable to fully satisfy the test goal, the exe- 
cution of large suites is a very expensive task, demanding a great 
deal of the available resources (time and people) (Harold, Gupta,
& Soffa, 1993 ). However, large test suites usually contain redun- 
dancies regarding the adopted test adequacy criterion (i.e., two 
or more TCs covering the same requiremen t/piece of code).
Therefore, it is possible to reduce the test suite in order to re- 
spect time/people constrain ts, however without severely com- 
promising coverage. The task of reducing a test suite based on
a given selection criterion is known as Test Case selection (Borba,
Cavalcan ti, Sampaio , & Woodcock, 2007 ). Notice that the test 
selection criterion is dependent upon the adopted test adequacy 
criterion.
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In this light, our work investigated strategies to select an ade- 
quate subset of a given test suite having as selection criterion the 
functional requirements coverage (quality of the resultant suite),
and the execution effort (time/cost of the selected subset) as a
constraint.

TC selection is known to be a hard task, since there may be a
huge number of TC combinations to consider when searching for 
an adequate TC subset. In this scenario, manual TC selection does 
not seem to be a good choice. Besides being a slow process, manual 
selection is usually an ad hoc process, relying too much on the test 
engineer’s previous knowled ge. This way, it does not guarante e to
preserve coverage of the adopted test adequacy criterion (Cartaxo,
Machado, & Oliveira Neto, 2009 ). Thus, manual TC selection is gen- 
erally adopted when there are no available tools to automaticall y
perform this task.

When analyzing the works on automatic TC selection , we iden- 
tify different techniqu es for systematically performi ng this task.
First, we cite heuristic and greedy solutions (see Borba et al.,
2007; Chen & Lau, 1998; Cartaxo et al., 2009; Harold et al., 1993;
Lin & Huang, 2009 ), which provide potentially good TC subsets 
regarding the coverage of the test adequacy criterion. However,
these non-optimizat ion strategies are not always applicabl e when 
dealing with large test suites, since they are computati onally 
expensive (Yoo & Harman, 2010; Lin & Huang, 2009 ).

A very promising approach to treat the TC selection problem re- 
lies on the use of optimization search techniques (Barltrop, Clement,
Horvath, & Lee, 2010; Mansour & El-Fakih, 1999; Ma, Sheng, & Ye,
2005; Souza, Prudencio, & Barros, 2010; Yoo & Harman, 2007 ). The 
aim here is to select a TC subset that optimizes a given objective 
function (i.e., the given selection criterion). We highlight here the 
work of Yoo and Harman (2010), Yoo and Harman (2007), which 
uses Genetic Algorithm s for structural TC selection .

Our work formulated the TC selection problem as constrain ed
optimization task, where requiremen ts coverage is the fitness
function to be optimized , and the execution cost (time) of the se- 
lected TCs is used as a explicit constrain t in the search process.
We investigated the use of Particle Swarm Optimization (PSO)
(Kennedy & Eberhart, 1995 ) algorithm for this problem. PSO is a
population-bas ed search algorithm inspired by the social behavior 
of bird flocks.

PSO has shown to be a simple and efficient algorithm when 
compared to other search techniques, including for instance the 
widespread Genetic Algorithms (Hodgson, 2002; Eberhart & Shi,
1998). Despite that, besides our previous works (Souza et al.,
2010, Souza, Miranda, Prudencio, & Barros, 2011 ), we did not find
in the related literature any other work using PSO for TC selection.
Therefore, it is worthwh ile to further evaluate the use of PSO for 
this task.

We impleme nted a Binary Constrain ed PSO (BCPSO) (Hu &
Eberhart, 2002; Kennedy & Eberhart, 1997 ) and two hybrid PSO 
algorithms, which integrate BCPSO with local search mechanisms 
to refine the solutions provided by the BCPSO. The proposed algo- 
rithms were evaluated using two different real-world test suites of
functional TCs related to the mobile devices domain.1 The BCPSO- 
FS hybrid algorithm obtained statistical ly better or at least equiva- 
lent results than the individual search techniques.

In our preliminary work (Souza et al., 2010 ), we performed 
some experime nts to evaluate the BCPSO for constrained TC selec- 
tion, having obtained promising results. In the current paper, we
present the new developments of our research – in particular,
the hybrid algorithms -, a more detailed discussion of the con- 
1 In order to allow the selection based on requirements coverage, each TC registers/ 
indicates the covered requirements.
ducted case studies, and the statistical analysis of the performed 
experime nts.

As mentioned before, so far we did not find in the related liter- 
ature any solution consideri ng requirements coverage as test selec- 
tion criterion together with execution effort (cost) as an explicit 
constrain t for functiona l test case selection. The previous works 
of Elbaum, Malishevsky , and Rothermel (2001) and Walcott, Soffa,
Kapfhamm er, and Roos (2006)also combine cost constraints with 
requiremen ts coverage, but they are used for structural test suite 
prioritizati on, and the work of Yoo and Harman (2007) for struc- 
tural test case selection .

In what follows, Section 2 briefly discusses strategies for Test 
Case selection , and Section 3 brings a detailed presentation of
our proposed approach for this problem. Section 4 brings the 
experime nts and obtained results. Finally, Section 5 presents some 
conclusio ns and future work.
2. Strategies for Search Based Test Case Selection 

As discussed before, although testing is central in the software 
developmen t process, it is sometimes neglected due to its high 
cost. A primary way to reduce software testing cost is by reducing 
test suites.

Given an input test suit, Test Case selection aims to find a rele- 
vant subset of TCs regarding some test adequacy criterion (such as
the amount of code or functional requiremen ts covered by the cho- 
sen TC subset, for instance). Clearly, this task should not be per- 
formed at random, since a random choice not always returns a
representat ive TC subset.

A very promising approach for TC selection is to treat this task 
as a search optimization problem (Yoo & Harman, 2010 ). In this ap- 
proach, search techniques explore the space of possible solutions 
(subsets of TCs), seeking the solution that best matches the test 
objectives .

When analyzing which search based approach to use, we ini- 
tially disregard the exhaustive (brute-force) search techniqu es,
since we are facing an NP-compl ete problem (Lin & Huang,
2009). We also disregard random search since, when dealing with 
large search spaces, random choices seldom deliver a representa- 
tive TC subset regarding the adopted test adequacy criterion. In
this scenario, more sophisticated approach es, as search based opti- 
mization techniques, should be considered to treat this problem.

As known, optimization techniques in general demand the use 
of one or more fitness functions, which will determine the quality 
of each possible solution (a TC subset) regarding some chosen 
search criterion. Each fitness function corresponds to a different 
search objective.

Regarding single-objecti ve search techniques applied to test 
case selection, we highlight the use of Simulate d Annealin g (Man-
sour & El-Fakih, 1999 ), conventional Genetic Algorithms (Ma et al.,
2005; Mansour & El-Fakih, 1999 ) and PSO (Souza et al., 2010 ).
Regarding multi-objective techniques, we highlight (Souza et al.,
2011; Yoo & Harman, 2010, 2007 ).

Regardles s the technique to use in the selection process, before 
defining the search objectives, it is necessar y to formulate the 
selection problem considering the chosen test adequacy criterion,
which depends on the type of test being performed – whether 
functiona l or structural. Structural testing relies on the code struc- 
ture to derive test cases, which are used to monitor the software 
behavior during implementation time. On the other hand, func- 
tional testing relies on (natural language or formal) specifications
of the software, aiming to investigate the behavior of the imple- 
mented SW functiona lities.

For structural testing, the most usual adequacy criterion is code 
coverage , which considers the amount of pieces of program code 
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(e.g., blocks, statements , decisions) exercised by selected TCs (Har-
old et al., 1993 ). On the other hand, functional TC selection usually 
adopts as selection criterion the amount of functiona l require- 
ments covered by the TC suites (Borba et al., 2007; Souza et al.,
2011).

Besides the test adequacy criterion, another issue to be consid- 
ered in TC selection is the existence of constrain ts that must be ob- 
served. For instance, in some software testing environments , the 
test engineers have a restricted time to (manually) execute the test 
suits. In such cases, it is necessar y to incorporate these restrictions 
as a constraint in the formulation of the search problem. This way,
the ordinary search problem becomes a constrained search prob- 
lem, and the techniques to be used must be able to account for this.

Among existing testing constraints, we highlight the cost (ef-
fort) to execute a TC suit, so that it fits within the available time 
for testing the product. Despite its importance , this constraint 
has been neglected by researche s in the field, mainly due to the dif- 
ficulties to previously estimate the cost of manually performing 
each TC in the input suite (Aranha & Borba, 2007 ). In fact, few 
works have taken this into account, i.e., have used this measure 
for TC selection (Malishevsky, Ruthruff, Rothermel, & Elbaum,
2006; Souza et al., 2010, 2011; Yoo & Harman, 2007, 2010 ).

As said, the work presente d here investigates the use of TC exe- 
cution effort as an explicit constraint in the search process, in order 
to deliver functional TC subsets respecting the available execution 
time. Here, we use the Test Execution Effort Estimation Tool (Aranha
& Borba, 2008 ) to estimate the time (cost) for manually executing 
each test case in the input suites before starting the search process 
(see Section 4.1.1).

Following, Section 3 presents details of our approach for test 
case selection, and Section 4 brings the experiments performed 
to evaluate the proposed algorithms.
3. Constrained TC selection based on optimizati on search 
techniques

As said, TC selection has been treated by several authors as an
optimization task in which a chosen testing criterion has to be
optimized. Besides, there are constraints on the testing process to
be considered (e.g., the effort to execute the test cases).

In our work, we formulated the TC selection problem as a con- 
strained optimizati on task in which functiona l requirements cov- 
erage is the fitness function to be optimized, and the execution 
effort of the selected TCs is used as a constrain t in the search 
process.

Few works that deploy search techniques to TC selection con- 
sidered the execution cost of the selected TCs. This is mainly due 
the difficulty of estimating execution effort for functional test 
cases. Also, these works do not treat cost constraints in an explicit 
and systematic way. Yet, besides our previous work (Souza et al.,
2010), we did not find any other work on cost-constra ined TC
selection in the context of functional software testing, as said in
Section 1. Hence, we believe that our research work is an original 
contribution to the area.

We implemented a number of different algorithms for con- 
strained TC selection , including global, local and hybrid search 
techniques. More specifically, we highlight the use of Particle 
Swarm Optimiza tion (PSO) (Kennedy & Eberhart, 1995 ), a global 
optimization technique which has been poorly investigated in
the context of TC selection.

This section is dedicated to present our work in detail. Initially,
we have a brief overview of the develope d work, including some 
background information on the PSO algorithm (Section 3.1). Fol- 
lowing, Section 3.2 shows the problem formulation in the light of
the search optimizati on approach. Then, Sections 3.3, 3.4, 3.5, 3.6 
present the different search techniques investigated here, in order 
to compare results.

3.1. Overview of the developed work 

As said, in this work we investigate the use of PSO applied to the 
problem of TC selection . PSO has shown to be a simple and efficient
algorithm when compared to other search techniques, including 
for instance the widespread Genetic Algorithms (Eberhart & Shi,
1998; Hodgson, 2002 ).

We can point out some applications of PSO in Software Testing,
particular ly for test case generation (Windisch, Wappler, &
Wegener , 2007 ) and regression testing (Kaur & Bhatt, 2011 ). How- 
ever, to the best of our knowled ge, our previous works (Souza et al.,
2010, 2011 ) are the only ones using PSO for TC selection.

The PSO algorithm is a population-bas ed search technique in- 
spired by the bird flocks. The basic PSO algorithm initially defines
a random population of particles, each one having a position in the 
search space and a velocity. The position codifies a candidat e solu- 
tion for the problem being solved, and the velocity indicates the 
direction of the search performed by the particle. The particles 
are evaluated by a fitness function to be optimized . For a parameter- 
ized number of iteration s, the particles fly through the search 
space, being influenced by each one’s own experience and by the 
experience of their neighbors. Particles change position and veloc- 
ity continuously, aiming to reach a better position. The algorithm 
stops when a stopping criterion is reached (usually, a predefined
number of iteration s or number of fitness evaluations).

We implemented seven different algorithms for TC selection , in
order to compare results. Initially, we developed a Binary Con- 
strained PSO (BCPSO) by merging two versions of PSO (see Sec- 
tion 3.3): (1) the binary version of PSO proposed in Kennedy and 
Eberhart (1997), since the TC selection problem under consider- 
ation has a binary search space; and (2) the PSO version which 
deals with constrain ed problems, proposed in Hu and Eberhart 
(2002). Following, three local search algorithms were develope d:
Forward Selection, Backward Elimination and the Hill-Clim bing 
algorithms.

Finally, hybrid implementati ons of BCPSO were developed by
combinin g it with local search algorithms (namely, the Forward 
Selection and the Hill-Climbing algorithms). The aim was to verify 
whether some improvement in PSO performanc e could be obtained 
by using a local search mechanis m for each particle (see Sec- 
tion 3.5). In different optimization contexts, the combinati on of
global and local techniqu es has shown performanc e gains when 
compare d to its individual components (Lvbjerg, Rasmussen, &
Krink, 2001 and Juang, 2004 ).

The develope d algorithms were evaluated in an experiment 
with two case studies using real functional test suites (Section 4).
In the experiments, the Tukey HSD multiple comparison analysis 
(Tukey, 1949 ) was applied to verify statistical differenc es among 
the impleme nted search techniques.

As said, the work presented here extends our previous work 
(Souza et al., 2010 ) with new implementations , putting emphasis 
on the hybrid algorithms , the statistical analysis of the performed 
experime nts and a more detailed discussion of our case studies.
The remaining of this section presents how the Test Case selection 
problem was formulat ed, and details of the implemented solutions.

3.2. Problem formulation 

In this section, we show how the TC selection task was formu- 
lated as a search (optimization) problem in our work. The follow- 
ing formulation was used in all the implemented techniques.

Given a test suite T = {T1, . . . ,Tn} of n test cases, a candidate (sub-
set) solution is represented as a binary vector t = (t1, . . . , tn), in
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which tj 2 {0,1} indicates the presence (1) or absence (0) of the test 
case Tj among the subset of selected TCs.

The fitness (quality) of a solution is measured as the percentage 
of requiremen ts covered by it. Formally, let R = {R1, . . . ,Rk} be a gi- 
ven set of k requirements. Let F(Tj) be a function that returns the 
subset of requiremen ts in R covered by the individual test case 
Tj. Then, the fitness function of a solution represented by t is given 
by:

FitnessðtÞ ¼ 100 �

[
tj¼1

fFðTjÞg

������
������

k
ð1Þ

In Eq. (1),
S

tj¼1fFðTjÞg is the union of requireme nts subsets covered 
by the selected test cases (i.e., Tj for which tj = 1).

As said, the execution effort of the selected TCs is used as a con- 
straint in the search process. Formally, each test case Tj 2 T has a
cost score cj. The total cost of a solution t is then defined as:

CostðtÞ ¼
X
j;tj¼1

cj ð2Þ

In our work, the cost cj was compute d for each test case by using the 
Test Execution Effort Estimation Tool developed by Aranha and 
Borba (2008) (see Section 4.1.1 for details).

Finally, we formulated the search (optimization) problem as
follows:

maximize : FitnessðtÞ ð3Þ
subject to : CostðtÞ < h ð4Þ

In Eq. (3), h is a threshold execution time given by the user, which 
reflects the search constraint (i.e., the maximum amount of time 
available to perform the Software Testing).

3.3. The binary constrained PSO 

The impleme nted Binary Constrained PSO (BCPSO) algorithm 
was developed by merging the binary PSO of Kennedy and Eberhart 
(1997) and the constrained PSO of Hu and Eberhart (2002). As seen 
above, each particle in the PSO algorithm has a position in the 
search space and a velocity. Each particle explores the search space 
by updating its position accordin g to a velocity vector v = (v1, . . . ,vn),
which indicates the direction of the search performed by the par- 
ticle. The velocity vector is updated at each PSO iteration using 
the following equation:

v ¼ xv þ C1r1ðt̂� tÞ þ C2r2ðĝ� tÞ ð5Þ

In Eq. (5), t̂ indicate s the best position achieved by the particle, and 
ĝ is the best position achieved by its neighbor s. r1 and r2 are random 
values in the interv al [0,1]. C1 and C2 are the accelerat ion consta nts.
The first term of the right side expression represents the inertia fac- 
tor, the second term represents the cognitive component of the 
search (own experience), and the third term represents the social
component of the search (neighborhood experien ce).

Hence, each particle progressive ly changes its direction towards 
the best global positions achieved by the neighborhood and the 
best local positions obtained by the particle itself.

The parameters x, C1 and C2 control the trade-off between the 
cognitive and the social behavior of the particles. In our work, x
linearly decreases from 0.9 to 0.4, and C1 = C2 = 2 (as suggested 
by Shi & Eberhart (1998)).

Finally, in order to define neighborho od, the particles in the PSO 
algorithm are organized in a particular chosen topology that indi- 
cates their social structure. In our implementation, we adopted the 
ring topology (a widespread PSO topology), in a way that the 
neighborho od of a particle consists solely of its predecessor and 
its successo r in the topology.

In PSO, the particle position is updated according to its velocity.
In BCPSO, the update of the particle positions used the same oper- 
ations originally proposed in the binary PSO (Kennedy & Eberhart,
1997). First, the sigmoid function is used to normalize the velocity 
values within the interval [0,1] as follows:

sigðv jÞ ¼
1

1þ e�v j
ð6Þ

Finally , the new particle position is updated as follows:

tj ¼
1; if rj 6 sigðv jÞ
0; otherwise

�
ð7Þ

In Eq. (7), rj is a random number sampled from the interv al [0,1].
This equation was proposed by Kennedy and Eberhart (1997) in or- 
der to certify that the new positions are still binary vectors. The po- 
sition value tj tends to 1 when the velocity assumes higher values 
(closer to 1). In its turn, tj tends to 0 for lower values of velocity 
(vj close to 0).

In the constrain ed PSO proposed by Kennedy and Eberhart 
(1997), when a particle violates the constraint (i.e., when it repre- 
sents an infeasible solution), its fitness is penalized. The fitness
function penalization was defined in our work by Eq. (8):

FitnessPenaltyðtÞ ¼ FitnessðtÞ � 100 ð8Þ

Whene ver a solution violates the problem constra int, the fitness
values initiall y computed using Eq. (1) are replaced by the values 
compute d by the penalized function in Eq. (8), assuming non-pos i-
tive values.

As it can be observed in Section 4 (Experiments and Results),
the BCPSO delivered good results when applied to the TC selection 
problem. The following section presents the local search tech- 
niques which were impleme nted as a basis of comparis on.

3.4. Local search 

In our work, we also investiga ted some well known local search 
algorithms , aiming to create hybrid algorithms by combining local 
search with our global search BCPSO algorithm (see Section 3.3).
This section presents three local search algorithms adapted to
the TC selection problem.

Briefly speaking, local search algorithms choose, at each step,
the locally best node (which yields the best fitness) aiming to find
the best solution to the problem. The local search algorithms used 
in our work are the Hill Climbing, the Forward Selection and the 
Backward Elimination algorithms.2

3.4.1. Forward selection 
According to Webb (2002), the Forward Selection (FS) tech- 

nique, also known as Sequential Forward Selection, is a bottom- 
up search procedure which builds a solution by iteratively adding 
new nodes to an initially empty set, until a stopping criteria is
reached. The current solution is then returned as the solution for 
the search process.

In our work, the solution is represented by a binary vector t. The 
algorithm starts with an empty solution (i.e., with all tj = 0), and 
then performs several iteration s, each one potential ly producing 
a new better solution, until the adopted stopping criterion (defined
below) is reached.

At each iteration, the algorithm receives as input the current 
solution, and produces new candidate solutions that are evaluated 
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based on the adopted fitness function, also considering the cost 
constraint. Each candidate solution is produced by including one 
different test case in the current solution. This way, for a vector 
solution of size n, each iteration may produce a maximum of n can-
didate solutions.

The best candidat e solution in one iteration becomes the cur- 
rent solution, and is used as input by the next iteration until the 
overall search process resumes (see Fig. 1).

More formally, new candidate solutions are produced as fol- 
lows: for each test case tj not yet present in the current solution 
t (i.e., for each tj = 0), a new candidate solution t

0
is produced by

setting tj 1. For each candidate solution, the fitness function Fit-
ness(t

0
) is computed. We also verify whether the candidat e solution 

under analysis is feasible consideri ng the cost constraint (i.e.,
whether its cost is not higher than the threshold h). The feasible 
candidate solution which yields the highest fitness value is then 
adopted as the new current solution in the search process.

The algorithm stops (1) when no feasible solution is found at an
iteration, or (2) when all test cases have been already added to the 
current solution. An example of this process is shown in Fig. 1.

The FS strategy is simpler to impleme nt and computational ly
faster than the BCPSO algorithm. In our experime nts, this tech- 
nique obtained better results than the BCPSO in isolation. However ,
it was overcome by the hybrid BCPSO-FS algorithm (see Sections 
3.5 and 4).

The main disadvantag e of this techniqu e is that it does not pro- 
vide a mechanism for excluding a test case in the candidat e solu- 
tion that was added to the solution set at a previous iteration.
Note that, in our context, further additions may turn a particular 
test case unnecessary .3
3.4.2. Backward Eliminatio n
Backward Elimination (BE), or Sequential Backward Selection, is

the topdown analogy to forward selection (Webb, 2002 ).
Applied to our context, the BE algorithm starts with a complete 

solution (i.e., with all tj = 1), and iteratively removes one test case 
from the current solution until a stopping criterion is reached.

For each test case present in the current solution (i.e., for each 
tj = 1), a candidate solution t

0
is produced by setting tj 0 in t.

The fitness function (Eq. (1)) is computed and the candidate solu- 
tion which yields the highest value of fitness is considered as the 
current solution for the next iteration .

This process is repeated until the first feasible solution is found.
Fig. 2 illustrates this process.

In the performed experime nts, both BE and FS delivered better 
results than the BCPSO in isolation. However , BE is computation- 
ally more expensive than FS, since the fitness function must be
3 See (Webb, 2002 ) for more details about this problem.
evaluated over larger sets of test cases (Webb, 2002 ). Yet, the BE
algorithm was also overcome by the hybrid BCPSO-FS (see
Section 4).

Finally, note that this algorithm does not aim to improve an al- 
ready feasible solution. As said, it stops when the first feasible solu- 
tion regarding cost constraint is generated. This way, it was not 
worthy to implement a hybrid BCPSO-BE, since the number of
infeasible particles during the BCPSO search process is low.

3.4.3. Hill Climbing 
The Hill Climbing (referred in this work as HC) is a simple iter- 

ative local search algorithm that starts with a random solution to a
problem, and progressive ly tries to find better solutions by using a
local search operator . At each iteration, this algorithm generate s
candidat e solutions by performi ng small changes to the current 
solution (these solutions are said to be the neighbors of the current 
solution). The best candidate solution of one iteration becomes the 
new current solution only if it yields a better fitness value than the 
previous one. This process stops when no better neighbors to the 
current solution can be found.

The HC algorithm starts with a random feasible solution t with
each tj randomly chosen (i.e., each tj receives 0 or 1 value with 
the same probability). At each iteration, a set of n neighbors
S = s1, . . . ,sn are generated. Each neighbor is derived from the cur- 
rent solution by inverting the value of a randomly chosen tj 2 t.
This operator performs local changes in the current solution t in
order to refine the search in the region being currently explored.
The solution t is updated as:

t ¼
ŝ if FitnessðŝÞ > FitnessðtÞ
t otherwise

�
ð9Þ

where ŝ is given by:

ŝ ¼ fmaxfFitnessðs1Þ; . . . ; FitnessðsnÞgjCostðsjÞ 6 hg ð10Þ

The algorithm stops when (1) ŝ ¼ Ø (i.e., no generated neighbor sat- 
isfies the cost constrai nt defined by the user), or (2)
FitnessðŝÞ < FitnessðtÞ. The search process is then restarted with a
new random solution (see Russell & Norvig , 2009 for details). This 
process is repeated until a maximum number of restarts is per- 
formed. The final solution returne d by the algorithm is the best 
solution of all random restarts.

In the performed experiments, the HC was overcome by all 
other impleme nted algorithms. Nevertheles s, the hybrid BCPSO- 
HC performed better than the BCPSO in isolation (see Section 4).

3.5. Hybrid algorithms 

According to Chen, Qin, Liu, and Lu (2005), hybrid algorithms 
combinin g global search with local search (also named Memetic 



Fig. 2. Search process of Backward Elimination .

Table 1
Characteristics of the test suites.

Integration suite Regression suite 

Total effort to execute all test cases 1053.91 min 699.31 min 
# of Requirements 410 248 
Redundancy (%) 0.36 14.09 
# of Test Cases 80 80
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algorithms) have shown to be very successful in solving several 
optimization problems .

In this light, we developed two PSO hybrid algorithms aiming to
verify whether some improvement in PSO performance could be
obtained by using a local search mechanism for each particle. We
developed (1) the BCPSO-FS, by combing the BCPSO with the For- 
ward Selection algorithm; and (2) the BCPSO-HC, by using the Hill 
Climbing algorithm as a local search mechanism.

The BCPSO-FS algorithm is similar to BSPSO, however , at each 
BCPSO iteration , the FS algorithm is used as a local search mecha- 
nism in order to refine each particle (solution). Each particle pro- 
duced by a BCPSO iteration is given as an initial solution to the 
FS, which refines it until the FS’ stopping criterion is reached. The 
solutions optimized by FS algorithm are then used as the particles 
population of the next BCPSO iteration. This way, this hybrid algo- 
rithm alternates the use of BCPSO and FS during the search: BCPSO 
performs a global exploration of the search space, whereas FS re- 
fines the solutions provided by BCPSO by performing a local search.

Similarly to the BCPSO-FS algorithm, the BCPSO-HC uses the Hill 
Climbing algorithm as the local mechanism, trying to refine each 
particle (i.e., each solution). In this case, we do not use the random 
restart when performing the HC because our aim here is just to re- 
fine the current solution, and not to generate a completely new 
particle.

Our experime nts indicated that the combination of the BCPSO 
with FS and with HC mechanis ms indeed improved the quality of
the search results (see Section 4).

As said before, we did not impleme nt a hybrid BCPSO-BE be- 
cause the BE algorithm can only improve infeasible solutions,
which are very reduced in the BCPSO search process.
3.6. Random approach 

Finally, as a basis of comparis on, we also performed experi- 
ments using a purely random search algorithm, which, despite its 
simplicity, has the advantag e of performing a uniform exploration 
of the search space, being very competitive in other contexts of
Software Testing (Takaki et al., 2010 ).

Basically, it operates by generating random solutions t and eval- 
uating their fitness values. The algorithm returns the best feasible 
solution among all generated ones. It is important to highlight that 
sometimes the random algorithm does not generate any feasible 
solution after all iteration s. In this case, we consider that no solu- 
tion was returned by this algorithm.

All the algorithms presente d in this section were tested using 
two real world functional test suites. As expected, the Random 
algorithm was overcome by all other implemented algorithms in
this work.
4 These suites were created by test engineers of the Motorola CIn-BT C (Brazil Test 
Center) research project.
4. Experiments and results 

This section presents the experime nts performed in order to
evaluate the search algorithms implemented in this work. The 
experiments were performed on a case study related to mobile de- 
vices. Other case studies in different domains will be performed as
future work.
4.1. Experimen ts preparati on

Initially, we selected two test suites related to different features 
in the context of mobile devices 4: an Integration Suite and a Regres- 
sion Suite. Both suites have 80 TCs, each one representing an exhaus- 
tive test case scenario (see Table 1). The Integrat ion Suite (which
covers 410 requiremen ts) is focused on testing whethe r the various 
features of a mobile device can work togethe r, i.e., whether the inte- 
gration of the features behaves as expected . The Regression Suite 
(covering 248 require ments), in turn, is aimed at testing whethe r up- 
dates to a specific main feature (e.g., the message feature) have not 
introduc ed faults into the already developed (and previously tested)
feature functionalit ies.

Here, test cases are written in a controlled natural language , and 
contain annotations which allow us to identify which require- 
ments are covered by each test case.

Due to their nature, it is expected that the test suites used in our 
experime nts are different regarding the redundancy in the require- 
ments covered by their test cases. Here, we measure redundancy in
a test suite by averaging the Jaccard similarity (Eq. (11)) between 
the sets of requiremen ts covered by each pair of TCs in the suite.
Given two test cases respectivel y covering the requiremen ts sets 
A and B, the Jaccard measure is defined as:

JðA;BÞ ¼ jA \ Bj
jA [ Bj ð11Þ

The above measure was averag ed over all pairs of TCs in each suite,
in order to indicate the amount of requireme nts simultan eously 
covere d by different test cases in the suite. The results of this mea- 
sure are presented in Table 1.

We can observe that the Integration Suite is less redundant (i.e.,
two distinct test cases rarely cover the same requiremen ts). Hence,
for this suite, it is expected to be more difficult to find a solution 
(subset of test cases) with a good fitness evaluation, since in this 
case it is more difficult to eliminate a test case without losing 
coverage .

In the Regression Suite, in turn, each test case individually cov- 
ers a higher number of requiremen ts. The higher level of redun- 



Fig. 3. Integration suite-execution effort � Requirements.

Fig. 4. Regression suite-execution effort � Requirements.

Table 2
Mean fitness, standard deviation and ranking groups for integration suite.

Mean fitness Std. Deviation Ranking group 

BCPSO-FS 71.8126 1.9362 1
FS 70.7783 1.3300 2
BCPSO-HC 70.6149 1.3674 2
BE 70.5721 1.1559 2
BCPSO 68.7574 1.5392 3
HC 67.2191 3.6401 4
Random 55.2375 7.1359 5
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dancy makes it easier to eliminate test cases in the Regressio n
Suite preserving good coverage .

It is important to highlight that the requiremen ts covered by
the suites have no overlap (i.e., the requiremen ts covered by the 
Integration Suite are distinct from the requiremen ts covered by
the Regression Suite). Our aim here was to evaluate independen t
selection scenarios with different internal redundancie s to verify 
the performanc e of the algorithms.

The used test suites are also different regarding their execution 
effort. The effort to execute each test case was measured in our 
work by the Test Execution Effort Estimation Tool, develope d by
Aranha and Borba (2008). The effort represents the cost (in time)
needed to manually execute each test case on a particular mobile 
device. More details about this tool can be seen in Section 4.1.1.
Both suites have 80 test cases, however the Integration Suite is
more complex, since the total effort needed to execute its test cases 
is higher when compared to the total effort associated to Regres- 
sion Suite (see Table 1).

Finally, Figs. 3 and 4 show the relation between the number of
requiremen ts and the execution effort for each test case of each 
suite. By inspecting these figures, it is not possible to verify a linear 
relationship between number of requiremen ts and the execution 
effort. In fact, the correlation coefficient values observed for each 
suite (0.27 for the Integration Suite and 0.10 for the Regression 
Suite) are relatively low.
5 The test execution complexity reflects the difficulty of interaction of the tester 
with the product under test during test execution.
4.1.1. Test Execution Effort Estimation Tool 
This section briefly presents the estimation model for test exe- 

cution effort proposed by Aranha and Borba (2007), used in the 
present work to compute the test suites execution time (which is
the constraint in our optimization search process). This model 
was implemented in the Test Execution Effort Estimation Tool 
(Aranha & Borba, 2008 ), and was evaluated through an empirical 
study on the mobile phone application domain, having obtained 
higher accuracy than estimation models based on historical test 
productivity .

In this model, the execution effort of a test suite is computed 
based on the estimated time spent to manually execute each of
its tests. The cost of executing each test is calculated based on its 
specification -usually, a test specification includes pre-conditions ,
procedure (steps, inputs and expected outputs) and post- 
conditions.

This model defines a measure of size and execution complexity 
of a test case (its costs) in terms of Execution Points (EP) associated
to each of its step (as presente d below). The execution time of an
EP (in seconds) is given as an input parameter, and it may be cal- 
culated based on historical data of test execution in a particular 
application domain (see Aranha & Borba, 2008 for details).
The test size is given by the total amount of test steps – or test
actions (each action correspondi ng to one EP), whereas the test 
execution complexity is calculated based on the estimated cost of
executing each functional (e.g., number of pressed keys and num- 
ber of screen navigation) and non-functional (e.g., use of network)
feature appearing in the test steps.5 The cost of each feature will 
correspon d to a certain number of EPs, and this amount may be ad- 
justed by experts in testing, according to the test conditions and the 
application domain (see Aranha & Borba, 2008 for details). Remind 
that the value of the EP is given as a parameter, and may also be ad- 
justed according to the application domain.

Finally, the cost (in terms of time) of a test suit is obtained by
summing up the total amount of EPs of its test cases – which rep- 
resent the size and execution complexity of the whole test suite.
4.2. Experimen ts execution 

Each impleme nted search techniqu e was executed in each test 
suite, also varying the execution effort threshold. Each experiment 
setting was replicated 30 times (in order to allow statistical com- 
parison), thus yielding 7980 executions. The execution settings 
are seen below:

� 2 test suites: Integration and Regression test suites;
� 7 search techniqu es: BCPSO, BCPSO-FS, BCPSO-HC, HC, FS, BE

and Random;
� 19 execution effort thresholds: varying from 5% to 95% of total 

effort, with increments of 5%. Each value represents a boundary 
(limit) which has to be attended by the subsets yielded by each 
search techniqu e;
� 30 replications .



Table 3
Mean differences between techniques for integration suite.

Table 4
Mean fitness, standard deviation and ranking groups for regression suite.

Mean fitness Std. deviation Ranking group 

BCPSO-FS 91.7409 4.1195 1
FS 91.4976 3.9220 1
BE 91.0349 3.4438 1
BCPSO-HC 90.7506 3.0293 1
BCPSO 89.2487 2.1378 2
HC 88.5781 4.5878 2
Random 74.3930 18.3534 3
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Depending on the search techniqu e, it was necessar y to define
some additional settings. As suggested in Shi and Eberhart 
(1998), for PSO based techniques the additional settings were:

� Population size: 20
� Acceleration constants: 1.5 
� Topology: Ring (lbest)
� Inertia Weight: linearly decreasing from 0.9 to 0.4 

The Hill Climbing was implemented with random restart (see
Russell & Norvig, 2009 ). Finally, for all algorithms (when applica- 
ble), the stop criterion was the maximum number of fitness evalu- 
ations (FEs), here defined as 200,000 FEs. This number showed to
be big enough to allow the convergence of the techniques.

4.3. Results 

In this section, we start by presenting the results for the Inte- 
gration Suite, followed by the results achieved for the Regression 
Suite. We highlight that all presented results were statistically 
evaluated by using the Tukey HSD multiple comparis on test.6

4.3.1. Integration Suite Results 
Table 2 shows the mean fitness (requirements coverage) and 

standard deviation of each search technique for the Integration 
Suite. The ranking groups identified by the Tukey HSD test are 
shown. The techniques arranged in the same group obtained statis- 
tically equivalent results (with a 95% level of confidence).

Additionally , the comparison between each individua l pair of
techniques can be seen in Table 3. The symbol * along the p-values 
indicates that the mean difference is significant (with 95% of con- 
6 Using the SAS JMP tool.
fidence). Table 3 also presents the 95% confidence intervals of these 
differenc es.

It is possible to observe that the BCPSO-FS technique obtained 
the best average results, outperform ing the other techniques. The 
second ranking group contains the FS, BCPSO-HC and BE algo- 
rithms, which were outperform ed only by the BCPSO-FS techniqu e.
The experiments also revealed the good results achieved by the hy- 
brid techniques compare d to their individual components. Both 
BCPSO-FS and BCPSO-HC were better than BCPSO and than their lo- 
cal search components. Based on our experime nts, the hybrid 
strategie s have shown to be very promising to treat the TC selec- 
tion problem, and thus they should be further researched.

Finally, we highlight that good results were also achieved by the 
local search techniques FS and BE. These techniques have the 
advantag e of being simpler to implement and less computati onally 
expensive. Hence, they should be indicated when the user needs a
result quickly.
4.3.2. Regression Suite Results 
Table 4 shows the mean fitness and standard deviation of each 

search technique for the Regression Suite, as well as the 3 ranking 
groups derived from the Tukey HSD test. Following, Table 5 shows
the mean differenc es between the search techniques in a pairwise 
comparis on.

Different ly from the Integration Suite, it was not possible to
identify a single best search technique for the Regression Suite.
As seen in Table 4, the BCPSO-FS , FS, BE and BCPSO-HC were con- 
sidered statistically equivalent (Group 1). The second group was 
compose d by the BCPSO and HC algorithms, followed by the Ran- 
dom techniqu e in Group 3.

Yet, similarly to the results observed in the Integration Suite,
the hybrid techniques outperformed their individual components 
in absolute terms. However , the performanc e gain was not statisti- 
cally confirmed in all cases. In this suite, only the hybrid BCPSO-HC 
was statistically superior to its individual components.

When comparing the obtained results for the Integration and 
the Regression suites, we observed a significant different level of
performanc e. For the Integration Suite, the average fitness ob- 
tained by the algorithms was 67.85 (see Fig. 5). In turn, for the 
Regressio n suite, the average fitness was 88.17.

This result confirmed our initial expectati ons (see Section 4.1).
Since the Regressio n Suite is more redundant regarding require- 
ments coverage than the Integration Suite, the task of selecting 
TCs from the latter better preserving requiremen ts coverage would 
be easier.



Table 5
Mean differences betwe en techniques for regression suite.
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Fig. 5. Average fitness over all executions for each test suite.

Fig. 6. Fitness by execution effort threshold per Suite.
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In fact, for redundan t suites, a greater variety of search tech- 
niques can be used with good results. For a more complex suite,
however , a careful decision should be made regarding which algo- 
rithms to adopt for TC selection.

Finally, Fig. 6 presents the average fitness over the search tech- 
niques considering different values of effort threshold. As ex- 
pected, the chosen value of effort threshold has an impact in the 
general quality of the subsets of test cases returned by the search 
techniqu es. When the effort threshold is too low (thus imposing 
a stronger constraint), the space of feasible solutions is reduced 
and, hence, the optimization task becomes more difficult.

However , the quality of the solution is also dependent on the 
complexi ty of test suite at hand. For the Regression Suite, high val- 
ues of fitness (greater than 90%) can be actually obtained by adopt- 
ing relatively low effort limits (from 40% to 50%). For the 
Integration Suite, in turn, good solutions in terms of coverage can 
only be obtained using more relaxed constraints.

5. Conclusion 

In this work, we investigated the use of hybrid search tech- 
niques for the constrain ed TC selection problem. We can point 
out some contributions of the current work. First of all, to the best 
of our knowledge, PSO was not yet investiga ted in the context of TC
selection . Hybrid search techniques were developed and validated 
in our work. Also, we considered the effort in executing the se- 
lected test cases by formulating TC selection as a constrained opti- 
mization task and by proposin g specific versions of PSO to treat 
this task.

We implemented a Binary Constrained PSO (BCPSO), and two 
hybrid algorithms which integrated local search techniqu es (FS
and HC Climbing) to improve the performance of the BCPSO. In
the experiments performed using two different test suites related 
to mobile devices, the hybrid techniques obtained better results 
when compare d to their individual components.

In our experiments, the quality of the test case selection process 
depende d upon: (1) the effectiveness of the used search technique,
(2) the constraints imposed by the user (i.e., the effort threshold),
and (3) the features (e.g., redundan cy) of the test suites at hand.

We observed that a more complex (less redundan t) suite re- 
quired the use of more powerful search techniques in order to
achieve satisfactory results in statistical terms. For the simpler 
suite, a greater variety of algorithms were found to be statistically 
equivalent in the test case selection task and, in this case, simpler 
algorithms would be more indicated. The execution effort con- 
straint imposed by the user also influenced the quality of the re- 
turned solutions, but the observed impact varied depending on
the features of the test suites.
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The benefits of using more complex and effective search tech- 
niques will vary by organization. However, even when small, an in- 
crease in requiremen ts coverage may be critical in some contexts 
(e.g., large test suites and/or strong resources constraints). Yet,
the effort required to use the proposed algorithms/tec hniques is
not so high, since the complexity of PSO and the hybrid techniques 
(when compared to simpler search techniques) is transparent to
the final user (the software engineer responsible for the automatic 
selection process). Hence, the increase in fitness can be obtained 
without extra human effort. Note that the only process that could 
demand human attention would be the design (values assignment)
of parameters. However, in our work we observed good results by
adopting the PSO default parameters values suggested in the liter- 
ature (i.e., no parameter optimization was performed).

The current research provides a framewor k for future develop- 
ments that are intended to progressive ly improve the quality of
the selection process. Several extensions of the current work can 
be considered in the near future. First, we intend to perform exper- 
iments on more test suites. Second, our work was focused on a con- 
strained formulation of TC selection using only one objective 
function (requirements coverage ) in the optimization process. How- 
ever, other criteria can be deployed, which will require the use of
constrained multi-obj ective techniques. Finally, we will investiga te
new strategie s to combine search techniques, in order to provide 
more robust hybrid algorithms for TC selection. In fact, the approach 
of alternating global and local search adopted in our work is only one 
specific strategy to produce hybrid search algorithms.
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