Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

|
A
ELSEVIER

Expert
Systems

with
Applications

An International
Journal

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights


http://www.elsevier.com/authorsrights

Expert Systems with Applications 40 (2013) 6652-6660

Contents lists available at SciVerse ScienceDirect Export

Systems
with
Applications §
An International
Journal

Expert Systems with Applications

journal homepage: www.elsevier.com/locate/eswa

Proximity measures for link prediction based on temporal events

@ CrossMark

Paulo R.S. Soares, Ricardo B.C. Prudéncio *

Center of Informatics (CIn), Federal University of Pernambuco, Recife, PE, Brazil

ARTICLE INFO ABSTRACT

Keywords:

Link prediction

Temporal events
Neighborhood-based measures
Co-authorship networks

Link prediction is a well-known task from the Social Network Analysis field that deals with the occur-
rence of connections in a network. It consists of using the network structure up to a given time in order
to predict the appearance of links in a close future. The majority of previous work in link prediction is
focused on the application of proximity measures (e.g., path distance, common neighbors) to non-con-
nected pairs of nodes at present time in order to predict new connections in the future. New links can
be predicted for instance by ordering the pairs of nodes according to their proximity scores. A limitation
usually observed in previous work is that only the current state of the network is used to compute the
proximity scores, without taking any temporal information into account (i.e., a static graph representa-
tion is adopted). In this work, we propose a new proximity measure for link prediction based on the con-
cept of temporal events. In our work, we defined a temporal event related to a pair of nodes according to
the creation, maintenance or interruption of the relationship between the nodes in consecutive periods of
time. We proposed an event-based score which is updated along time by rewarding the temporal events
observed between the pair of nodes under analysis and their neighborhood. The assigned rewards depend
on the type of temporal event observed (e.g., if a link is conserved along time, a positive reward is
assigned). Hence, the dynamics of links as the network evolves is used to update representative scores
to pairs of nodes, rewarding pairs which formed or preserved a link and penalizing the ones that are
no longer connected. In the performed experiments, we evaluated the proposed event-based measure
in different scenarios for link prediction using co-authorship networks. Promising results were observed
when the proposed measure was compared to both static proximity measures and a time series approach
(a more competitive method) that also deploys temporal information for link prediction.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction the SNA field called link prediction (Hasan, Chaoji, Salem, & Zaki,

2006).

As the amount of interaction among individuals increases in vir-
tual environments, more useful social data become available, serv-
ing as a basis for social network analysis. Social networks are
structures composed by individuals (entities) that can be con-
nected by different forms of social relationship (such as friendship,
in which two individuals are connected if they are friends) (Ama-
ral, Scala, Barthelemy, & Stanley, 2000). In social networks, connec-
tions and entities tend to appear and disappear along time, which
turns them into highly dynamic and complex systems. Social Net-
work Analysis (SNA) is a broad field of research that tries to deal
with such complexity (Wasserman & Faust, 1994). Several tasks
can be associated to SNA. In this paper, our specific aim is to inves-
tigate the prediction of links in a social network, that is, we are fo-
cused on predicting the most probable future connections based on
previous states of the network. This is a well-known problem from
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A lot of work has been devoted to cope with the link prediction
problem (Getoor & Diehl, 2005; Wang, Satuluri, & Parthasarathy,
2007; Xiang, 2008). The majority of previous work is based on
the application of proximity measures to non-connected pairs of
nodes in the network at present time in order to predict new con-
nections at future time. The proximity measures are used to asso-
ciate scores to the pairs of nodes, which can be used either: (1) in a
unsupervised approach, in which a chosen score is simply ordered
and links are predicted for the top ranked pairs; or (2) in a super-
vised approach, in which the link prediction is treated as a classi-
fication task and different scores are used as predictor attributes
by a learning algorithm. A limitation that can be pointed out in
the previous work is that the proximity scores are usually calcu-
lated without taking into account the evolution of the network.
The proximity measures are computed using all network data up
to the present moment (i.e., the current network state) without
considering when links were created. Hence, a potentially useful
source of information for link prediction is not adequately
leveraged.
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In the current work, we propose a novel proximity measure in
which temporal information is taken into account. In the proposed
measure, we deployed the concept of temporal events, which are
specific activities (e.g., creation or removal of a link) observed be-
tween a pair of nodes in consecutive time intervals. For instance,
an innovative event occurs when two nodes are not connected in
a given time interval and a new link is created between them in
the next interval. The proximity score for a pair of nodes is com-
puted by monitoring along time the events observed around the
nodes and their immediate neighbors. Each category of temporal
event defined in our work (innovative, conservative and regressive)
is associated to a numerical reward and the proximity score in-
creases or decreases along time depending on the temporal events
observed in consecutive network frames. Our proposal was sup-
ported by the Homans’ work that associates the strength of a con-
nection between individuals to their frequency of interaction
(which was modeled in our work by the temporal events)
(Homans, 1951) and the idea shared by many authors that a bigger
common neighborhood between individuals is closely related to a
higher probability of future connections (Newman, 2001).

In order to verify the viability of the proposed measure, we per-
formed experiments on co-authorship networks extracted from
four sections of the physics e-Print arXiv.! In these experiments,
the proposed measure was evaluated in different scenarios by con-
sidering for instance different reward values for the temporal events
and by adopting a weighting function to give higher importance to
more recent events. For a baseline comparison, experiments were
performed with traditional proximity measures previously adopted
in the literature. We also performed experiments with a time series
approach (Potgieter, April, Cooke, & Osunmakinde, 2009) which,
similarly to our approach, also aims to consider temporal informa-
tion to improve link prediction. In all experiments, the unsupervised
approach was adopted to perform the prediction task once the scores
were calculated and the Area Under the ROC Curve (AUC) was used
to evaluate the performance of prediction. The performance
achieved by the event-based measure outperformed the results of
the baseline methods in all the networks considered.

Section 2 briefly presents the link prediction problem. Section 3
describes the event-based approach, showing the concepts used
and the score calculation process. Section 4 presents the social net-
work data adopted, the experiments and obtained results. Finally,
Section 5 concludes this work by presenting some final consider-
ations and future work.

2. Link prediction

Link prediction consists of predicting new connections or
detecting hidden links in a network. It is a very important task
applicable to a wide variety of areas, such as bibliographic domain,
molecule biology, criminal investigations and recommending sys-
tems (Getoor & Diehl, 2005; Xiang, 2008). A traditional definition
of the link prediction problem is expressed by: “Given a snapshot
of a social network at time t, we seek to accurately predict the
edges that will be added to the network during the interval from
time ¢ to a given future time t"” (Liben-Nowell et al., 2003). Among
several approaches to treat the problem, the most widespread ones
rely on the use of proximity measures between pairs of nodes (Lu &
Zhou, 2011; Xiang, 2008). As previously mentioned, the starting
point of this approach is to extract the values/scores of different
measures that indicate the similarity between pairs of nodes. These
scores can be used either by unsupervised (Liben-Nowell et al.,
2003; Lu & Zhou, 2011; Murata & Moriyasu, 2008) or supervised
link prediction (Hasan et al., 2006; Lichtenwalter, Lussier, &

T http://www.arxiv.org

Chawla, 2010; Sa & Prudéncio, 2011). In the former approach, a
proximity measure is chosen and deployed to rank node pairs in
the network. The top ranked ones are predicted to be linked. In
the supervised link prediction, a set of proximity measures is cho-
sen and adopted as predictor attributes by a classifier, learned
based on historical data. Each pair of non-connected nodes is de-
scribed by the set of proximity scores. A classifier then uses these
attributes to perform a binary classification to decide whether the
link will be formed or not in the future.

The proximity measures proposed and evaluated in the litera-
ture can be broadly categorized into semantic or topological mea-
sures (Xiang, 2008). In the semantic measures (or node-wise
measures), the nodes’ content is considered to measure proximity.
For instance, in a co-authorship network, the similarity between
keywords extracted from published papers can be used to predict
future interaction among the authors (Xiang (2008)). Different
from the semantic measures, the topological strategy consists of
deploying the network structure to compute the proximity scores
(e.g. the number of common neighbors that two nodes share).
Topological measures are more commonly adopted in the litera-
ture since they are more general and do not require the definition
of rich features to describe content (in fact, rich content is not al-
ways available depending on the social network considered).

Several topological measures were proposed in the literature
mainly categorized into neighborhood-based or path-based mea-
sures (Hasan & Zaki, 2011). The neighborhood-based measures
take into account the immediate neighbors of the nodes. In general,
these measures consider that two nodes are more likely to form a
link if their sets of neighbors have a large overlap (Xiang, 2008).
Among the neighborhood-based measures, we can mention
Common Neighbors (Newman, 2001), Preferential Attachment
(Barabasi et al., 2002; Newman, 2001),Adamic and Adar (2003)
and the Jaccard’s coefficient (Salton & McGill, 1986). The path-
based measures in turn define proximity between nodes by consid-
ering the paths between them. The basic idea is that two nodes are
more likely to form a link if there are short paths between them.
The path-based measures range from the simple path-distance
measure to more sophisticated definitions that consider ensembles
of different paths, such as the Katz measure (Katz, 1953). In com-
parative terms, the neighborhood-based methods are more wide-
spread, due to both their computational eficiency and great
performance observed in experiments (Huan, 2006; Liben-Nowell
et al., 2003; Murata & Moriyasu, 2008). The measure proposed in
our work can be categorized as neighborhood-based, since it uses
information about the connections around nodes to assign scores
to them (see Section 3).

Most previous work performs link prediction by statically ana-
lyzing the network data, that is, no temporal information is consid-
ered to perform the prediction. However, temporal information
(e.g., the moments when two nodes interacted in the past or the
time when a connection was first observed) is an important aspect
that should be considered during the link prediction (Hasan & Zaki,
2011). For instance, when computing a proximity score based on
neighborhood, it would be interesting to consider not only how
many but also when the links were formed between neighbors.
Recent activity between common neighbors may be more impor-
tant than older activity. Also, static approaches are appropriate to
investigate whether a certain link will ever occur in a network
but they are less useful, for instance, to applications for which
the prediction of repeated link occurrences are of interest (Huang
& Lin, 2009).

In this section, we mention some previous work concerning the
use of temporal information for link prediction. For instance, in
Tylenda, Angelova, and Bedathur (2009), the authors modeled a
network as a weighted graph, in which the weight of a link was
the age of the most recent activity between the corresponding
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nodes. The link prediction task was then accomplished by deploy-
ing extended versions of the proximity measures adequate for
weighted networks (e.g., weighted Adamic Adar). Bringmann,
Berlingerio, Bonchi, and Gionis (2010) proposed to mine network
data augmented with temporal information in order to discover
association rules (in terms of frequent subgraphs) that best ex-
plained the network evolution. In Juszczyszyn, Musial, and Budka
(2011), the authors adopted a related approach in which the his-
tory of the network (recorded during past time windows) is used
to derive probabilities of transitions between triads of nodes.
Although promising results can be obtained in this approach, min-
ing frequent subgraphs has shown to be a very expensive task
(Coenen, Jiang, & Zito, 2012).

An alternative approach for deploying temporal information is
to treat link prediction as a time series forecasting problem (Huang
& Lin, 2009; Potgieter et al., 2009; Qiu, He, & Yen, 2011; Soares &
Prudéncio, 2012). Huang and Lin (2009) built a time series for each
pair of nodes, in which each series observation is the frequency of
occurrence of links between the nodes during a specific time peri-
od. The time series forecasts produced by ARIMA models (Box &
Jenkins, 1970) were then used to estimate the probability of future
link occurrence. In Potgieter et al. (2009) and Soares and Prudéncio
(2012), the authors adopted a similar idea, but in this case time
series models were used to predict proximity scores. In this ap-
proach, given a chosen proximity measure, a time series is built
for each pair of nodes by computing the score in a sequence of time
periods (i.e., using different snapshots of the network along time).
A final proximity score is then obtained for each pair by forecasting
its corresponding time series. Different models were applied in the
forecasting process, including ARIMA models, smoothing methods
and linear regression models. Despite the good results obtained in
experiments, a difficulty in the time series approach is to choose an
adequate forecasting model, among the variety of models that can
be applied. In fact, in Soares and Prudéncio (2012), the authors ob-
served that a wrong decision concerning the forecasting model can
have a negative impact in the link prediction performance.

3. Event-based link prediction

Social networks are highly dynamic structures in which several
connections and nodes tend to appear or disappear along time. The
temporal evolution of these networks brings valuable information
about how connections tend to be formed, and, for that, should be
considered in the link prediction task. In the current work, we pro-
pose a new proximity measure that takes into account the tempo-
ral structure of a network and temporal events related to pairs of
nodes in the network. The aim of our proposal is to combine Ho-
mans’ thought that the strength of a connection between two indi-
viduals is directly associated with how often they interact with one
another (modeled here by means of temporal events) (Homans,
1951) and Newman’s idea that the bigger the number of common
neighbors between two nodes, the higher is their probability to be
connected in the future (Newman, 2001).

The general idea of the proposed approach is to increase or de-
crease the proximity score between two nodes depending on tem-
poral events observed among the two nodes and their
neighborhood. A temporal event, which will be explained better
in the next section, is defined through the appearance or disap-
pearance of links around nodes as the network evolves. In the pro-
posed work, initially a temporal structure is created by extracting
consecutive frames of the network at different time intervals. A
proximity score is then computed for each pair of nodes by aggre-
gating the rewards assigned for the temporal events observed dur-
ing the transitions of frames. The proposed measure is explained in
more detail in the next subsections.

3.1. Temporal structure

In the proposed solution, we initially build a temporal structure
N, by following a methodology described in Soares and Prudéncio
(2012). First of all, the network is split into several time-sliced
snapshots, which represent states of the network at different time
intervals in the past. After that, frames are built by grouping con-
secutive snapshots. The size of each frame is the same as the length
of the prediction window, pre-defined in the link prediction task.
Each frame represents one time step in N. This methodology is
detailed below.

Let G(V,E) be a graph representing a social network observed up
to time T. Each edge in E is represented by a triple (u, 2, t), indicat-
ing that the nodes u and » € V had a social interaction at time t.
Hence, more than one edge related to a single pair of nodes can
be observed in E if the nodes interacted in different moments in
the past. Let w be the length of the prediction window, i.e., our task
is to predict new links concerning the future time interval from
T+1toT+w.

Let G; be the sub-graph of G containing only the edges observed
at time t. Let [G;, Gt.1, . . ., Gem] be the frame formed by the disjoint
union of the graphs from time ¢ to t + m. In our work, a set of n con-

secutive frames N = {Fy,...,Fy,...,Fn} of size w is extracted from
the graph G. Formally, A can be defined as
N = { [GTfan , GTfnw+2, ey Gr,m,l)w], R
[GT—ZWH ) GT—2W+27 ey GT—WL (1)
[GT—W+1 5 GT—W+27 SRR GT}}

The frame Fy = [Gr_n_k+1yw+15 - - - , Gr—(n—kyw] 1 hence the sub-graph of
G containing all links observed in the k-th time interval of size w. As
an example, consider a network observed up to the year T = 2012
and a prediction window of length 2 (i.e., the task is to predict
new links from 2013 and 2014). If we extract n = 3 frames from
the network, the following structure (N = {F;,F,,Fs}) is obtained

N = {[Ga007, Ga008], [G2009, Ga010], [Gao11, Gao12]} (2)

This structure can be used to analyze how the network evolved
every 2 years since 2007. For this, we will introduce next section
the concept of temporal events, that can be observed between sub-
sequent frames.

3.2. Temporal events

We define a temporal event as a specific activity between two
nodes from a frame to its subsequent. A temporal event is the ac-
tion that leads a dyad (a pair of nodes) from a state (connected or
non-connected) to another. Events can be categorized into one of
three mutually exclusive types: conservative, innovative or regres-
sive, defined below.

e Conservative

A conservative event occurs when a relationship between two
nodes is not dropped when the network evolves, that is, when
two nodes share a link in a frame and this connection is pre-
served in the subsequent one. For each pair of nodes (u, v), we
define a reward C(u, v, k) related to frame Fy, in order to take
into account a conservative event during the transition from
the (k — 1)th to the kth frame. Formally:

c, if (u,v)e€Eq1NE
0, otherwise

C(u, v,k) = { 3)
In the above definition, E;_; and E, are the sets of edges observed in
frames F)_; and F; respectively. The constant c indicates the reward
for conservative events, which should be a non-negative value since
the strength of a tie between two nodes is preserved.
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e Innovative
Innovative events represent the creation of a new link between
two nodes on different frames. They happen when two nodes
are not connected in a frame and a link is observed in the next
frame. The Innovative reward Z(u,»,k) associated to a pair
(u,v) and a frame F is:

i, if (u,v) € Ex\Exq
0, otherwise

I(u,v,k) = { (4)
The constant i in the above equation indicates the reward for inno-
vative events. Its value should be positive since the tie between two
nodes is strengthened.
e Regressive
Regressive events are opposite to innovative ones. This kind of
event represents the removal of an existing link between two
nodes from a frame to its subsequent. The Regressive reward
R(u, v, k) is defined as:

r, if (u,v) € Exq\Ex
0, otherwise

R, o,k - { (5)
In this event, r should assume a non-positive value since the
strength of the connection between the nodes tends to decrease.

The values of the parameters c, i and r can be determined empir-
ically by evaluating the link prediction performance in a validation
set and choosing the best configuration of values considered. As it
will be seen, in our experiments, the number of parameters to
define was reduced to two by making the values of c and r propor-
tional to i (in this case, i was set to 1 for the sake of simplicity).
As it will be seen in the next subsection, given a pair of nodes,
we will define as primary events the ones strictly related to both
nodes in the pair, whereas secondary events happen in dyads com-
posed by only one of the nodes in the pair and its neighbors.

3.3. Event-based score

As previously said, many approaches for link prediction com-
pute scores to pairs of nodes by deploying a chosen proximity mea-
sure (see Section 2), aiming to determine how similar those nodes
are and, consequently, how likely a connection between them will
be formed in a close future.

The proposed measure combines both: (1) the rewards associ-
ated to primary events, which are the temporal events strictly re-
lated to the pair of nodes under analysis; and (2) the rewards
associated to secondary events, which are the temporal events ob-
served in the nodes’ neighborhood. The proximity score associated
to a given pair of nodes (u, v) is defined as:

score(u, v) =y "P(u, v, k) + o.S(u, v, k) (6)
k=2
P(u,v,k) =C(u,v,k) + Z(u, v, k) + R(u, v,k) (7)
Su,v,k)= Y Puyk) +Py, vk (8)
yel'(u)nl'(v)

In Eq. (7), P(u, v, k) computes the reward of the event (conservative,
innovative or regressive) for the pair of nodes (u, v) observed in the
transition from frame k — 1 to frame k. In Eq. (8), S(u, v, k) indicates
the aggregated reward of secondary events associated to the pair
(u, v) (i.e., the primary events observed in its common neighbor-
hood). In this equation, I'(x) is the set of neighbors of the node x
in the network.

In Eq. (6), the parameter o is an amortization factor that indi-
cates how strong secondary events affect the tie between u and
v. P(u, v,k) and S(u, v, k) associated to the first frame (i.e, k =1)

are all null since this frame is not a result of any set of events,
and hence for simplicity, they are not considered in Eq. (6).

Fig. 1 illustrates the application of the proposed event-based
score. Suppose that one wants to compute the proximity score
for the pair (1,3). The nodes 1 and 3 have node 2 as common
neighbor in the network. Hence, the score of the connection
between 1 and 3 is going to be calculated as a function of the
events that occurred between themselves (primary events), plus
the ones occurred in the dyads (1,2) and (2, 3) (secondary events)
along the network temporal structure N.

From frame F; to frame F,, it can be noticed that a conservative
and a regressive event happened in the dyad (1,2) and (2,3)
respectively. So far, no event occurred in the dyad (1, 3). Therefore,
up to frame F,, the partial score of the pair (1,3) is given by the
combination of the amortized rewards associated with the second-
ary events described above, that is, o(c +1).

Looking at the next time step (frame F3), a regressive event is
associated to (1,2), whereas an innovative one occurred in the pair
(2,3). In this step, there is also an innovative event related to the
pair under analysis (1,3); its presence must be counted too in
the final score of the pair (its reward, however, will not be amor-
tized since it is a primary event). Hence, the resultant score in this
frame is given by o(r + i) + i. By the definition of Eq. (6), the scores
are cumulative in time. The final score of a pair of nodes is, then,
the sum of all its partial scores along N. This, therefore, results
in a final score of o(c + 2r +1i) + i for the pair (1, 3).

In the current work, we also propose an extension of the event-
based score that increases the importance of more recent events
observed for a pair of nodes. In Eq. (9), we propose a proximity
score which considers a monotonically increasing function
B :Z — R to weight recent events more heavily than the old ones.
In our work, we adopted a logarithmic function (see Eq. (10)),
although other functions can be deployed. We highlight that Eq.
(6) is a special case of Eq. (9) by setting g(k) = 1.

score(u, v) = Xn:ﬁ(k).[P(u, v, k) + o.S(u, v, k)] 9)
k=2
B(k) = log(k) (10)

3.4. Prediction

Finally, in order to perform the prediction of new links, we
adopted an unsupervised strategy after the scores were computed
for the pairs of nodes. It basically consists of ranking the pairs of
nodes according to their scores, and then, selecting the top-ranked
ones as the new links in the network, as explained in Section 2.

Network N

©)

Fy Fy Fs

F, »F,: P(1,3,2) +a.5(1,3,2) = a(c+71)
F, > F3: P(1,3,3) + a.5(1,3,3) =i+ a(r + 1)
score(1,3) =i+ a(c+2r +1i)

Fig. 1. Example of event-based score computation using a network composed by a
click of three nodes. A represents the temporal structure of the network divided in
three frames (F;, F, and F3). The variables c, i and r are the rewards associated with
conservative, innovative and regressive events respectively, and « is the amorti-
zation factor used to deal with secondary events.
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4. Experiments and results

In this section we describe the experiments performed to eval-
uate the proposed approach as well as the obtained results. Ini-
tially we describe the social network data used and the
methodology of experiments (Section 4.1), followed by the base-
line methods adopted for a comparative evaluation (Section 4.2).
In Section 4.3, we present the initial results aimed to evaluate
the proposed measure considering different configurations of re-
wards for the temporal events. In Section 4.4, we evaluate the
influence of the amortization factor « in the proposed measure. Fi-
nally, in Section 4.5, we present the effect of using a weighting
function for recent event as well as the comparative results with
the baseline methods.

4.1. Data and settings

In order to evaluate the performance of the proposed scores,
data from four co-authorship networks were used in our experi-
ments. We highlight that co-authorship networks are highly used
in the literature to evaluate SNA techniques. Being a social struc-
ture, this kind of network is very dynamic along time, what makes
it a great source of data to be explored regarding the emergence of
new connections. Besides, most of them are publicly available in
digital environment (Barabasi et al., 2002; Newman, 2001). In a
co-authorship network, a node represents an author and an edge
indicates that two specific nodes have co-authored a paper. As seen
in Section 3, in our work an edge also stores the time when the
relationship was observed. More specifically, in the co-authorship
networks adopted here, each edge stores the publication year of
the co-authored paper.

The network data used in our experiments were collected from
the e-print arXiv,> which maintains a large database of electronic
scientific papers in several fields, such as mathematics, physics,
astronomy, among others. In our experiments, the networks were
built using collaborations from four distinct sub-areas, namely: as-
tro-physics (astro-ph), condensed matter (cond-mat), high energy
physics - lattice (hep-lat) and theoretical high energy physics (hep-
th). Collaborations from 1993 to 2000 were used for astro-ph and
cond-mat, and collaborations from 1992 to 2010 were used for hep-
lat and hep-th. The summarized information about the adopted net-
works are presented in Table 1.

In our experiments, a prediction window of size one was
adopted, and hence the aim of the analysis is to investigate how
the networks evolved every year. By following the methodology
described in Section 3.1, a temporal structure A" was built for each
network. For astro-ph and cond-mat, data from 1993 to 1999 were
used to build A (with a total number of n =7 frames) and the
snapshot from 2000 was used as the prediction frame. For hep-lat
and hep-th, A” was built with collaborations from 1992 to 2009
(with a total number of n = 18 frames), whereas the prediction
frame was composed by collaborations from 2010.

As mentioned in Section 3.2, adequate values for the reward
parameters can be estimated by evaluating the link prediction per-
formance on a validation set. In our work, the last frame of A/ was
adopted as the validation set in order to perform parameter selec-
tion for each network: the frame of 1999 was used to validation for
the astro-ph and cond-mat networks and the frame of 2009 was used
to validation for hep-lat and hep-th.

As usual in the link prediction field, our aim is to investigate the
prediction of new links in a network. Therefore, for each network,
the initial list of candidate pairs to be evaluated is formed by pairs
that are not connected in the last frame of A. The final list is

2 arXiv.org e-Print archive - Cornell University Library.

Table 1
Networks statistics.
astro-ph cond-mat hep-lat hep-th

Papers 19,077 20,664 9,367 38,569
Authors 16,978 18,070 4,718 17,887
Collaborations 140,157 56,731 32,309 58,855
Density (104) 9.7252 3.4746 29.0355 3.6792
Avg. degree 16.51 6.28 13.70 6.58

formed by picking (from the initial list) only the dyads that were
directly or indirectly affected by some event during the network
evolution. Table 2 shows the distribution of the candidate pairs
of nodes regarding their class labels (connected or non-connected)
both in the validation and the test sets.

As it can be seen, the class distribution is highly imbalanced,
which is a common problem related to the link prediction task.
In order to minimize the effect of imbalanced data during evalua-
tion, the Area Under ROC Curve (AUC) was adopted as the measure
of performance. ROC curves relate the sensitivity (true positive
rate) and specificity (true negative rate) of a classifier. The AUC
has been traditionally used in imbalanced classification problems
(Murata & Moriyasu, 2008; Wang et al., 2007) due to its higher
robustness to class distribution anomalies (Fawcett, 2006). Finally,
for more reliable results, we performed a bootstrap over the test
set by taking 100 randomly stratified sub-samples and computing
the AUC. The 10% of the best results and 10% of the worst results
were discarded and the average AUC was computed.

4.2. Baseline methods

In our experiments, the proposed measures were compared
with different measures previously adopted in the literature of link
prediction. Initially, four classical proximity scores based on neigh-
borhood were considered: PA, CN, AA and JC. These are very popu-
lar measures used in the state of the art of link prediction
(Bringmann et al., 2010; Lichtenwalter et al., 2010). Each measure
is explained below.

The PA measure assumes that the probability of a future link
between two nodes is proportional to their degrees. In a co-author-
ship network, such probability is correlated to the product of the
number of collaborators they have Barabasi et al. (2002). Hence,
it is defined as:

PA(u, v) = [[T)[| > |IT(2)]] (11)

The CN measure states that the bigger the number of neighbors two
nodes share, the higher is their probability to form a link in the
future (Newman, 2001). Formally, the measure is defined as:

CN(u,v) = ||I'(u) nT'(v)]| (12)
The AA measure refines the CN by increasing the scores of pairs of

nodes in which the neighbors in common possess less connections
(Adamic & Adar, 2003). Its formal definition is:

Table 2
Class distribution for the validation and test sets.
astro-ph cond-mat hep-lat hep-th

(a) Validation set
No. of pairs 745,683 149,769 330,137 498,782
Connected (+) 7,797 1,737 1,099 1,232
Non-connected (—) 737,886 148,032 329,038 497,550
Proportion (*/_) 1.06% 1.17% 0.33% 0.25%
(b) Test set
No. of pairs 1,337.607 254,651 373,053 553,544
Connected (+) 9,791 2,665 608 1,626
Non-connected (—) 1,327.816 251,986 372,445 551,918
Proportion ((*/_)) 0.74% 1.06% 0.24% 0.29%
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1

AA(u, v) = zer(uz);m log(IT)I])

(13)

Finally, the JC assumes higher proximity values for pairs of nodes
which share a higher proportion of common neighbors relative to to-
tal number of neighbors they have Salton and McGill (1986).

IIT(u) " T(@)|]
T2 = Irw o) 1
The above measures were statically applied to the whole graph G
(i.e., in the current state of the network) without considering tem-
poral information. In our work, we also performed experiments
with the time series approach for link prediction (Potgieter et al.,
2009; Soares & Prudéncio, 2012) described in Section 2. As our cur-
rent work, this approach also considers temporal information dur-
ing the link prediction. Initially the network is split into frames,
using the same procedure described in Section 3.1. Given a chosen
proximity measure, a time series is built for each pair of nodes by
applying the measure in each network frame. A forecasting model
is then used in order to predict the next value of the series. Such
forecast value is defined as the final proximity score of the pairs
of nodes. Compared to the proposed work, we can point out a diffi-
culty related to the time series approach, which is the choice of a
good forecasting model. In fact, in the experiments performed in
Soares and Prudéncio (2012) using co-authorship networks, the
choice of the forecasting model strongly affected the link prediction
performance. In our work, we performed experiments adopting AA
as the measure to build the time series and the linear regression
(LR) model as the forecasting model. That was the best combination
of proximity measure and forecasting model in the experiments
presented in Soares and Prudéncio (2012).

Finally, we highlight that similarly to the proposed measures,
the baseline measures described in this section (both the static
ones and the time series approach) were applied for unsupervised
link prediction.

4.3. First-round experiments

As described in Section 3.3, the event-based measure is poten-
tially affected by the rewards associated to each of the three
events: conservative, innovative and regressive. In the first round
of experiments, we aimed: (1) to evaluate the effect of rewards’
values in the performance of the proposed measure; and (2) to ver-
ify whether these values can be properly chosen using a validation
set. We deployed the validation set to empirically evaluate and
select the best combination of rewards in the link prediction task.
In this round, as mentioned in Section 3.2, i was fixed to 1.0 and the
other two parameters ¢ and r varied proportionally to
i:c=1{0.0,0.25,0.5,1.0,2.0} and r={-2.0,-1.0,-0.5,-0.25}.
We consider here a fixed value for ¢, since our focus was to inves-
tigate the adopted rewards’ values. The value of o« was set to 0.05
through a preliminary and exploratory battery of experiments.
Table 3 shows the AUC value obtained by each combination of
the rewards in the validation set for all networks. The best four ob-
served results for each network are presented in bold.

As it can be seen, the most effective combinations of reward did
not vary so much from one network to another. The best results
were obtained by parameters (c and r) around the same region
(lower central) in the tables for all networks. Besides, these results
indicate that conservative and regressive rewards can balance each
other. The best performance values were achieved when c <1,
although some good results were also obtained when we consid-
ered a higher weight (2.0) to the conservative reward. In our exper-
iments, if regressive reward is roughly weighted, the event-based
method did not perform well (this can be noticed by analyzing
results obtained with r = —2.0 and —1.0). As one could expect, this

Table 3

AUCs obtained by different combinations of rewards on the validation sets.
r/c 0.0 0.25 0.5 1.0 2.0
(a) astro-ph
-2.0 0.3402 0.3552 0.3698 0.4074 0.4681
-1.0 0.6301 0.6657 0.6773 0.6919 0.6972
-0.5 0.7931 0.7998 0.8012 0.8018 0.7996
-0.25 0.7967 0.8021 0.8035 0.8041 0.8023
(b) cond-mat
-2.0 0.3002 0.3087 0.3181 0.3530 0.4239
-1.0 0.5684 0.6202 0.6318 0.6483 0.6507
-0.5 0.7928 0.8083 0.8131 0.8128 0.8092
-0.25 0.7964 0.8086 0.8109 0.8123 0.8105
(c) hep-lat
-2.0 0.3792 0.4553 0.5801 0.6849 0.7273
-1.0 0.8002 0.8330 0.8294 0.8206 0.8102
-0.5 0.8406 0.8476 0.8467 0.8424 0.8340
-0.25 0.8309 0.8374 0.8389 0.8378 0.8331
(d) hep-th
-2.0 0.2610 0.2843 0.3276 0.4264 0.5223
-1.0 0.6668 0.7599 0.76554 0.7678 0.7584
-0.5 0.8501 0.8579 0.8555 0.8502 0.8409
-0.25 0.8433 0.8497 0.8491 0.8469 0.8411

shows that if the aim is to predict new links in a network, then the
history of innovative and conservative events assumes a higher de-
gree of importance in the prediction process.

Table 4 shows the AUC value obtained by each combination of
the rewards in the test set for all networks. The results observed
in the test sets did not varied substantially from those ones ob-
served in the validation set. The best configurations of parameters
were also similar considering the validation and the test set (see
Table 5). This supports the conclusions we made regarding rewards
and indicates that they can be determined empirically using a val-
idation set.

4.4. Second-round experiments

In the second round of experiments, our aim was to investigate
how the amortization factor o affects the performance of the
event-based measure. As explained in Section 3.3, this parameter
indicates the importance of the secondary events in relation to pri-
mary events in our proposed measure. In this experiment, we eval-

Table 4

AUCs obtained for several combinations of ¢ and r on the test sets.
r/c 0.0 0.25 0.5 1.0 2.0
(a) astro-ph
-2.0 0.3462 0.3684 03916 0.4401 0.5116
-1.0 0.6423 0.6781 0.6875 0.6979 0.7006
-0.5 0.7844 0.7911 0.7922 0.7916 0.7879
-0.25 0.7861 0.7919 0.7927 0.7929 0.7909
(b) cond-mat
-2.0 0.3041 0.3109 0.3259 0.3743 0.4303
-1.0 0.5731 0.6325 0.6408 0.6544 0.6535
-0.5 0.8072 0.8154 0.8147 0.8122 0.8064
-0.25 0.8078 0.8126 0.8127 0.8123 0.8091
(c) hep-lat
-2.0 0.2945 0.3618 0.4934 0.6431 0.7353
-1.0 0.7652 0.8480 0.8429 0.8403 0.8349
-0.5 0.8483 0.8573 0.8574 0.8557 0.8515
-0.25 0.8393 0.8478 0.8506 0.8527 0.8508
(d) hep-th
-2.0 0.2258 0.2376 0.2706 0.3583 0.4634
-1.0 0.6624 0.7303 0.7331 0.7303 0.7220
-0.5 0.8605 0.8625 0.8587 0.8529 0.8441
-0.25 0.8555 0.8558 0.8541 0.8518 0.8466
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Table 5

Best rewards settings extracted from experiments on validation and test sets.

astro-ph cond-mat hep-lat hep-th

(a) Validation set
c 1.0 0.5 0.25 0.25
i 1.0 1.0 1.0 1.0
r -0.25 -0.5 -0.5 -0.5
(b) Test set
c 1.0 0.25 0.5 0.25
i 1.0 1.0 1.0 1.0
r -0.25 -0.5 -0.5 -0.5

uated the proposed measure by adopting different values of o
ranging from O to 1.5, with an increment of 0.05. We highlight that
when o = 0, secondary events are in fact not taken into account.
For higher values (such as o = 1.5) in turn, possibly an excessive
importance is given to secondary events, which may harm the
prediction performance. In this section, the rewards c, r and i were
fixed according to the best configuration observed in the validation
set in the previous round of experiments.

The AUC values obtained as « varies are illustrated in Fig. 2.
When o assumes a null value, the performance of the model is
harmed because secondary events are not being taking into
account in the prediction task. In this case, the measure will only
be able to predict connections between pairs affected by primary
events any time in the past, that is, pairs that were connected in
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at least one frame of A. This shows the effectiveness of secondary
events in the prediction of new connections.

The best AUC values were obtained by adopting o = 0.05, which
is a relatively small value considering the range of values evaluated
in our experiments. When it approaches to higher values, the
method performs worse since surrounding pairs are becoming as
important as the main pair of nodes in analysis. Besides, the num-
ber of secondary events is much bigger than the total amount of
primary events (mainly if the network is dense). Hence, isolated
secondary events should contribute with small values, which when
aggregated, can outstand in the predictive process without, how-
ever, mask the effects of the primary events. In this section, we
suggest a simple heuristic to define the value of o based on the
ratio between the total number of primary events and secondary
events in A (see Table 6). As it can be seen, the AUC results
obtained by adopting the heuristic value for o were similar to
the best results observed in Fig. 2.

4.5. Last-round experiments

In the previous experiments we evaluated the event-based
score focusing on its parameters. In this section, we evaluated it
aiming to determine if the age of the temporal events (event-based
score with Eq. (9)) can bring any gain of performance to the predic-
tion task. Aditionally, we compared the event-based scores to the
baseline measures described in Section 4.2. Table 7 present the
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Fig. 2. Plot of AUC versus the amortization factor o.
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Table 6
Proportion between the number of primary events (P) and secondary events (S).
astro-ph cond-mat hep-lat hep-th
Pls 0.0116 0.0391 0.0089 0.0238
AUC with oo = P/S 0.7953 0.8160 0.8664 0.8627
Best AUC 0.7948 0.8269 0.8681 0.8830
Table 7
Performance of the methods (AUCs).
astro-ph cond-mat hep-lat hep-th
Event-based (8 = log) 0.7948 0.8269 0.8681 0.8830
Event-based (=1) 0.7929 0.8147 0.8573 0.8625
Time series (AA +LR) 0.7584 0.7402 0.8537 0.7899
AA 0.7844 0.7346 0.8049 0.7513
CN 0.7391 0.6744 0.7598 0.6838
]C 0.7299 0.6114 0.7408 0.6481
PA 0.5043 0.5455 0.5668 0.4834

AUC value obtained by the proposed scores and the baseline meth-
ods. In this table, we refer the function assigned to g to distinguish
between the scores generated by using the two aforementioned
equations.

The results showed that the methods that deploy temporal
information (i.e., the event-based scores and the time series
approach) in general outperformed the classical static approach
based on PA, CN, AA and ]JC. These results confirm that temporal
information is actually an important aspect to consider for link
prediction. The event-based scores obtained the best results from
all methods considered. The performance gain was higher for the
cond-mat, hep-lat and hep-th networks, but less expressive for the as-
tro-ph network, in which the event-based score was quite similar to
AA alone. In our results, we observed a performance gain when the
event-based score using 8 = log was compared to the event-based
score using f =1 in all networks considered, what supports our
belief that recent events carry more information about the emer-
gence of links.. Although, the performance gain was in general
small in absolute values, it was statistically verified using a t-test
with a 95% level of confidence.

Finally, although both the time series approach and the event-
based methods explore the temporal nature of the network, the
proposed approach obtained the best comparative results. The per-
formance gain was statistically verified with a 95% level of confi-
dence. The proposed measure analyses the network by focusing
on the connections as such, and for that, it was able to extract more
relevant information to the prediction of ties that might emerge in
a close future. The method based on time series, on the other hand,
assumes that the topological measure history shows some ten-
dency as the network evolves. Thus, it performs an indirect analy-
sis of the connections in the network. In most cases, the time series
approach outperformed the static approach, but it was not able to
overcome the results achieved by an analysis strictly focused on
the links, as done by the method based on events.

5. Conclusion

In this work we introduced a new proximity measure for link
prediction based on the notion of temporal events. Differently from
the classical static approach that takes the network at time t in
order to predict new connections at future time t’, our method
takes temporal information into account by monitoring how the
network evolved along time. Our method consists of computing
scores by aggregating rewards of the temporal events observed
at each step in the network evolution, which resulted in more rep-
resentative scores to the dyads under analysis. Different experi-

ments were performed in four co-authorship networks, initially
aimed to evaluate the robustness of the proposed method concern-
ing its parameters. The obtained results suggest that the method
was quite stable concerning the definition of its parameters across
the different networks adopted, although more experiments need
to be performed in other domains of application. Also, we verified
the importance of considering secondary events in the proposed
measure.

In the performed experiments, we also compared the event-
based score to other baseline approaches proposed in the literature
of link prediction. The obtained results showed that the event-
based measure outperformed the baseline measures considered,
indicating that the combination of interactions between nodes
and the dynamics of common neighborhood can bring a gain in
performance to the prediction task. Additionally, when the age of
the temporal events was taken into account, the method per-
formed slightly better, indicating that more recent events can bring
more useful information to the prediction process. In our work, we
adopted a log function in order to give a higher weight to more
recent events. Nevertheless, other functions can be evaluated in
the future (e.g., linear) to weight the recent events. Also, different
functions can be associated to each category of temporal event if
we assume for instance that recent events from one category are
actually more important that the other events.

Finally, we highlight that the event-based score described here
was specific to undirected and unweighted networks. A possible
future line of research is to extend the ideas discussed here to more
complex categories of networks. For instance, a variety of temporal
events could be defined if the direction of the links is considered
(e.g., a conservative event is observed in a direction but a regres-
sive event is observed in the other direction, thus indicating a
non-reciprocal interaction between the nodes at a given moment).
Also, in the case of weighted networks, temporal events could con-
sider an increase or decrease of the weight between the nodes
along time, instead of just considering the existence of the links.
The rewards in such cases should be carefully defined in order to
adequately reflect the important of the events in the link predic-
tion process.
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