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Abstract

Meta-Learning aims to automatically acquire knowledge relating features of
learning problems to the performance of learning algorithms. Each train-
ing example in Meta-Learning (i.e. each meta-example) stores features of a
learning problem plus the performance obtained by a set of algorithms when
evaluated on the problem. Based on a set of meta-examples, a meta-learner
will be used to predict algorithm performance for new problems. The gener-
ation of a good set of meta-examples can be a costly process, since for each
problem it is necessary to perform an empirical evaluation of the algorithms.
In a previous work, we proposed the Active Meta-Learning, in which Active
Learning was used to reduce the set of meta-examples by selecting only the
most relevant problems for meta-example generation. In the current work,
we extend our previous research by combining different Uncertainty Sam-
pling methods for Active Meta-Learning, considering that each individual
method will provide useful information to select relevant problems. We also
investigated the use of Outlier Detection to remove a priori those problems
considered as outliers, aiming to improve the performance of the sampling
methods. In our experiments, we observed a gain in Meta-Learning perfor-
mance when the proposed combining method was compared to the individual
active methods being combined and also when outliers were removed from
the set of problems available for meta-example generation.

Keywords: Meta-Learning, Algorithm Selection, Active-Learning,
Uncertainty Sampling, Outlier Detection.
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1. Introduction

The selection of adequate algorithms for a given learning problem is an
important task to be accomplished by developers in Machine Learning and
Data Mining applications [9]. During the algorithm selection, the developer is
usually faced to a variety of algorithms to choose, in such a way that selecting
the most adequate one is not always a trivial task. Meta-Learning emerged
in this context as a framework aiming to relate features of the learning prob-
lems to the performance of the learning algorithms [5], thus supporting the
selection of the algorithms which best match to the characteristics of the
problems at hand.

The knowledge in Meta-Learning is acquired from a set of meta-ezamples
associated to learning problems solved in the past by a set of one of more
candidate algorithms. Each meta-example is generated from a given problem
and stores: (1) features describing the problem (e.g., number of training
examples, correlation between attributes,...); and (2) information about the
performance obtained by the algorithms when evaluated on the problem (e.g.
estimated cross-validation error). By receiving a set of such meta-examples,
another learning algorithm (the meta-learner) is applied to acquire knowledge
relating the performance of the candidate algorithms and the descriptive
features of the problems. The acquired knowledge can then be used to predict
algorithm performance for new problems not seen during the Meta-Learning
process and to understand the behavior of the algorithms.

Despite the benefits of Meta-Learning, a limitation can be pointed out
regarding the process of generating meta-examples. In fact, in order to pro-
duce a meta-example, it is necessary to perform an empirical evaluation (e.g.
cross-validation) of the candidate algorithms on a problem. Hence, the cost
of generating a good enough set of meta-examples may be high, depending,
for instance, on the number and complexity of the candidate algorithms, the
methodology of empirical evaluation and the size of the available problems.
Also, it is not trivial to know a priori how many meta-examples are necessary
in order to provide a good learning set for the Meta-Learning process. One
could solve this difficulty by generating a very large set of meta-examples,
however it is not desirable to spend too much computational resources to pro-
duce meta-examples which can eventually be redundant or even irrelevant. A
more feasible solution should produce a minimal set of meta-examples only
containing information related to relevant learning problems for the Meta-
learning task at hand.



In a previous work [24], we proposed the Active Meta-Learning in which
Active Learning techniques [8] were used to support the generation of meta-
examples. Active Learning is a paradigm of Machine Learning which aims to
reduce the number of training examples, at same time maintaining (or even
improving) the performance of the learning algorithm. Active Learning is
ideal for learning domains in which the acquisition of labeled examples is an
expensive process, which is the case of Meta-Learning.

In [24], we presented the first experiments performed to evaluate the via-
bility of Active Meta-Learning. In that work, different active methods based
on Uncertainty Sampling were used to select meta-examples for an instance-
based meta-learner. The experiments performed in [24] showed a significant
gain in Meta-Learning performance when the Uncertainty Sampling methods
were used. However, in these experiments, the performance of the evaluated
active methods varied a lot during the selection of meta-examples, and in
some cases presented a complementary behavior. Based on these results, in
[25] a combining procedure of different active methods (the Average Rank)
was proposed and evaluated. In this procedure, each method being combined
is initially used to generate a ranking for the problems available to generate
meta-examples. The ranks assigned by the different methods are then aver-
aged in order to provide a final score of relevance for each problem. Finally,
the problems with better average ranks are selected to generate new meta-
examples. In [25], the Average Rank method yielded better results compared
to the individual methods being combined.

In the current work, we extend our previous research by proposing and
evaluating new combining procedures, thus performing a further investiga-
tion on the combination of different Uncertainty Sampling methods for Ac-
tive Meta-Learning. In the Alternate procedure, a single and different active
method is randomly chosen at each active iteration and adopted to perform
the selection of meta-examples. In the Two-Step Tournament procedure,
an individual method is applied to perform an initial selection (filtering)
of meta-examples which will be later evaluated by a second active method.
Finally, in the Average Uncertainty, the uncertainty scores provided by dif-
ferent active methods are normalized and averaged in order to provide the
relevance score for each problem. In the current work, we also investigated
the effect of outliers in the performance of the Uncertainty Sampling meth-
ods, which is a drawback already known in the literature of Active Learning
[31]. In this direction, an Outlier Detection technique was used to improve
the performance of Uncertainty Sampling by removing outliers among the
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problems available for meta-example generation.

In this paper, the techniques being combined were evaluated on a case
study which consisted of predicting the performance of Multi-Layer Percep-
tron (MLP) networks for regression problems. In the performed experiments,
the obtained results revealed a gain in the Meta-Learning performance when
the combining procedures were used to generate meta-examples. The exper-
iments also revealed that the performance of Active Meta-Learning can be
improved with the removal of problems considered as outliers.

Section 2 brings a brief presentation of Meta-Learning, followed by section
3 which presents relevant work on Active Learning. Section 4 presents the
proposal of Active Meta-Learning, followed by the techniques combined in
our work. Section 5 presents the experiments and results. Finally, section 6
concludes the paper.

2. Meta-Learning

Meta-Learning tries to understand the performance of learning algorithms
based on experience systematically acquired from different problems [5, 11].
It acquires knowledge from a set of meta-examples, which store the experience
obtained from applying the algorithms to different problems in the past.
According to [39], Meta-Learning can be defined by considering four aspects:

e (1) the problem space, P, representing the set of instances of a given
problem class (usually classification and regression problems);

e (2) the meta-feature space, F', that contains characteristics used to
describe the problems (e.g., number of training examples, correlations
between attributes, ...);

e (3) the algorithm space, A, that is a set of one or more candidate
algorithms to solve the problems in P;

e (4) a performance information, Y, that characterizes the performance
of an algorithm on a problem (e.g., classification accuracy estimated
by cross-validation).

In this framework, Meta-Learning receives as input a set of meta-examples,
in which each meta-example is derived from the empirical evaluation of the al-
gorithms in A on a given problem in P. More specifically, each meta-example



stores: (1) the values of the meta-features F' extracted from a problem; and
(2) the performance information Y estimated for the problem. Hence, the
meta-learner is another learning technique that relates a set of predictor
attributes to the performance information.

Different Meta-Learning approaches have been proposed in the literature.
In a strict approach (e.g., [15]), each meta-example stores as performance in-
formation a class attribute associated to the candidate algorithm which ob-
tained the highest accuracy in the learning problem. In this formulation, the
meta-learner just becomes a classifier in which the meta-features correspond
to predictor attributes for the class label associated to the best candidate
algorithm.

Other approaches have been proposed in order to add new functionalities
in the Meta-Learning process and to provide new variants of the algorithm se-
lection task. The Meta-Regression approach [3], for instance, tries to directly
predict the accuracy (or alternatively the error) of the learning algorithms
instead of simply predicting the class that corresponds to the best algorithm.
In [12, 6, 27|, the authors proposed different Meta-Learning approaches to
generate rankings of algorithms taking into account multiple performance
information criteria. We can also mention the use of Meta-Learning for se-
lecting parameters of a single learning algorithm, including for instance the
selection of kernel parameters for Support Vector Machines [41] and the use
of Meta-Learning to decide when to prune a decision tree [40]. More detailed
reviews of these developments can be found in recent textbooks [5, 13, 11].

Although Meta-Learning has been mainly investigated for algorithm se-
lection on classification and regression problems, its concepts and techniques
have also been adapted to other domains of application, including time series
forecasting [23], combinatorial optimization [38], software engineering [7] and
bioinformatics [21, 42]. In this sense, as highlighted in [39], Meta-Learning
can be useful in a potentially large number of fields since its developments
can be extrapolated to learn about the behavior of algorithms on different
classes of problems.

3. Active Learning

Active Learning is a paradigm of Machine Learning in which the learning
algorithm has some control over the inputs on which it trains [§8]. The main
objective of this paradigm is to reduce the number of training examples, at
same time maintaining (or even improving) the performance of the learning



algorithm. Active Learning is ideal for learning domains in which the acqui-
sition of labeled examples is a costly process, such as image recognition [18],
text classification [46, 29], speech recognition [30] and information filtering
[32]. Also, according to [4], Active Learning presents advantages compared to
the traditional passive learning, since it can be more efficient in case of time-
consuming learning algorithms and can improve generalization performance
by selecting only the informative training examples.

In [2], the author proposed the membership query approach for Active
Learning, in which, the learner artificially creates informative examples in the
input domain and asks the teacher to annotate it. Although it represents a
landmark work in the Active Learning field, the membership query approach
is limited in practice since it is likely to produce examples that do not have
any sense in the domain of application (e.g. an unrecognizable image) [20].

According to [18], previous work in Active Learning has been mainly con-
centrated in the selective sampling approach. In this approach, the learning
algorithm has access to a set of (natural) unlabeled examples and, at each
moment, selects the most informative ones. The teacher is asked to label the
selected examples, which will be then included in the training set. According
to [20], the selective sampling methods can be distinguished on three main
categories, uncertainty-sampling methods, version space reduction methods
and error reduction methods, described just below.

The concept of uncertainty has been adopted in different contexts to im-
prove learning performance [47]. In wuncertainty-sampling methods [16, 34,
33, 18, 29, 35, 48] for selective sampling, in order to select unlabeled exam-
ples, the learner initially uses the currently labeled examples to generate a
prediction for each unlabeled example. Following, a degree of uncertainty
of the provided prediction is assigned for each unlabeled example. Finally,
the active method selects the example with highest uncertainty. According
to [20], these methods can be straightforwardly applied to many different
learning algorithms. Among the uncertainty measures proposed in the liter-
ature, we can cite distance-based measures for instance-based learning [18],
entropy-based measures [35], margin-based measures [33, 37] and maximal
classification ambiguity [48]. A limitation of uncertainty based methods,
however, is that they often select examples that are outliers [31]. Such ex-
amples have in fact a high degree of uncertainty but they should not be
considered as informative.

In the version space reduction methods (also called committee-based meth-
ods) [1, 17, 19, 36, 46], a subset of the version space (i.e. a committee of
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hypotheses consistent with the current labeled examples) is generated and
then applied to make predictions for the unlabeled examples. The method
then selects the unlabeled example on which the members of the committee
most disagree. These methods are actually related to uncertainty meth-
ods, since the degree of disagreement on the committee’s predictions can be
viewed as a measure of uncertainty. Different committee-based methods were
proposed in the literature. These methods can be mainly distinguished by
the way of generating the committees, which includes, for instance, the use
of bagging and boosting algorithms [1].

In the error reduction methods [18, 31, 45], the selected unlabeled ex-
ample is the one that minimizes the expected error rate of the learner, once
labeled and included in the training set. Since the true label of an unlabeled
example is not known a priori, the expected error rate is an average rate over
the possible labels that the example could be assigned to. Although these
methods have obtained good performance compared to other selective sam-
pling methods, they are computationally expensive, since for each candidate
example and possible label, it is necessary to re-train the learner in order to
compute the expected error rate [31].

4. Active Meta-Learning

As it was said, Active Learning methods have been applied to reduce
the costs associated to data acquisition in different Machine Learning appli-
cations. In our work, we argue that Active Learning can also be useful in
the context of Meta-Learning, since the process of producing an adequate
set of meta-examples may be costly. In fact, in order to generate a single
meta-example from a given problem, it is necessary to perform an empir-
ical evaluation of the candidate algorithms on the problem (as explained
in section 2). Hence, the cost of generating a whole set of meta-examples
may be high depending on a number of aspects, including for instance, the
methodology adopted for empirical evaluation and the number and complex-
ity of the candidate algorithms. In this context, the use of Active Learning
may improve the Meta-Learning process by reducing the number of required
meta-examples, and consequently the number of empirical evaluations on the
candidate algorithms. Active Learning can be specially useful in the context
of new architectures developed to collect and exploit meta-knowledge through
large databases of experiments in Machine Learning [28].
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Figure 1: System Architecture.

The use of Active methods for supporting the generation of meta-examples
can not only reduce the costs of data acquisition but can also improve the
generalization performance of the Meta-Learning process. In the literature of
Meta-Learning, training examples are usually generated from learning prob-
lems which are randomly collected in data repositories. Hence, the collected
problems can eventually be irrelevant or redundant for the Meta-learning
task at hand. By deploying Active Learning, we expected to select only the
most relevant problems, thus producing a high quality set of meta-examples
and improving performance in the Meta-Learning task.

Fig. 1 presents the architecture of system following the Active Meta-
Learning originally proposed in [24]. This proposal has three phases. In
the meta-example generation, the Active Learning (AL) module selects from
a base of problems, those ones considered the most relevant for the Meta-
Learning task. The selection of problems is performed based on a pre-defined
criteria implemented in the module, which takes into account the features
of the problems and the current knowledge of the Meta-Learner (ML). The
candidate algorithms are then empirically evaluated on the selected problems,
in order to collect the performance information related to the algorithms.
Each generated meta-example (composed by meta-features and performance
information) is then stored in an appropriate database.

In the training phase, the Meta-Learner acquires knowledge from the
database of meta-examples generated by the AL module. This knowledge
associates meta-features to the performance of the candidate algorithms. The
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acquired knowledge may be refined as more meta-examples are provided by
the AL module.

In the use phase, given a new input problem, the Feature Extractor (FE)
module extracts the values of the meta-features. According to these values,
the ML module predicts the performance information of the algorithms. For
that, it uses the knowledge previously acquired as a result of the training
phase.

In [24], we presented the initial experiments performed to evaluate the
Active Meta-Learning proposal. In this work, two different Uncertainty Sam-
pling methods were evaluated in an implemented prototype. Experiments
performed in case studies revealed that no active method was always better
than the other. We also observed in our experiments that despite the gain
achieved in meta-learning performance, the Uncertainty Sampling often gen-
erated meta-examples which are outliers. As mentioned in section 3, such
limitation of Uncertainty Sampling was already stated in the literature of
Active Learning.

In the current work, we proposed to combine different active methods,
aiming to have a better assessment of the relevance of each learning problem
available for the generation of meta-examples. More specifically, we combined
in the current work different Uncertainty Sampling techniques and an Outlier
Detection procedure, applied to Active Meta-Learning. In this combination,
we first remove unlabeled meta-examples considered as outliers, and then
combine different Uncertainty Sampling techniques in order to progressively
select from the remaining unlabeled meta-examples the most informative
ones to be labeled. Preliminary results of combining different techniques for
Active Meta-Learning were presented in [25], in which a combining method
based on Awverage Rank of unlabeled meta-examples was proposed. In the
current work, we extend our previous research by proposing and evaluating
three new combining methods: the Alternate, the Average Uncertainty and
Two-Step Tournament methods (described in Section 4.2). We highlight that
to the best of our knowledge the combining methods proposed here are origi-
nal in the literature. We also provide in the current work a better description
and discussion of the proposed techniques as well as more comparative ex-
periments, specifically aiming to evaluate the combined methods compared
to the individual methods being combined and also to evaluate the value of
the outlier detection technique.

In order to evaluate our proposal, we implemented a prototype which
was applied in a case study. In this prototype, the k-Nearest Neighbors (k-
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NN) algorithm was used to predict the performance of MLPs for regression
problems. A distance-based technique [14] was adopted to remove outliers,
and two different Uncertainty Sampling methods were used in isolation and
also being combined by the four combining methods considered. In the next
subsections, we provide more details of the implemented prototype.

4.1. Meta-Learner

The Meta-Learner in the prototype corresponds to a conventional clas-
sifier, and it is applicable to tasks in which the performance information is
formulated as a class attribute (e.g. the class associated to the best algorithm
or the class related to patterns of performance).

In the implemented prototype, we used the k-NN algorithm which has
been applied in different applications of Meta-Learning [6, 41, 27]. Accord-
ing to [6], instance-based learning algorithms such as the k-NN have some
advantages when applied to Meta-Learning. For instance, when a new meta-
example becomes available, it can be easily integrated without the need to
initiate re-learning [6]. Also, the k-NN algorithm may be interesting for ac-
tive learning purposes, since it may be able to produce reliable results with
few training examples. In this section, we provide a description of the meta-
learner based on k-NN. Other classes of learning algorithms, such as neural
networks and support vector machines, can be applied in future work as
meta-learners.

Let E = {ey,...,en} be the set of n problems used to generate a set of n
meta-examples M E = {mey,...,me,}. Each meta-example is related to a
problem and stores the values of p features Xi,..., X, (implemented in the
FE module) for the problem and the value of a class attribute C, which is
the performance information.

Let C = {¢1,...,cr} be the domain of the class attribute C', which has
L possible class labels. In this way, each meta-example me; € M E is repre-
sented as the pair (x;, C(e;)) storing: (1) the description x; of the problem

e;, where x; = (z},...,2¥) and 7 = X;(e;); and (2) the class label associated
to e;, i.e. C(e;) = ¢, where ¢; € C.
Given a new input problem described by the vector x = (z,...,2P), the

k-NN meta-learner retrieves the £ most similar meta-examples from M E,
according to the distance between meta-attributes. Following previous work
in the meta-learning field (e.g. [6]), the distance function (dist) implemented
in the prototype was the unweighted L;-Norm, defined as:
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dist(x,x;) =Y : (1)

j=1 mazi(a]) — min(«])

The prediction of the class label for the new problem is performed accord-
ing to the number of occurrences (votes) of each ¢; € C in the class labels
associated to the retrieved meta-examples.

4.2. Active Learning

As seen, the Meta-Learner acquires knowledge from a set of labeled meta-
examples associated to a set of learning problems. The Active Learning
module, described in this section, receives a set of unlabeled meta-examples,
associated to the problems in which the candidate algorithms were not yet
evaluated and, hence, the class labels are not known. Therefore, the main
objective of this module is to incrementally select unlabeled meta-examples
to be labeled.

As said, in this module we combined two classes of techniques. First,
an Outlier Detection technique is used to remove unlabeled meta-examples
which are considered as spurious points in the meta-learning task. Following,
an Uncertainty Sampling method is used to select from the remaining set of
unlabeled meta-examples, the most informative ones to be labeled. Details
of the two techniques are described as follows.

4.2.1. Qutlier Detection

In our prototype, we adapted the Distance-Based method proposed in
[14] for Outlier Detection. Here, we eliminated from the set of the unlabeled
meta-examples, those ones which most deviates from the others in terms of
its distances.

Let F = {€1,...,émn} be the set of m problems associated to the available
set of m unlabeled meta-examples ME = {mey, ..., mé,,}. Each me; € ME
stores the description X; of a problem ¢; € E. For detecting outliers, we first
calculate the average distance between the meta-examples in M E. Formally,
for each different pair (me;, me;), we first calculate the distance: dist(X;,X;).
Following, we compute the average of these distances as follows:

1

Hdist = m N Z diSt(iz‘aij) (2)

mei,nfﬁjem,i#j
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Finally, in order to measure how much an unlabeled meta-example me; is
considered as an outlier, we compute the proportion of the other unlabeled
meta-examples in M E which are distant from it by at least the reference
value pi4;5¢. Formally, let G; = {me; € ME|i # j, dist(X;,X;) > ftaist} e the
set of unlabeled meta-examples which are distant from me;. The measure
Outlier Degree is defined as:

|Gl

Outlier Degree(me;) = — (3)

The unlabeled meta-examples can be sorted by using this measure, in such
a way that the meta-examples with the highest values of Outlier Degree are
considered as outliers. In our prototype, the top 10% of unlabeled meta-
examples in this ranking are removed from the set of candidates to generate
labeled meta-examples.

4.2.2. Uncertainty Sampling

In our prototype, we evaluated different methods for uncertainty sam-
pling. The first two methods described in this section deployed different
criteria for assigning degrees of classification uncertainty to the unlabeled
meta-examples. The next four methods deploy different combining strate-
gies, aiming to explore the eventual advantages of the first two methods.

(a) Uncertainty Sampling: Distance-Based Method

The uncertainty of k-NN was defined in [18] as the ratio of: (1) the dis-
tance between the unlabeled example and its nearest labeled neighbor; and
(2) the sum of the distances between the unlabeled example and its nearest
labeled neighbors of different classes. A high value of uncertainty indicates
that the unlabeled example has nearest neighbors with similar distances but
conflicting labeling. Hence, once the unlabeled example is labeled, it is ex-
pected that the uncertainty in its neighborhood should be reduced.

In our context, let E' be the set of problems associated to the labeled
meta-examples, and let E be the set of problems used to generate unlabeled
meta-examples. Let E; be the subset of labeled problems associated to the
class label ¢, i.e. E; = {e; € E|C(e;) = ¢}. Given E, the classification
uncertainty of k-NN for each ¢ € E is defined as:
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S(elE) = (4)

In the above equation, X is the description of problem e. The AL module
then selects, for generating a new labeled meta-example, the problem e* € F
with highest uncertainty:

7 . . ~
> ooy ming, e g, dist(X, X;)

e* = argmar;_zS(e|E) (5)

Finally, the selected problem is labeled (i.e. the class value C(€*) is
defined), through the empirical evaluation of the candidate algorithms using
the available data of the problem.

We highlight that the above method may be biased towards the number
of classes, since the values of S(€|F) tend to decrease as more distances
are used in Eq. (4). In this way, the performance of this method may be
harmed in the presence of many class labels since the uncertainty measure
tends to be less discriminative. For more than two classes, we suggest here
an alternative definition of S(€|E). Let ¢; be the class label associated to the
labeled meta-example nearest to €. The uncertainty S(é|E) can be defined
as:

min,c g dist(X, x;)

S(e|E) = (6)

The above equation is similar to Eq. (4), however in the denominator we
only consider the sum of the distance to the nearest labeled neighbor and
the distance to the nearest labeled example from any other class (instead of
using all classes). Both formulations lead to the same results for two classes,
but Eq. (6) is not biased in case of a higher number of classes.

ming, cp dist(X,x;) + ming,c(p—p,) dist(X,x;)

(b) Uncertainty Sampling: Entropy-Based Method

In the second active method, we adopted the concept of entropy to define
classification uncertainty. Assume that the k-NN can predict for each given
example a probability distribution over the possible class values. Formally,
the probability distribution for an unlabeled problem € can be represented
as:

po(e|E) = (p(C(€) = c1|E), ..., p(C(e) = cL| E)) (7)
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According to [44], the entropy of the probability distribution reflects the
uncertainty of the classifier in the predicted class value. The entropy of the
probability distribution is computed as:

Ent(e|E) = — ;p(C(é) = a|E) xlog, p(C(e) = a|E) (8)

If the probability distribution is highly spread, the value of entropy will
be high, which indicates that the classifier is not certain in its prediction. On
the other hand, if the distribution is highly focused on a single class label,
the entropy is low, indicating a low degree of uncertainty in predicted class
value.

As in the previous section, in this method, the AL module selects the
problem é* € E with highest uncertainty defined by the entropy measure:

€ = argmar-_zEnt(e|E) (9)

In our work, the class probability distribution for a given example is
estimated by using the number of votes that each class label received among
the retrieved meta-examples.

(c) Combining Method: Average Rank

In this section, we described a method to combine the uncertainty criteria
described in the previous subsections. The combining method was adapted
from a previous work [25] which used the concept of average ranks originally
applied to active construction of user profiles in recommending systems [43].

In the combination, each uncertainty method being combined is initially
used to generate a ranking of unlabeled meta-examples. Following, the rank-
ings provided by the different methods are averaged and the unlabeled meta-
example with the best average rank is selected. The combining method can
be formally described as follows.

Let 74(€) and 7P(€) be the ranks of the unlabeled meta-example €, by
respectively considering the uncertainty methods A and B (i.e., by using the
measures S(€|E) and Ent(e|E) to sort the meta-examples in a decreasing
order and to assign the respective ranks). Hence, the lower is the rank of a
meta-example, the higher is its uncertainty. The two ranks can be combined
using the equation:

7(8) = w x r2(@) + w? x B (e) (10)



where w?, w? € [0;1] and w? + w? = 1. In this equation, 7(€) is the
average rank of €, weighted by the numerical values w? and w?. Finally, the
unlabeled meta-example e* € E with lowest average rank is selected:

e = argmin_z(e|E) (11)

We highlight that the combining method described above can be easily
generalized to combine more than two methods. Also, different values can
be assigned to w4 and w? in order to control the importance of each method
being combined. In our work, for simplicity, we define w? = w? = 0.5,
although different configurations of weights can be evaluated in the future.

(d) Combining Method: Alternate

In the previous combining method, at each iteration an available un-
labeled meta-example is selected by processing information provided by all
active methods being combined. A simpler combining method is presented in
this section where at each iteration a single method is randomly chosen from
the pool of active methods and then it is adopted to select meta-examples.
We named this combining procedure as Alternate method. In our case, we
have two active methods as candidates and only one method is randomly
selected with equal probability (50%) at each active learning iteration.

The Alternate method may be less adequate than the previous combining
method. The information provided by the active methods is not actually
combined by the Alternate method in order to sort the most relevant meta-
examples. Despite this limitation, the Alternate method is computationally
less expensive than the Average Rank since it is not necessary to run all
active learning methods at each iteration (only one active learning method
is used at a time).

(e) Combining Method: Two-Step Tournament

Given two active learning methods, the combining method described in
this section performs a two-step tournament to choose the unlabeled meta-
examples. Initially, a chosen active learning method is applied to perform a
preliminary selection of ¢ unlabeled meta-examples. These unlabeled meta-
examples are sorted by the second active learning method and the best ranked
meta-example is then selected.

Formally, the first selection step performed by a method A results on
a set E4 of ¢ unlabeled meta-examples. By using a second method B, an
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unlabeled meta-example is selected as follows:

e = argmz'n»eveEArB('é[E) (12)

In the above equation, 77 (¢|E) is the rank of the unlabeled meta-example
¢ by considering the uncertainty method B. In our work, at each iteration
we randomly adopt a different active learning method at each Tournament
step (with equal probabilities). The Two-Step Tournament can be adapted
to combine more than two methods by randomly selecting two methods at a
time to perform the Tournament steps.

(f) Combining Method: Average Uncertainty

This combining method is similar to the Average Rank method, how-
ever, the meta-examples are evaluated by averaging the uncertainty values
provided by the methods being combined. Initially, the uncertainty values
provided by the active learning methods for the unlabeled meta-examples are
computed and then normalized. Formally, let P“(€) and PZ(€) be the nor-
malized uncertainty value provided respectively by methods A and B for the
unlabeled meta-example €. By adopting the measures S(é|E) and Ent(e|E)
the normalized uncertainty values are:

N S(elE)
PAe|lE) = —————2— (13)
Sz SElE)
— Ent(e|E)

P5(e|E) = ~ 14
(e E) S Bnt(&]B) (14)

The average normalized uncertainty is computed as:
P(e) = w* x PA(@) + w? x PP(e) (15)
where w?, w? € [0;1] and w? + w? = 1 (in our work, we adopted

w? = w? = 0.5). The unlabeled meta-example ¢* € F with lowest aver-
age normalized uncertainty is selected:

& = argmin_gP(e|E) (16)
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5. Case Study

In the case study, the prototype was evaluated in a meta-learning task
which consisted in predicting the performance of Multi-Layer Perceptron
(MLP) networks for regression problems. The MLP network is a widespread
learning model adopted in different applications over the years. Predicting
the performance of MLP can be useful for practitioners and developers of
learning applications.

The dataset of meta-examples adopted in the current work was originally
built in [24] and later used in [25] for a preliminary evaluation of active
learning combining methods. In the current work, we decide to maintain this
dataset in order to perform a consistent comparison to our previous research.
Also, the regression problems used to produce the meta-examples present a
large variability in its features. This variability has shown to be convenient
to Meta-Learning studies, since different patterns of learning performance
are observed depending on the problem being solved. In this section below,
we provide a description of the meta-examples adopted in our work.

The set of meta-examples was generated from the application of MLP
to 50 different regression problems, available in the WEKA project!. Each
meta-example was related to a regression problem and stored: (1) the values
of p = 10 meta-attributes describing the problem; and (2) a class attribute
which categorized the performance obtained by the MLP network on the
problem.

The first step to generate a meta-example from a problem is to extract
its meta-features. In the case study, a total number of p = 10 meta-features
adopted in [24] was used to describe the datasets of regression problems:

1. Xj - Log of the number of training examples;

2. X5 - Log of the ratio between number of training examples and at-
tributes;

3. X3, X4, X5 and Xg - Minimum, maximum, mean and standard devia-
tion of the absolute values of correlation between predictor attributes
and the target attribute;

4. X7, Xg, X9 and Xjp - Minimum, maximum, mean and standard devi-
ation of the absolute values of correlation between pairs of predictor
attributes.

!These datasets are specifically the sets provided in the files numeric and regression
available to download in http://www.cs.waikato.ac.nz/ml/weka/
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The meta-feature X; is an indicator of the amount of data available for
training, and X5, in turn, indicates the dimensionality of the dataset. The
meta-features X3, X4, X5 and Xj indicate the amount of relevant information
available to predict the target attribute. The meta-features X;, Xy, Xg and
X10, in turn, indicate the amount of redundant information in the dataset.

The second step to generate a meta-example is to estimate the perfor-
mance information on the problem being tackled. In our case study, this step
consists of evaluating the performance of one-hidden layer MLPs trained by
the standard BackPropagation (BP) algorithm?. We highlight here that there
are different algorithms to train MLPs that could have been used to improve
MLP’s performance. However, the aim in this work is not to achieve the best
possible performance with MLPs but to predict learning performance. Other
learning algorithms to train MLPs (such as Extreme Learning Machines [10])
can be applied in the future as new case studies.

From the MLP evaluation, we produce the performance information stored
in the meta-examples which will correspond to a label C' indicating the degree
of success when the MLP was applied to the problem. In order to define the
labels of each problem, the following methodology of evaluation was applied.

The problem’s dataset was divided in the training, validation and test
sets, in the proportion of 50%, 25% and 25%. As usual, the training set was
used to adjust the MLP’s weights, the validation set was used to estimate the
MLP performance during training, and the test set was used to evaluate the
performance of the trained MLP. The optimal number of hidden nodes was
defined by testing the values 1, 2, 4, 8, 16 and 32. For each number of nodes,
the MLP was trained 10 times with random initial weights. In the training
process, we adopted benchmarking rules [22]: early stopping was used to
avoid overfitting with the G L5 stopping criterion and a maximum number
of 1000 training epochs (see [22] for details of these rules). The optimal
number of nodes was chosen as the value in which the MLP obtained the
lowest average NMSE (Normalized Mean Squared Error) on the validation
set over the 10 runs. The NMSE is defined as:

S (t — 0:)?

NMSE = —
Sy (ts —1)?

(17)

2The BP algorithm was implemented by using the NNET Matlab toolbox. Learning
rates were defined by default.
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Figure 2: Visualization of the meta-examples using a PCA projection. Circles correspond
to meta-examples from class label 0 and triangles correspond to meta-examples from class
label 1. Possible outliers are indicated by the squared points.

In the equation, n, is the number of examples in the validation set, ¢; and
o; are respectively the true and the predicted value of the target attribute
for example 7, and ¢ is the average of the target attribute. The NMSE
values have no scale and are comparable across different datasets, which
is adequate to Meta-Learning [41]. Values of NMSE lower than 1 indicate
that the MLP provided better predictions than the mean value at least.
Finally, the performance information C' related to a problem was defined
in our prototype as a binary attribute assigned to 1 if the observed NMSE
is lower than 0.5 and assigned to 0 otherwise. Hence, the meta-examples
with class label 1 were those problems in which the MLP obtained the best
performance patterns.

Fig. 2 presents a 2-dimensional visualization of the set of meta-examples
by using a PCA projection. This figure indicates that the set of meta-
examples actually presents some class structure that may be identified by
a learning algorithm. Despite of the observed structure, the PCA projec-
tion also suggests challenging features, such as non-separability of the classes
and no clear class boundaries, which makes this meta-learning task a non-
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trivial learning problem. Fig. 2 also presents the possible outliers indicated
by the method presented in Section 4.2.1. This projection does not suggest
that these examples are strong outliers. However, it could suggest that the
identified points are more periferical than average, and hence they could be
eliminated without compromising learning performance. In fact, as it will
seen in the experiments, the elimination of such points in fact improved the
performance of the active learning methods.

In the next subsections, we present the experiments performed in our
work motivated by different aims. First, we intended to evaluate whether
the active methods considered in our work were useful to overcome a passive
(random) procedure for selecting meta-examples. Also, we evaluated the
performance of the proposed combining methods compared to the individual
methods being combined (section 5.1- Experiments I). Second, we intended
to verify the utility of the outlier detection mechanism in improving the
performance of active learning process for the active methods considered
(section 5.2- Experiments II).

5.1. Ezperiments I

The prototype was evaluated for different configurations of the k-NN
meta-learner (with & = 3, 5, 7, 9 and 11 nearest neighbors). For each con-
figuration, a leave-one-out experiment was performed to evaluate the per-
formance of the meta-learner, also varying the number of meta-examples
provided by the Active Learning module. This experiment is described just
below.

At each step of leave-one-out, one problem is left out for testing the
ML module, and the remaining 49 problems are considered as candidates to
generate meta-examples. The AL module progressively includes one meta-
example in the training set of the ML module, up to the total number of
49 training meta-examples. At each included meta-example, the ML module
is judged on the test problem left out, receiving either 1 or 0 for failure or
success. Hence, a curve with 49 binary judgments is produced for each test
problem. Finally, the curve of error rates obtained by ML can be computed
by averaging the curves of judgments over the 50 steps of the leave-one-out
experiment.

The above procedure was applied for each uncertainty sampling method
considered in the AL module (see section 4.2.2). As a basis of comparison,
the same above experiment was applied to each configuration of k-NN, but
using in the AL module a Random Sampling method for selecting unlabeled
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Figure 3: Curve of error rates: (a) Distance-Based method vs. Random method; (b)
Entropy-Based method method A vs. Random method

problems. According to [18], despite its simplicity, the random method has
the advantage of performing a uniform exploration of the example space.
Finally, we highlight that the experiments were performed in 100 different
runs for each configuration of the k-NN meta-learner.

Fig. 3 shows the curves of error rate of each uncertainty method com-
pared to the curve obtained by using Random Sampling. In the most part of
the curves, the error rates achieved by using the uncertainty methods were
lower than the rates observed by using the random procedure. The Distance
method and the Entropy method achieved lower error rates compared to
the Random Sampling in 40 and 32 points in the curves respectively (about
81.6% and 65.3% of the 49 points). The good results of the uncertainty meth-
ods were also observed to be statistically significant especially for Distance
method. In fact, a t-test (95% of confidence) applied to the difference of error
rates indicated that the Distance method obtaining a gain in performance
compared to the Random Method in 28 points in the curve of error rates
(about 57.14% of the 49 points). The Entropy method in turn obtained a
statistical gain in performance in 13 points in the curve of error rates (about
26.5% of the points).

The Distance method and the Entropy method yielded different perfor-
mance patterns considering different segments of the error curves. In fact,
in the first half of the curves the Entropy method achieved a better compar-
ative performance. However, there is a turning point in the second half of
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Figure 4: Curve of error rates: Combining methods vs. Random method
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Table 1: Average ranks obtained by all active methods along the curves of error rates

Average rank | Standard deviation
Two-Step 2.5714 1.2910
Avg. Rank 2.9796 1.6136
Distance 3.4694 2.1223
Avg. Uncert. 3.7959 1.6581
Alternate 3.9184 1.4838
Entropy 3.9388 1.7249

the curves of error rates, in such a way that the Distance method became
better than Entropy method. This result motivates the use of combining
procedures that would take advantage of different algorithms. The viability
of using combining procedures was in fact confirmed in our experiments (see
Fig. 4). The Average Rank, Average Uncertainty, Alternate and Two-Step
methods were better than the Random method respectively in 38, 30, 33
and 41 points of the error curves (about 77.5, 61.2, 67.3% and 83.6% of the
curves). Concerning statistical gain, the Average Rank, Average Uncertainty,
Alternate and Two-Step methods were better than the Random method in
30, 25, 15 and 30 respectively (corresponding to 61.2%, 53.1%, 30.6% and
61.2% of the curves).

The combination of active methods yielded a more consistent performance
along the curve especially when the Two-Step and the Average Ranking were
adopted. Table 1 presents the average ranks obtained by all active methods
at each point of the curves (i.e., rank = 1 for the best method, rank = 2
for the second method, and so on). The Two-Step obtained the best aver-
age rank over the 49 points, followed by the Average Rank method. Both
procedures were better than the individual components being combined (i.e.
better than both Distance and Entropy). We also observe here that the stan-
dard deviations obtained by Two-Step and Average Rank were lower than
the standard deviations observed for Distance and Entropy. The remaining
combining procedures (Average Uncertainty and Alternate) were better than
Entropy but worse than the Distance method. These results indicate that
in general the combining methods obtained better positions compared to its
individual components.
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Figure 5: Curve of error rates: Distance and Entropy methods with and without Outlier
Detection

Table 2: Average ranks obtained by all active methods along the curves of error rates -
with the use of outlier detection

Average rank | Standard deviation
Two-Step 2.2273 1.2915
Avg. Rank 2.8182 1.4350
Distance 3.3864 1.7943
Avg. Uncert. 3.5909 1.5450
Alternate 4.3409 1.2378
Entropy 4.5909 1.7430

5.2. Fxperiments I

In this step of experiments, we evaluated the usefulness of Outlier Detec-
tion to improve the Uncertainty Sampling methods. We followed the same
methodology of experiments as described in the previous experiments, how-
ever at each step of leave-one-out, 5 candidate meta-examples (about 10%
of the meta-examples) were initially removed by using the Outlier Detection
technique. Following, the Uncertainty Sampling method incrementally in-
cluded one meta-example in the training set of the Meta-Learner, up to the
total number of 44 training meta-examples.

Fig. 5 shows the curves of error rate of each uncertainty method (Dis-
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Figure 6: Curve of error rates: Combining methods with and without Outlier Detection
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tance and Entropy methods), with and without the removal of outliers. The
Distance and the Entropy methods achieved lower error rates in 31 and 39
points in the curves respectively (about 70.45% and 88.64% of the 44 points)
when the Outlier Detection technique was applied. By applying a t-test
(95% of confidence), the improvement in performance obtained with the use
of Outlier Detection was statistically verified for the Distance method in 18
points of the curve of error rates. For the Entropy method, the improvement
in performance has shown to be significant in 15 points.

Similar results were obtained when the combining methods were applied
with and without outlier detection (see Fig. 6). The Average Rank, Average
Uncertainty, Alternate and Two-Step methods obtained better performance
respectively in 30, 35, 36 and 30 points when outlier detection was adopted
(or 68.18%, 81.82%, 79.55% and 68.18% of the curves). For the combining
methods, the improvement in performance was statistically verified in 18, 24,
19 and 18 points, which is similar to the good results observed for the indi-
vidual methods being combined. We also observed that in general, when the
outliers were removed, each active method achieved its respective best error
rate in earlier points of the curves. The results observed in these experiments
indicate that the use of Outlier Techniques can improve the performance of
Active Meta-Learning.

Finally, the combining methods yielded a more consistent performance
along the curve compared to the methods being combined. The best ranks
of methods along the curves of error rates were achieved by the Two-Step
method, followed by the Average Rank method (see Table 2). The other
combining methods were worse than the Distance method, but they were
better than the Entropy method. These results are similar to the results
obtained in the first experiments without the removal of outliers.

6. Conclusion

In this paper, we presented the proposal of combining different Uncer-
tainty Sampling techniques for Active Meta-Learning. In this work, different
combining procedures were proposed and evaluated. Experiments were per-
formed in a case study by combining two different Uncertainty Sampling
methods. The combining methods obtained in general better results com-
pared to the individual methods being combined. Combining methods ob-
tained the best average positions along the curve of error rates, indicat-
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ing that they were more robust regarding the number of generated meta-
examples.

In our work, we also evaluated the use of Outlier Detection to improve
the performance of the Uncertainty Sampling Methods. The experiments
revealed that the active methods were in fact sensitive to the presence of
outliers, in such a way that its performance was improved when the Outlier
Detection technique was applied.

In future work, we intend to investigate the combination of a higher
number of active methods, including the version space and error reduction
methods not considered yet. Some parameters of the combining methods can
be changed in the future. For instance, in the current work, we combined the
active methods by Average Rank and Average Uncertainty using an equal
weight to each method, thus assuming that each method is equally important
in the combination. In future work, we intend to propose procedures to
adapt the combining weights in order to assign different contributions for
each method.

We highlight that all conclusions made in the current work are related
to meta-learning defined as a classification task. However, there are other
meta-learning definitions that could be deployed (as seen in Section 2). For
instance, in the Meta-Regression approach, a meta-learner tries to directly
predict the numerical performance of the candidate algorithms, instead of
predicting class labels associated to the meta-examples. Although less com-
mon in the meta-learning literature, this approach can produce interesting
outcomes to perform algorithm selection. Previous research has been already
devoted to active learning for Meta-Regression [26], however a deeper investi-
gation has to be done in order to verify whether the combination of different
active methods would work in this task.

Finally, we highlight that in spite of the statistical significance of re-
sults observed in our case study, the performance achieved by the developed
methods are still on the border of statistical significance (which is common
in meta-learning). Also, the current case study is limited to MLP networks
for regression problems. Hence, more experiments in new case studies should
be performed in order to have a better confidence concerning the proposed
strategies. Other candidate algorithms and classes of learning problems can
be adopted in new experiments.
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