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Abstract

The selection of a good model for forecasting a time series is a task that involves experience and knowledge.

Employing machine learning algorithms is a promising approach to acquiring knowledge in regards to this task. A

supervised classification method originating from the symbolic data analysis field is proposed for the model selection

problem. This method was applied in the task of selecting between two widespread models, and compared to other

learning algorithms. To date, it has obtained the lowest classification errors among all the tested algorithms.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Time series forecasting has been used in several

real world problems to support the decision-mak-

ing process (Montgomery et al., 1990). A number

of different models can be used to forecast a time

series. However, there is no single model consid-

ered to be the best in all cases. Selecting the most

adequate model from a set of candidate models for

a given time series can be a difficult task depending
on the candidate models involved, as well as on the

characteristics of the time series.

The development of expert systems is an ap-

proach that formalizes knowledge for model
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selection (Collopy and Armstrong, 1992). In this

context, each expert rule associates time series
features to the best model for forecasting. The

main drawback of these systems is that the process

of knowledge acquisition depends on experts

which are often scarce and expensive. An alterna-

tive solution is the use of machine learning algo-

rithms (Arinze, 1994), which treat the model

selection as a classification problem where the class

attribute is the best forecasting model and the
predictors are time series features. In this solution,

machine learning algorithms learn to relate the

time series features and the best models for pre-

dicting the time series.

Symbolic data analysis (SDA) is a domain in

the area of knowledge discovery and data man-

agement related to multivariate analysis, pattern

recognition, databases and artificial intelligence. It
aims to provide suitable methods (clustering, fac-

torial techniques, decision trees, etc.) for managing
ed.
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aggregated data described through multi-valued

variables where there are sets of categories, inter-

vals, or weight (probability) distributions in the

cells of the data table (for more details about SDA,

see www.jsda.unina2.it). In this so-called symbolic

data table, the rows are the symbolic objects and
the columns are the symbolic variables (Bock and

Diday, 2000). A symbolic variable is defined

according to its type of domain. For example, for

an object, an interval variable takes an interval of

R (the set of real numbers).

A Modal Symbolic (MS) Classifier, developed

in the framework of the SDA field, is proposed for

selecting between two time series models: simple
Exponential Smoothing (Brown, 1963) and the

Time-Delay Neural Network (Lang and Hinton,

1988). This symbolic classifier is able not only to

suggest a single model but also to provide degrees

of confidence for the candidate models. The MS

Classifier was compared to traditional learning

algorithms (decision trees and the k-nearest
neighbours algorithm (k-NN)) for the same prob-
lem. The selection error rate obtained by the MS

Classifier (34.34%) was lower than the error rate

obtained by both the k-NN algorithm (45.45%)

and by the decision trees (37.37%).

In Section 2, some approaches to model selec-

tion are presented. Section 3 brings a brief expla-

nation of the use of MS Classifier for time series

model selection, as well as a description of the
algorithm. Section 4 brings the selection task being

tackled by the algorithm, followed by Section 5,

where the experiments and results are reported.

Finally, Section 6 presents some conclusions and

the proposed future projects.
2. Time series model selection

Over the years researchers have developed dif-

ferent techniques for forecasting time series.

Among these techniques, the family of Exponen-

tial Smoothing models (Montgomery et al., 1990),

the Box–Jenkins models (Box and Jenkins, 1970)

and several Artificial Neural Networks models

(Dorffner, 1996) have been used often with good
results. Despite the diversity of models, empirical

research has shown that there is no single model
that performs better than the others in all series

(Collopy and Armstrong, 1992). Selecting the most

adequate models for describing individual time

series can strongly improve the performance of the

forecasting process.

Several approaches to dealing with the model
selection problem can be identified. The most

straightforward way is to perform a tournament

where each candidate model is calibrated using a

detached part of the time series data and then

tested on the remaining data. The model which

obtains the best results on the test data (based on a

forecast-error criteria) is then chosen for fore-

casting the futures of the time series. Despite its
simplicity, this solution can be very costly when

there are a large number of candidate models or

time series to forecast. Furthermore, some authors

have reported a poor gain on the accuracy from

applying tournament methods compared to unse-

lectively applying the candidate models (Schnaars,

1986; Fildes, 1989; Tashman and Kruk, 1996).

Tournaments are blind regarding the characteris-
tics of the time series, and hence, the presence of

certain factors, such as scanty available data, a

lack of stability and outliers, can severely harm the

performance.

In (Collopy and Armstrong, 1992), the authors

emphasized the need for incorporating knowledge

into the model selection process by associating

time series characteristics to the model perfor-
mance. One approach that can formalize knowl-

edge in a reusable way is to use expert systems,

such as the landmark Rule-Based Forecasting

system (Collopy and Armstrong, 1992). In this

work the authors implemented an expert system

with 99 rules used to configure and combine four

widespread time series models. The rule base was

developed from the guidelines provided by five
human experts through the analysis of real prob-

lems. The authors used time series features in the

rules, such as level discontinuities, insignificant

basic trend, and unusual last observation, among

others.

Although expert systems can express knowledge

in a practical and reusable way, the process of

knowledge acquisition depends on experts, who
are often scarce and expensive (Turban, 1992). In

these cases, machine learning algorithms can pro-

http://www.jsda.unina2.it
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vide an interesting alternative solution for

acquiring knowledge. These algorithms can be

used to automatically acquire knowledge from

data, leading to a reduced need for experts and

a potential performance improvement (Arinze,

1994).
The use of learning algorithms for model

selection was originally proposed by Arinze

(1994), and adopted in other works (Chu and

Widjaja, 1994; Venkatachalan and Sohl, 1999;

Prudêncio, 2002, 2003). In general, these works

treat the model selection as a classification prob-

lem where a learning algorithm is used as the

classifier. Each training example consists of a
description of a time series according to some of its

intrinsic characteristics (e.g., descriptive statistics

extracted from the time series) associated to a class

attribute representing the best candidate model for

forecasting this series. A set of such examples

serves as a basis for the learning process. The main

limitation of these previous works is that they used

learners to return just the best model among the
set of candidates. As it will be seen, the use of the

MS Classifier can provide a more informative

solution.
3. The proposed model selection approach

The work described here uses a symbolic clas-
sifier, the Modal Symbolic (MS) Classifier, applied

to the problem of time series model selection. This

classifier is conceived in the framework of an area

in knowledge discovery, the Symbolic Data Anal-

ysis (Bock and Diday, 2000), which provides tools

for managing complex, aggregate and high-level

data described by multi-valued variables (symbolic

variables), where the entries of a data table are sets
Fig. 1. System’s a
of categories, intervals, or weight (probability)

distributions (symbolic data).

Suitable versions of the MS Classifier were

previously used for image processing (De Carv-

alho et al., 2001) and information filtering (Bezerra

et al., 2002; De Carvalho and Bezerra, 2003), and
the results were successful both in terms of accu-

racy and execution time.

Fig. 1 presents the general architecture of the

system proposed for time series model selection.

This system has two different phases: training

and use. In the training phase, the MS Classifier

acquires knowledge from a set of training exam-

ples stored in the Database (DB). Each training
example stores the features of a different time

series and the candidate model that obtained the

best forecasting results for the series. The time

series features are pre-defined descriptive statistics

automatically calculated from the time series data,

such as the number of observations and the

coefficient of variation, among others. Each

training example actually contains the experience
obtained in the past during the forecasting pro-

cess of a specific time series. The MS Classifier

generalizes the experience stored in the training

examples by associating time series features to the

most adequate models. The acquired knowledge

may be refined as more examples are available in

the DB (the system user, or the developer, pro-

vides a new time series and the best model for
forecasting it).

In the use phase, the system receives a time

series as input. This is a set of observations gen-

erated sequentially in time. Given the time series,

the Feature Extractor (FE) module extracts the

values of the time series features. According to

the matching between the time series features and

the modal symbolic description of the pre-defined
rchitecture.
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candidate models, the MS Classifier suggests a

model chosen from the set of candidates for fore-

casting the given time series.
3.1. The Modal Symbolic Classifier

In this section the MS Classifier, which is based

on modal symbolic descriptions, is described for

selecting suitable time series models.

Let E ¼ fe1; . . . ; eng be the set of examples,

where each example stores the values of p features

X1; . . . ;Xp for a particular time series and the value

of an attribute C, which indicates the best candi-

date model, among K, for forecasting the series.
D ¼ fc1; . . . ; cKg is the domain of the categori-

cal variable C where each class value ck 2 D
represents a candidate forecasting model. Each

feature Xj (j ¼ 1; . . . ; p) has a domain Dj and

represents a different descriptive statistic for time

series. In this way each example ei 2 E (i ¼
1; . . . ; n) is represented as a vector of feature values

xi ¼ ðx1i ; . . . ; x
p
i ;CðeiÞÞ where xji 2 Dj (j ¼ 1; . . . ; p)

and CðeiÞ ¼ ck 2 D.
The selection of the time series models is

accomplished according to the construction of the

MS Classifier, involving the following main steps:

(1) Learning step. Construction of a modal sym-

bolic description for each time series model:

(a) Pre-processing. Generation of a new set of
examples through the discretization of

continuous numeric features.

(b) Generalization. Using the pre-processed

examples to compute the parameters of

each modal symbolic description.

(2) Allocation step. Assignment of a new time ser-

ies to the suitable time series model. This is

done by measuring the matching between the
time series features and the modal symbolic

descriptions. The model that presents the

greatest matching value is then selected.
3.1.1. Learning step

The aim of this step is to construct a modal

symbolic description (a vector of modal symbolic

data) for each candidate model that synthesizes the
role information given by the examples associated
to this model. The learning step has two sub-steps:

pre-processing and generalization.

3.1.1.1. Pre-processing. The attributes selected in

this work for describing the time series are numeric

(e.g., length of the time series) or binary (e.g.,
presence of significant autocorrelations). In order

to have an homogeneous set of variables, we

changed the scale of all numeric variables Xj in

such a way that the domain Dj � R (the set of real

numbers) becomes D0j ¼ f0; 1g. This is accom-

plished according to the entropy-based method for

discretization of continuous numeric variables,

developed by Fayyad and Irani (1993). This has
advantages over other methods since it takes

classes into account during the process of discret-

ization (Witten and Frank, 2000). The entropy-

based discretization used in the pre-processing

sub-step is described below.

For an example ei, described by the feature

vector xi ¼ ðx1i ; . . . ; x
p
i ;CðeiÞÞ, the continuous nu-

meric value XjðeiÞ ¼ xji becomes

XjðeiÞ ¼ ~xji ¼
1 if xji P Tj
0 otherwise

�
ð1Þ

where Tj 2 Dj is a threshold. As it will be seen just

below, the thresholds Tj are defined in order to

reduce the entropy of the training examples taking

into account the class attribute C.
Let the vectors of feature values be x1; . . . ; xn,

describing the examples, where xi ¼ ðx1i ; . . . ; x
p
i ;

CðeiÞÞ, i ¼ 1; . . . ; n. For each numeric variable Xj,
let XjðEÞ ¼ fxji 2 Dj jxji ¼ XjðeiÞ; i ¼ 1; . . . ; ng, Ei ¼
fel 2 E jXjðelÞP xjig and Ei ¼ fel 2 E jXjðelÞ <
xjig, i ¼ 1; . . . ; n. Then, Ei \ Ei ¼ ; and Ei [ Ei ¼ E.

Also, let Fk ¼ fei 2 E jCðeiÞ ¼ ckg, k ¼ 1; . . . ;K.
Of course, Fk \ F 0k ¼ ;, if k 6¼ k0 and

SK
k¼1 Fk ¼ E.

The GainðXj; x
j
i ;EÞ being defined as

GainðXj; x
j
i ;EÞ ¼ �

jEij
jEj � EntðC jEi;EÞ

� jEij
jEj � EntðC jEi;EÞ ð2Þ

where

EntðC jEi;EÞ ¼
XK
k¼1
� jFk \ Eij

jEj log2
jFk \ Eij
jEj ð3Þ
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the threshold Tj is defined as the value xji which

maximizes the information gain:

Tj ¼ argmax
xji2XjðEÞ

GainðXj; x
j
i ;EÞ ð4Þ

In this way, now each example ei (i ¼ 1; . . . ; n) is
described by a vector of binary values and the class

attribute: ~xi ¼ ð~x1i ; . . . ;~x
p
i ;CðeiÞÞ, ~xji ¼ XjðeiÞ 2

D0j ¼ f0; 1g, j ¼ 1; . . . ; p.

3.1.1.2. Generalization. This step seeks to construct

a suitable modal symbolic description for each

time series model that summarizes all information

given by the examples that have this model as the

best candidate.

A modal variable Y with domain D is defined in

a set X ¼ fa; b; . . .g of objects. These objects may

be, for instance, single individuals (examples) or
groups (or classes) of individuals. A modal vari-

able is a multi-state variable where for each object

a 2 X, it gives a subset of its domain SðaÞ � D, and
for each category m of this subset, it is given a

weight wðmÞ that indicates how relevant m is for a.
Formally, Y ðaÞ ¼ ðSðaÞ; qðaÞÞ where qðaÞ is a

weight distribution defined in SðaÞ � D such that

a weight wðmÞ corresponds to each category
m 2 SðaÞ. SðaÞ is the support of the measure qðaÞ
in the domain D.

A modal symbolic description (Bock, 2000) is a

vector where there is a weight distribution in each

component given by a modal symbolic variable.

Let uk be a candidate time series model de-

scribed by p modal symbolic variables fY1; . . . ; Ypg
and let yk ¼ ðy1k ; . . . ; y

p
k Þ be its modal symbolic

description, where yjk ¼ YjðukÞ ¼ ðSjðukÞ; qjðukÞÞ,
j ¼ 1; . . . ; p, with SjðukÞ ¼ D0j ¼ f0; 1g being the

support of the weight distribution qjðukÞ ¼
fwkjð0Þ;wkjð1Þg, and wkjð0Þ and wkjð1Þ being the

weight associated, respectively, to the categories

0 and 1.

Let G0
j ¼ fei 2 E j~xji ¼ XjðeiÞ ¼ 0g and G1

j ¼
fei 2 E j~xji ¼ XjðeiÞ ¼ 1g, j ¼ 1; . . . ; p. G0

j and G1
j

are the subsets of examples where the variable Xj

after pre-processing takes as value, respectively, 0

and 1. Of course, G0
j \ G1

j ¼ ; and G0
j [ G1

j ¼ E.
The weights wkjð0Þ and wkjð1Þ (k ¼ 1; . . . ;K and

j ¼ 1 . . . ; p) are the frequency of examples associ-

ated to the candidate time series model uk in which
the variable Xj takes as value, respectively, 0 and 1.

They are evaluated as:

wkjð0Þ ¼
jG0

j \ Fkj
jFkj

and wkjð1Þ ¼
jG1

j \ Fkj
jFkj

ð5Þ
3.1.2. Allocation step

The comparison between a new time series and

a candidate time series model is achieved by way of

a matching function. This matching function
accomplishes this comparison variable-wise first

by taking content differences into account. This

new time series is affected to a candidate time

series model which furnishes the greatest value of

comparison given by the matching function.

Let ~x ¼ ð~x1; . . . ;~xpÞ, where ~xj 2 f0; 1g, j ¼
1; . . . ; p, be the description of a new time series z
and yk ¼ ðy1k ; . . . ; y

p
k Þ, where yjk ¼ YjðukÞ ¼ ðf0; 1g;

fwkjð0Þ; wkjð1ÞgÞ, j ¼ 1; . . . ; p, be the modal sym-

bolic description of the candidate time series

model uk. The comparison between z and uk is

achieved by the way of the following similarity

matching function:

Matchð~x; ykÞ ¼
1

p

Xp

j¼1
wkjð~xjÞ ð6Þ

The affectation of the new series z to the candidate

model uk� , k� 2 f1; . . . ;Kg, is accomplished

according to the following rule: allocate z to uk�
such that

k� ¼ argmax
k¼1;...;K

Matchð~x; ykÞ ð7Þ

The MS classifier is a more informative solution

when compared to previous work that used learn-

ers for model selection. The MS Classifier is able

not only to select a single best model for a given
series, but also to provide a degree of confidence to

each candidate model. The more similar is a time

series description (~x) to the modal symbolic

description (yk) of a specific model, the more con-

fident the model is in forecasting the series. In the

present system implementation, this information

was used just to return the model that obtained the

best matching value. However, one can also obtain
a ranking of models by sorting the matching values.
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If enough resources are available, more than one

model may be used for forecasting a time series. In

such a case, the user can select the most confident

models according to the matching values.
3.1.3. Schema of the MS Classifier

In this section, a specific schema of the MS

Classifier is provided.

(1) Initialization:

Let E ¼ fe1; . . . ; eng be the set of examples and

let xi ¼ ðx1i ; . . . ; x
p
i ;CðeiÞÞ, where xji ¼ XjðeiÞ

(j ¼ 1; . . . ; p) and (i ¼ 1; . . . ; n), be their corre-
sponding descriptions.

(2) Learning step:

(a) Pre-processing

For j ¼ 1; . . . ; p do

if Dj � R then

Tj  argmax
xji2XjðEÞ

GainðXj; x
j
i ;EÞ

end

end
For i ¼ 1; . . . ; n do

For j ¼ 1; . . . ; p do

if Dj � R then

if xji P Tj then
XjðeiÞ ¼ ~xji  1

else

XjðeiÞ ¼ ~xji  0

end
end

end
~xi  ð~x1i ; . . . ;~x

p
i ;CðeiÞÞ

end

(b) Generalization:

For k ¼ 1; . . . ;K do

For j ¼ 1; . . . ; p do

SjðukÞ  f0; 1g
wkjð0Þ  jG0

j \ Fkj=jFkj
wkjð1Þ  jG1

j \ Fkj=jFkj
qjðukÞ  fwkjð0Þ;wkjð1Þg
yjk  ðSjðukÞ; qjðukÞÞ

end

yk  ðy1k ; . . . ; y
p
k Þ

end

(3) Allocation step:
Let z be a new example and let x ¼ ðx1; . . . ; xpÞ
be its corresponding description.
For j ¼ 1; . . . ; p do

if Dj � R then

if xj P Tj then
XjðzÞ ¼ ~xj  1

else
XjðzÞ ¼ ~xj  0

end

end

end
~x ð~x1; . . . ;~xpÞ
For k ¼ 1; . . . ;K do

Matchð~x; ykÞ  0

For j ¼ 1; . . . ; p do
Matchð~x; ykÞ  Matchð~x; ykÞ þ wkjð~xjÞ

end

Matchð~x; ykÞ  Matchð~x; ykÞ=p
end

CðzÞ ¼ k�  argmax
k¼1;...;K

Matchð~x; ykÞ
4. Case study

The use of the MS Classifier was investigated in

the task of selecting between two models: the

Simple Exponential Smoothing (SES) (Brown,

1963) and the Time-Delay Neural Network

(TDNN) (Lang and Hinton, 1988). Both models

were used for short-term forecasting of time series

with no trend or seasonality.
In order to generate a set of examples with

which the MS Classifier is concerned, three tasks

were performed: (1) collect a large set of time

series; (2) define the most adequate model for each

time series, i.e. define the class attribute, and (3)

define the features that describe the time series. As

mentioned in the previous section, each training

example stored the values of the features for a
particular time series, as well as the value of the

class attribute.

In the first task, 99 time series, available in the

Time Series Data Library (Hyndman and Akram,

2003), were collected. This repository of data

contains time series data from several domains.

Most of them were originally presented in books

on time series analysis and used as benchmark
problems in the forecasting field. Each collected

series was used to generate a different training

example.
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In the second task, the class labels were as-

signed. For such, the following procedure was

applied. Given a time series, its data was divided

into two parts: the fit period and the test period.

The test period consists on the last 30 points of the

time series and the fit period consists on the
remaining data. The fit data was used to calibrate

the parameters of both models SES and TDNN.

Both calibrated models were used to generate one-

step-ahead forecasts for the test data. Finally, the

class attribute was assigned as the model which

obtained the lowest mean absolute forecasting

error on the test data. Table 1 shows the class

distribution obtained for the 99 time series. It is
also shown the error rate obtained by the default

classifier, which always associates the class with

more training examples (in this case study, the

class tdnn) to a new example.

In the third task, the features of each time series

were extracted. For such, a set of 10 descriptive

statistics was deployed. The set is composed by (1)

5 numeric features: X1 (length of the time series),
X2 (mean of the 5 first serial autocorrelations), X3

(coefficient of variation), X4 (skewness coefficient)

and X5 (kurtosis coefficient); and (2) 5 boolean

features: X6 (presence of significant autocorrela-

tions), X7, X8, X9 (respectively, significance of the

first, second and third autocorrelations), and X10

(test of turning points for randomness). According

to Shah (1997), these features are classical mea-
sures for describing time series and can be quickly

computed even for a large number of series. Dif-

ferent works in the literature used at least part of

these features for model selection purposes (Ar-

inze, 1994; Chu and Widjaja, 1994; Shah, 1997;

Venkatachalan and Sohl, 1999; Prudêncio and

Ludermir, 2003).

All the time series features were computed using
just the fit period of the time series. Since the class
Table 1

Number of examples associated to each class value (ses and

tdnn)

# Of tdnn examples 52

# Of ses examples 47

Default error 47.47%

The third row shows the error rate obtained by the default

classifier.
label was defined considering the test period of the

series, what it is actually supposed is that features

describing the fit data can be used to predict what

to expect in the test period. A learning algorithm

should be able to associate the characteristics of

the series up to the present and future performance
of the models.

The quality of the forecasts generated by the

SES and TDNN models may be very different

depending on the time series being forecasted.

Hence, the forecasting performance can be se-

verely harmed in the case of a wrong decision

concerning the model selection. These statements

can be better understood by regarding two time
series where the considered models obtained con-

trasting results.

In Fig. 2(a), the time series is presented (among

the 99 used to generate the training examples) for

which the SES model obtained better results when

compared to the TDNN model (see Fig. 2(b)).

This series presents some notable characteristics: a

small number of observations (only 48 time points)
and no significant autocorrelations. These char-

acteristics may explain, in part, the poor perfor-

mance of the TDNN model. First, there is a

reduced amount of data for calibrating a neural

network model. Furthermore, the absence of sig-

nificant autocorrelations may indicate that the

series would have been generated by a purely

random process, and hence, a simple model, like
the SES model, would be more adequate.

Contrarily, Fig. 3(a) presents the series for

which the TDNN obtained better comparative

results. This series is very different from the one

previously discussed. It presents a larger number

of observations (160 time points) as well as sig-

nificant autocorrelations. The forecasts generated

by the TDNN model were, in turn, much more
accurate than the forecasts generated for the first

series (see Fig. 3(b)).

The case study presented here has already been

tackled in a previous work (Prudêncio, 2002), but

using decision trees. The main drawback of the

decision trees for model selection is that they

contain numeric tests that generate hard surfaces

of decision. For example, one of the decision trees
induced in (Prudêncio, 2002) applied the test

X2 6 0:18 as a necessary condition for selecting a
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Fig. 2. Best ses comparative results.
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model. However, it does not make sense in a real

world application to consider a model as the best if

X2 is less than 0.18 and inapplicable when this

attribute is just a little bit more. The MS Classifier
in turn is a more flexible approach since it uses

matching to support the model selection.

Table 2 shows an example of the matching

process of a new instance z with the modal sym-

bolic description for the classes ses and tdnn.

In the first and second columns, the modal

symbolic descriptions yses and ytdnn of the classes

ses and tdnn, are shown, respectively. In the third
column, the thresholds calculated for the first 5

numeric features are shown (the thresholds are
calculated as described in the pre-processing step).

In the fourth column, there is the description

x ¼ ðx1; . . . ; x10Þ of the new instance z to be clas-

sified. The fifth column shows the new description
~x ¼ ð~x1; . . . ;~x10Þ of z with all numeric features

being now binary attributes after the pre-process-

ing step. In the next columns, the partial matching

values of the new example with the modal sym-

bolic descriptions are presented. The new instance

was classified as tdnn, since its total matching

(0.53) was greater than the matching to the class

ses (0.35). Notice that the MS Classifier is such
that a small change in the value of a single attri-

bute has only a small effect in the matching values.



Table 2

Matching a new instance with the modal symbolic descriptions

yses ytdnn Tj x ~x Match ð~x; sesÞ Match ð~x; tdnnÞ
1(0.2),0(0.8) 1(0.4),0(0.6) T1 ¼ 339 x1 ¼ 73 ~x1 ¼ 0 0.8 0.6

1(0.4),0(0.6) 1(0.7),0(0.3) T2 ¼ 5:36 x2 ¼ 8:2 ~x2 ¼ 1 0.4 0.7

1(0.3),0(0.3) 1(0.4),0(0.6) T3 ¼ 0:05 x3 ¼ 2:1 ~x3 ¼ 1 0.3 0.4

1(0.8),0(0.2) 1(0.9),0(0.1) T4 ¼ 0:44 x4 ¼ 0:1 ~x4 ¼ 0 0.2 0.1

1(0.5),0(0.5) 1(0.4),0(0.6) T5 ¼ 0:18 x5 ¼ 0:2 ~x5 ¼ 1 0.5 0.4

1(0.2),0(0.8) 1(0.5),0(0.5) – x6 ¼ 1 ~x6 ¼ 1 0.2 0.5

1(0.9),0(0.1) 1(0.3),0(0.7) – x7 ¼ 0 ~x7 ¼ 0 0.1 0.7

1(0.9),0(0.1) 1(0.2),0(0.8) – x8 ¼ 0 ~x8 ¼ 0 0.1 0.8

1(0.3),0(0.7) 1(0.7),0(0.3) – x9 ¼ 1 ~x9 ¼ 1 0.3 0.7

1(0.4),0(0.6) 1(0.6),0(0.4) – x10 ¼ 0 ~x10 ¼ 0 0.6 0.4

Average 0.35 0.53

R.B.C. Prudêncio et al. / Pattern Recognition Letters 25 (2004) 911–921 919
5. Experiments and results

In this section, the experiments and results ob-

tained by the MS Classifier in the case study are

presented.

The selection performance of the MS Classifier

was measured using the leave-one-out cross-vali-

dation method (Mitchel, 1997). This method is a
very common and reliable way to evaluate the

performance of learning algorithms on a particular

dataset. Suppose you have m training examples in

a dataset (in our case m ¼ 99). Each example, in

turn, is left out and the learning algorithm is

trained using the remaining m� 1 examples. The

learning algorithm is then judged on the example

left out, receiving either 1 or 0 for success or fail-
ure. This step is repeated once for each training

example, resulting in m judgments. The number of

correct judgments represents the success rate of the

learning algorithm and the number of wrong

judgments represents the error rate. In the exper-

iments presented below, the leave-one-out method

was used as the standard procedure for evaluation

of learning algorithms.
Following the leave-one-out procedure, the MS

Classifier obtained a number of 59 correctly clas-
Table 3

Results obtained by the learning algorithms following the leave-one-o

MS first run MS second run D

Correct judgments 59 65 5

Wrong judgments 40 34 4

Error rate (%) 40.40 34.34 4

The second and third columns, respectively, show MS Classifier perfo
sified examples from the set of 99 examples on the
dataset, which represents an error of 40.40% (see

Table 3, second column). Although the achieved

error may be considered high, it is lower than the

default error of 47.47% (see Table 3, fourth

column).

After analyzing these initial results, we investi-

gated how the performance of the MS Classifier

could be improved in the case study. It was
investigated the use of an automatic mechanism

for feature selection. It is important to highlight

that the MS Classifier uses a similarity measure as

a basis for classifying new examples. If this mea-

sure is calculated using irrelevant attributes, clas-

sifier performance can be harmed. In fact, other

similarity-based algorithms, such as the instance-

based learning algorithms, are also sensitive to the
presence of irrelevant attributes (Mitchel, 1997).

Therefore, the next step in the work was to

incorporate a mechanism of feature selection for

the MS Classifier.

There are two general approaches to feature

selection: filters and wrappers (Kohavi and John,

1997). In the former, the relevance of each attri-

butes is measured in terms of the training data
statistics, such as the entropy and correlation. The
ut procedure

efault J48 IBk

2 62 54

7 37 45

7.47 37.37 45.45

rmance using all attributes and using feature selection.
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main drawback of this approach is that it does not

take into account the algorithm being used. In the

latter, a search is performed in the space of fea-

tures. The learning algorithm is executed using

different subsets of attributes, and the subset that

obtained the best classification results in the
training data is selected. The main disadvantage of

this approach is the execution time, since the

algorithm is executed several times before selecting

a good subset of features. The wrapper approach

was chosen since the MS classifier is not time

consuming.

The Backward-Elimination algorithm, which is

one of the most used wrappers (Kohavi and John,
1997), was applied to perform feature selection. In

this algorithm, the initial search point is the whole

set of features. At each step, new search points are

generated by eliminating a different feature from

the current search point. All these new subsets are

then evaluated, and the one that obtains the best

results is defined as the new current search point.

This process iterates until all attributes are elimi-
nated.

Table 3 (second and third columns) shows the

leave-one-out results obtained by the MS Classifier

using: (1) all attributes (MS first run) and (2) the

mechanism for feature selection (MS second run).

As it can be seen, the MS Classifier with feature

selection obtained a classification error of 34.34%,

which was significantly lower than the errors ob-
tained in the first execution of the MS Classifier

(40.40%).

The results obtained by the MS Classifier with

feature selection were compared to the results ob-

tained by other learning algorithms. For such,

experiments were performed using the IBk algo-

rithm, which is the k-nearest neighbors algorithm

(k-NN) implemented in the WEKA Java package
(Witten and Frank, 2000). The results of the MS

Classifier were also compared to the results previ-

ously obtained in (Prudêncio, 2002) using the J.48

algorithm implemented in WEKA. This algorithm

is a variant of the C4.5 algorithm proposed by

Quinlan (1993) for decision tree induction.

As can be seen in Table 3 (fifth and sixth col-

umns), the error rate obtained by the MS Classifier
was lower than both the error obtained by the IBk

algorithm (45.45%) and the error obtained by the
J48 algorithm (37.37%). A statistical t-test (see

Mitchel, 1997, Chapter 5) verified that the results

obtained by the MS was significantly better than

the IBk algorithm, considering a 95% degree of

confidence. Although the performance of the MS

Classifier was not statistically better than the J48
performance, the error obtained by the MS Clas-

sifier was nevertheless lower than the J48 error.

In terms of computational cost, the MS Clas-

sifier is not time consuming. In fact, the fast

execution of the MS Classifier has been reported

in (Bezerra et al., 2002, De Carvalho and Bezerra,

2003) when the algorithm was applied to an

information filtering task. MS parameters can be
computed in a single-pass through the training

data and its complexity is linear in the number of

training examples and attributes. The computa-

tional cost of the MS increases when feature

selection is applied. However, as the generation

of the modal variables is efficient, the impact of

the feature selection mechanism is not drastic. In

future work, experiments need to be reported
in order to confirm the computational efficiency

of the MS Classifier in the investigated case

study.
6. Conclusion

A modal symbolic classifier was applied to a
problem of time series model selection. Contribu-

tions of this work can be regarded in two different

fields: (1) in the Symbolic Data Analysis field, since

some of its concepts were applied to a problem

which had not yet been tackled; and (2) in the

Time Series Forecasting field, since we provided a

new approach for acquiring knowledge that can be

used to select time series models.
In the experiments, it was verified that the

performance of the MS Classifier was satisfactory

when compared to other traditional learning

algorithms. It was also observed that the algorithm

was sensitive to the features used in the classifica-

tion process. In fact, the classification performance

of the MS Classifier was improved when a mech-

anism of feature selection was applied.
As future work, some modifications in the

current implementation of the algorithm will be
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performed, such as evaluating different matching

functions. Furthermore, other time series features

may be included in the experiments, along with

other time series models. We also intend to use and

evaluate the MS Classifier for providing a ranking

of models, instead of simply suggesting a single
candidate model.
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