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a b s t r a c t

Support Vector Machines (SVMs) have achieved a considerable attention due to their theoretical
foundations and good empirical performance when compared to other learning algorithms in different
applications. However, the SVM performance strongly depends on the adequate calibration of its
parameters. In this work we proposed a hybrid multi-objective architecture which combines meta-
learning (ML) with multi-objective particle swarm optimization algorithms for the SVM parameter
selection problem. Given an input problem, the proposed architecture uses a ML technique to suggest
an initial Pareto front of SVM configurations based on previous similar learning problems; the suggested
Pareto front is then refined by a multi-objective optimization algorithm. In this combination, solutions
provided by ML are possibly located in good regions in the search space. Hence, using a reduced number of
successful candidates, the search process would converge faster and be less expensive. In the performed
experiments, the proposed solution was compared to traditional multi-objective algorithms with random
initialization, obtaining Pareto fronts with higher quality on a set of 100 classification problems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Support Vector Machines (SVMs) represent a class of very
competitive algorithms that have been successfully applied by the
Machine Learning community to different learning problems. Despite
the potential good results that can be yielded, the SVM performance
strongly depends on the adequate choice of its parameters, and an
exhaustive trial-and-error procedure for selecting good values of
parameters is not practical for computational reasons [1].

The selection of SVM parameters is treated by different authors
as an optimization task in which a search technique is used to find
adequate configurations of parameters for the given learning pro-
blem at hand. Different optimization techniques have been applied
in literature to SVM parameter selection, including for instance
Evolutionary Algorithms (EA) [2], Particle Swarm Optimization (PSO)
[3] and Tabu Search [4]. Previous works commonly used single
objective techniques for SVM parameter selection, however this is
not totally adequate since this task is inherently a Multi-Objective

Optimization (MOO) problem [5]. In this context, we can mention
the use of Multi-Objective EA (MOEA) [5,6], Multi-Objective PSO
(MOPSO) [7] and Gradient-Based techniques [1], which considered
multiple objectives in the parameter selection process. Although the
application of search techniques represents an automatic solution to
select SVM parameters, this approach can be very expensive, since a
large number of candidate configurations of parameters are often
evaluated during the search process [8].

An alternative approach to SVM parameter selection is the use
of Meta-Learning (ML), which treats parameter selection as a
supervised learning task [8,9]. Each training example for ML (i.e.
each meta-example) stores the characteristics of a past learning
problem (i.e., its number of training instances, its class entropy,
etc.) and the performance obtained by a set of candidate config-
urations of parameters on the problem. By receiving a set of
such meta-examples, a meta-learner can predict configurations of
parameters for a new problem based on its characteristics.

ML can provide good or intermediate results with a relatively
small number of suggested configurations of parameters [11].
Optimization algorithms in turn can produce better results com-
pared to ML, but with high computational costs. Although ML can
be a lower cost alternative, it is dependent on the chosen learning
problems in the meta-base and the characteristics adopted to
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describe them [10]. If the chosen characteristics do not represent
the problems well or the similarity between problems in the meta-
base is not sufficiently high, the meta-learning suggestions can be
harmed.

In order to take advantage of the above strategies, in [11,10] the
authors developed a hybrid approach in which ML and search
techniques were combined to SVM parameter selection. In the
hybrid approach, ML was adopted to suggest a number of solutions
(configurations of parameters) which are adopted as the initial
population of the search technique. The search technique then just
refined promising solutions returned by ML, speeding up the
optimization process. In [11], the authors adopted a classical
version of PSO and the Tabu Search algorithm as search techni-
ques, with the objective of minimizing the error rate obtained by
the SVM in regression problems. In [10], in turn, Genetic Algo-
rithms were adopted to optimize the SVM parameters to classifi-
cation problems. In both cases, an instance-based algorithm was
adopted as the meta-learner. The hybrid approaches proposed in
previous works had only a single objective considered, when in
fact, the use of multiple objectives would be more adequate to the
SVM parameter selection.

In order to avoid the above limitation, we created a hybrid
architecture to the SVM parameter selection in order to deal with
multiple objectives. More specifically, we proposed to adopt a
ML initialization of MOO search techniques. In our proposal, a
meta-learning technique is initially used to suggest a Pareto front
of parameters for a given problem based on non-dominated
configurations applied to similar problems. To the best of our
knowledge, this is the first attempt of producing Pareto fronts by
adopting a meta-learning strategy. The configurations of para-
meters in the suggested Pareto front are optimized by a MOO
technique. We highlight that although the focus of our work is the
SVM parameter selection problem, the concepts adopted in the
hybrid MOO approach can be extended to other contexts (i.e.,
the reuse of knowledge acquired in previous instances of MOO
problems in order to improve the optimization process to new
instances).

In this work we implemented a prototype to analyze the
influence of ML on the optimization process considering multiple
criteria. Six well-known Multi-Objective Particle Swarm Optimi-
zation (MOPSO) techniques were implemented for comparison:
MOPSO, MOPSO-CDR, MOPSO-CDRS, CSS-MOPSO, m-DNPSO
and MOPSO-CDLS. We focused on particle swarm algorithms
due to their simplicity and good performance in difficult opti-
mization tasks. These techniques were applied in our work to
select two SVM parameters: the parameter γ of the RBF kernel
and the regularization constant C, which may have a strong
influence in the SVM performance [1]. In our work, a dataset of
100 meta-examples was produced from the evaluation of a set of
399 configurations of (γ, C) on 100 different classification
problems. Each classification problem was described by a num-
ber of 8 meta-features proposed in [12]. All the implemented
MOO algorithms were used to optimize the parameters (γ, C)
regarding the success rate and number of support vectors (which
indicates complexity) observed in the SVMs. These algorithms were
used in two different scenarios: with the initial population suggested
by Meta-Learning, leading to hybrid methods, and with a random
initial population. According to experimental results, the hybrid
methods were able to generate better solutions along the iterations
when compared to the traditional approach.

This paper is organized as follows. Section 2 presents the SVM
parameter selection problem. Section 3 presents details of the
proposed work, followed by Section 4 which presents the imple-
mentation details. Section 5 describes the experiments and in
Section 6 presents the obtained results. Finally, Section 7 presents
some conclusions and the future work.

2. SVM parameter selection

The SVM parameter selection task is often performed by
evaluating a range of different combinations of parameters and
retaining the best one in terms of an objective function [4]. One
important issue to be considered is the objective function to be
optimized, which is in general a functional, estimating the SVM
performance using the problem's dataset (e.g., leave-one-out
and cross-validation estimates, error bounds, model complexity,
among others). Another important issue to be taken into con-
sideration is the strategy adopted to explore the space of para-
meters. Regarding the second issue, an exhaustive procedure to
explore the parameter space can lead to good results, however it is
a strategy that can be computationally expensive.

In order to avoid an exhaustive or a random exploration of
parameters and improve the search process, different authors have
deployed search and optimization techniques such as gradient-
based techniques [1], Evolutionary Algorithms [2,13], Tabu Search
[4] and Particle Swarm Optimization [3]. In this context, each
search technique deploys specific search operators and mechan-
isms to explore the search space, aiming to reach optimized
parameters with good values for the chosen objective function.

The initial works commonly considered the SVM parameter
selection a single objective problem, however this is not totally
adequate since this task is inherently a Multi-Objective Optimiza-
tion (MOO) problem [5]. Thus, many authors have applied multi-
objective optimization techniques as Multi-Objective EA (MOEA)
[5] and Multi-Objective PSO (MOPSO) [7] for the given problem.
Although the application of MOO search techniques represents an
automatic and suitable solution to select SVM parameters, this
approach can be very expensive and with a low convergence, since
a large number of possible configurations of parameters are often
evaluated during the search [8,14] and also a great amount of
objectives to be analyzed.

Alternatively, Meta-Learning has been proposed and investi-
gated in recent years to SVM parameter selection [9,14–17]. In this
approach, the choice of parameters for a problem is based on well-
succeeded parameters adopted to previous similar problems. For
this, it is necessary to maintain a set of meta-examples where each
meta-example stores: (1) a set of characteristics (called meta-
features) describing a learning problem; and (2) the best config-
uration of parameters (among a set of candidates) empirically
evaluated on the problem. A meta-learner is then used to acquire
knowledge from a set of such meta-examples in order to recom-
mend (predict) adequate configurations of parameters for new
problems based on their meta-features. Meta-learning is able to
predict not only one configuration of parameters but also to
recommend rankings of configurations (as performed in [14]). This
is interesting since the user has more alternatives if the first
configuration recommended by meta-learning does not achieve
adequate results. In this way, using ML, SVM models can be
suggested for new problems without executing the SVM on each
candidate configuration of parameters making this approach more
economic than optimization techniques in terms of computational
cost [10]. However, ML is very dependent on the quality of its
meta-examples and on the choice of meta-features.

As we mentioned before, recent studies were performed
combining ML with optimization algorithms [10,11] in such a
way that ML is used to recommend parameters which will be later
refined by a search technique. The first work, developed by Gomes
and Prudencio [11], combined ML with Particle Swarm Optimiza-
tion algorithms for the SVM parameter selection problem. This
proposal uses ML to recommend a certain number of solutions as
initial population for the optimization algorithm. The inspiration
for this methodology arose from the fact that similar problems
have similar search spaces. Thus, the search space of a problem
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with similar characteristics can provide useful pieces of informa-
tion about optimal regions of a new problem [18]. The ML module
is an important step in the whole process that can increase the
convergence velocity of the optimization algorithm toward good
solutions.

The implementation of the optimization algorithm had to be
configured to optimize the settings chosen C, and γ of the RBF
kernel. So that each particle represents a configuration (C, γ),
which indicates its position in the search space. As stated earlier,
the objective function used to evaluate the quality of the solutions
is the SVM of kernel RBF, whose output is the error rate in
the regression with cross-validation 10-fold. Thus, the goal of the
algorithm is to find the configuration (C, γ) that minimizes the
error rate for a given problem.

The work developed by Reif and Shafait [10] followed the same
ideology, using ML and case-based reasoning to provide initial
solutions for genetic algorithms in order to optimize parameters
for SVM and Random Forest (RF) algorithms in classification
problems. For the SVM, the same parameters considered in [11]
were optimized, C and γ. The RF algorithm had 5 parameters
optimized and 15 meta-features (numerical and categorical) were
used. The k-NN technique was used to define the similarity
between meta-examples and the cross-validation 10-fold was used
as objective function.

Both works handled the SVM parameter selection task as a
single objective problem and achieved good results. As the SVM
parameter selection problem can also be multi-objective problem,
the current work proposes to use the combination of ML with
multi-objective search techniques. In this section we present the
advantages and limitations of the search and the meta-learning
approaches to SVM parameter selection. In our work, we combine
the two approaches in such a way that meta-learning is used to
recommend parameters which will be later refined by a search
technique.

3. Proposed solution

In the current paper, we proposed a hybrid architecture which
combines meta-learning and optimization algorithms for multi-
objective parameter selection. The current paper shares with [11]
the idea of using meta-learning to suggest initial solutions for
an optimization algorithm (see Fig. 1). In [11], initially, the Meta-
Learner module retrieves a predefined number of past meta-
examples stored in the Meta-base, selected on the basis of their
similarity to the input problem. Following, the Search module
adopts as initial search points the most successful configurations
of parameter values on the retrieved meta-examples. The Search
module iterates its search process by generating new candidate
configurations to be evaluated in the learning strategy module
(e.g., a SVM classifier, or a combination of classifiers). The config-
uration of parameter values produced will be the best one generated

by the Search module up to its convergence or according to another
stopping criterion.

However, different from [11], in order to deal with multiple
objectives, we initially proposed a new multi-objective meta-
learning approach which is able to suggest a Pareto front from
the retrieved problems (instead of single solutions as in [11]). This
new meta-learning approach is original. Also, we combined the
meta-learning with MO optimization algorithms, which was not
considered in [11]. In the current work, 6 multi-objective algo-
rithms were evaluated. Finally, we highlight that the current paper
brings new ideas and contributions that can be specifically
relevant for multi-objective optimization field.

In the next sub-sections each module of the proposed solution
will be detailed.

3.1. Search module

In contrast to single objective approaches, the multi-objective
optimization (MOO) aims to optimize more than one objective at
the same time. MOO can be defined as the problem of finding a
vector of decision variables that satisfies constraints and optimizes a
vector of functions whose elements represent objective functions.

Considering the search space of solutions S and a set of objective
functions f

!ð x!Þ≔½f 1ð x!Þ; f 2ð x!Þ;…; f kð x!Þ�, where x!¼ ðx1; x2;…;

xnÞARn is the vector of parameters in S. The optimization task is
to find a set of solutions Sopt � S considering the vector of objectives
f
!ð x!Þ. A general multi-objective optimization minimization problem
can be defined as [19]

minimize f
!ð x!Þ≔½f 1ð x!Þ; f 2ð x!Þ;…; f kð x!Þ�; ð1Þ

subject to:

gið x!Þr0; i¼ 1;2;…; p; ð2Þ

hjð x!Þ¼ 0; j¼ 1;2;…; q; ð3Þ
where x!¼ ðx1; x2;…; xnÞARn is the vector on the decision search
space; k is the number of objectives and gið x!Þ and hjð x!Þ are the
constraint functions and pþq is the number of constrains of the
problem. Given two vectors x!; y!AS, x! dominates y! (denoted by
x!! y!) if x! is better than y! in at least one objective and x! is not
worse than y! in any objective. x! is not dominated (incomparable) if
does not exist another current solution y! in the current population,
such that y!! x!. The set of non-dominated solutions in the
objective space is known as Pareto front (PF).

In an iterative optimization technique, the search process starts
with an initial set Sini � S of possible solutions, which progres-
sively move to better regions. Given a learning problem d, the
optimized solutions Sopt found during the search can be seen as a
function of initial search points:

Sopt’Searchðd; SiniÞ ð4Þ
In a conventional search proposal, Sini is initialized randomly

and uniformly in S. Ideally, the search algorithm should be less
dependent of the initial population. In order to minimize this
dependency, the set Sini is recommended by using meta-learning.

3.2. Meta-base

The meta-base is derived from a set of learning problems D,
which can be collected from a data repository. Formally, M is a set
of meta-examples derived from D. Each meta-example eiAM is
related to a learning problem diAD and stores: (1) a vector of z
meta-features c!i ¼ ðc1i ;…; czi Þ describing a problem di; (2) the
incomparable solutions ðx1i ;…; xni Þ � S, with their respective
performance in the problem. Two points are considered in theFig. 1. General architecture.
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meta-examples creation: (1) meta-features adopted to describe
the learning problem and (2) definition of suitable solutions for
the problem.

The meta-features form a set of descriptive aspects of the
datasets (e.g., number of attributes, number of outliers, number of
categorical attributes, among others). Several researches have
been carried out to propose meta-features, including general
measures, statistics, information theory and model-based (see
[20,21,9]). According to Prudêncio and Ludermir [22], the meta-
features should be appropriate to the class of problem to be solved
(e.g. classification or regression). Besides, the meta-features should
not be derived from subjective analysis, as visual inspection of
graphics or charts.

Finally, the set of solutions ðx1i ;…; xni Þ stored in the meta-
example is defined through the application of a set of candidate

solutions SC � S in the problem. The most suitable solutions in SC

are chosen considering their performance on the objectives

in f
!ð x!Þ.

3.3. Meta-learner

After the meta-base creation, the meta-leaner L is responsible
to suggest suitable solutions from meta-examples that are similar
to the input problem. Formally, c! is the description of the input
problem d and M is the set of meta-examples. The meta-learner
generates the set Srec of recommended solutions:

Srec’Lð c!;MÞ: ð5Þ
Initially, given a description c!, the meta-leaner selects the

most similar meta-examples from M. The similarity of meta-
examples is defined by the meta-feature values. The solutions
stored into the selected meta-examples are inserted in the set to
be recommended Sini. The set of solutions recommended by
the meta-learning is adopted as initial population in the search
module. Thus, the hybrid strategy can be formally defined as

Hybridðd; c!;MÞ ¼ Searchðd;Lð c!;MÞÞ ð6Þ
In the next section, we present an implemented prototype

which followed the hybrid solution described here. Experiments
evaluating the implemented prototype will be presented in
Section 5.

4. Implementation

In this work we adopted a hybrid multi-objective architecture
to select parameters for SVMs in classification problems. Although
the implementation and the study case are focused on parameter
selection of SVMs considering classification problems, we empha-
size that the proposed architecture can be applied to select
parameters of other algorithms and for regression as well.

In this work we used the framework Scikit Learn to implement
the SVMs [23]. This toolbox provides several implementations
of machine learning algorithms, all being well documented and
validated. Two specific parameters are considered: parameter γ
from RBF kernel and the parameter of regularization C. In the next
sub-sections the implementations of each architecture module are
detailed.

4.1. Search module

In this module we adopted six multi-objective particle swarm
optimization algorithms and all of them were adapted to search
for configurations x!¼ ðγ;CÞ. We considered two objective func-
tions: the success rate in classification (SR), to evaluate the

performance of the SVM model, and the number of support
vectors (NSV), which indicates the complexity of the SVM model
[5]. The search process aims to find configurations x!¼ ðγ;CÞ
which maximizes the SR and minimizes the NSV for a given
classification problem.

In this implementation each solution or particle represents a
configuration (γ, C), indicating a position of a particle in the search
space. Each particle also has a velocity which indicates its current
direction. In order to emphasize the differences between the single
and multi-objective algorithms, we present as follows the cano-
nical multi-objective (see Algorithm 1). All changes are written in
italic.

Algorithm 1. Pseudo-code of the canonical multi-objective PSO
algorithm.

Initialization:

Create particles with random positions (xi
!) and velocities (vi

!).

Assign to pi
!ðtÞ the current particle position.

Assign to ni
!ðtÞ the best position found by the neighbors.

Update repository of non-dominated solutions (PFn).
while stop criteria not reached do
for all particle p do

Select social leader from PFn.

Evaluate fitness f
!ðxi!Þ.

Update velocity and position using the velocity and
position equations
(see Eqs. 7, 8).
Update pbest values.

end for
Update PFn.

end while

The multi-objective optimization algorithm updates the posi-
tion and velocity of each particle in order to progressively explore
the best regions in the search space. The canonical equations to
update position and velocity are presented below:

v!iðtþ1Þ ¼ vi
!ðtÞþc1r1ð p!iðtÞ� xi

!ðtÞÞ
þc2r2ð n!iðtÞ� xi

!ðtÞÞ; ð7Þ

x!iðtþ1Þ ¼ x!iþ v!iðtþ1Þ; ð8Þ
In Eq. (7), p!iðtÞ is the best position achieved by the particle so

far, and n!iðtÞ is the best position achieved by any particle in the
population so far. This equation seems to be similar to the single
objective PSO equation, however, the process of updating the n!iðtÞ
makes each particle move in direction of the best global positions
achieved from the set of non-dominated solutions. The parameters
ω, c1 and c2 control the trade-off between exploring good global
regions in the search space and refining the search in local regions
around the particle. In Eq. (7), r1 and r2 are random numbers used
to enhance the diversity of particle positions. As we mentioned
before, we implemented six variations of MOPSO algorithms
aiming to investigate the influence of ML suggestions. In the next
sections we present the algorithms considered here.

4.1.1. MOPSO
The MOPSO was proposed by Coello Coello and Lechuga [24].

The difference between the MOPSO algorithm and the Algorithm 1
is the manner how the repository of incomparable solutions
is represented. The repository of the MOPSO algorithm is called
External Archive (EA). In the EA, the space of incomparable
solutions is an adaptive grid which is composed by hypercubes.
A hypercube is a geographical region which contains a certain
number of solutions. For each hypercube is assigned a grade which
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depends on the number of solutions into the hypercube. The
hypercube's grade influences in the selection process of the social
leader. The hypercube with higher grade has more chances to
be selected by the roulette wheel mechanism. After selecting a
hypercube, a solution is randomly selected from that and is the
new social leader. The hypercube grade increases as the number of
solutions on it decreases. This selection process foments the
diversity. The great problem of the MOPSO algorithm is the grid
management. As new solutions are inserted or removed from
hypercube, the grade of each hypercube is recalculated making the
process very expensive.

4.1.2. m-DNPSO
The m-DNPSO was proposed by Hu et al. [25] and it aims to

reduce the computational cost of the social leader selection
presented previously in the MOPSO algorithm. The main charac-
teristic of the m-DNPSO is to optimize one objective at a time.
Initially, two objectives are considered: f1 and f2. f1 is defined as
the neighborhood's objective and f2 is the global objective. The
choice of the objectives that are considered is arbitrary. The m-
DNPSO proposes two approaches to select the cognitive and social
leaders. In order to determine the cognitive leader, it is evaluated
the Euclidean distance of each particle in the swarm regarding to
the solutions into the EA considering the objective f1. The social
leader is chosen among the solutions considering f2. The m-DNPSO
mechanism to select leaders reduced the computational cost
presented by the MOPSO. However, this mechanism is more
adequate for two objectives, and the choice of which objective to
be considered by the leaders selection can impact in the algorithm
performance.

4.1.3. CSS-MOPSO
The main deficiencies identified in the algorithms discussed

previously are the computational cost, premature convergence and
low diversity. The CSS-MOPSO was proposed by Chiu et al. [26]
and implements the cross-searching strategy (CSS) which foments
the local search, aiming a greater exploitation. The CSS strategy,
when applied to Algorithm 1, ignores the cognitive component
presented in Eq. (7) and considers two social components n!1ðtÞ
and n!2ðtÞ. Eq. (9) shows equation used in the CSS-MOPSO

v!iðtþ1Þ ¼ vi
!ðtÞþc1r1ð n!1iðtÞ� xi

!ðtÞÞ
þc2r2ð n!2iðtÞ� xi

!ðtÞÞ: ð9Þ

The n!1ðtÞ is selected based on the Datum point which repre-
sents the intersection between the perpendicular lines relative
to the two extreme solutions in the EA. The solution into the
EA which has the smaller angle θ (angle between the line that

connects a solution from the EA to the Datum point) is selected as
n!1ðtÞ. Fig. 2 illustrates the selection of n!1ðtÞ.

The selection of n!2ðtÞ is according to the fitness value con-
sidering an objective fi. Initially, all particles into the swarm are
ordered by the fitness value considering the fi objective. For each
particle is assigned a serial number. Considering all particles with
an even serial number, for each particle is defined as n!2ðtÞ the
closest solution in the EA with whose fitness value of fi is greater
than the particle's fitness. The same mechanism is performed for
particles with an odd serial number. However, the solution in the
EA is selected as n!2ðtÞ if it is the closest and with the fitness value
of fi is smaller than the particle's fitness. Fig. 3 illustrates the
selection of n!2ðtÞ for the objective f1.

This algorithm presented better results considering the diver-
sity of the Pareto front, identifying new solutions that were not
presented before in other algorithms. However, the CSS strategy is
limited for problems with more than two objectives.

4.1.4. MOPSO-CDLS
The MOPSO-CDLS was proposed by Tsou et al. [27] and it is

based on the approach proposed by Raquel et al. [28] to select
the social and cognitive leaders. This new mechanism uses the
crowding distance (CD) that is used to select the leaders from the
EA. The CD represents the density of the region in which a given
solution is inserted. The CD is important to analyze how the
solutions are distributed, allowing us to investigate the closeness
degree among them. Fig. 4 shows how the CD is evaluated. The
CD of the ith solution (solid circles) is the average of the length of
cuboid' side (dotted square). The solutions located in crowded

Fig. 2. Selection process of n!1ðtÞ.

Fig. 3. Selection process of n!2ðtÞ.

Fig. 4. Crowding distance evaluation considering two objective functions f1 and f2.

P.B.C. Miranda et al. / Neurocomputing 143 (2014) 27–43 31



regions have smaller CD value; on the other hand, solutions
located far from crowded regions have greater CD value.

Two situations can occur: the social leader of a particle is
randomly chosen among the 10% less crowded solutions, if the
particle is dominated by these solutions; the social leader is
randomly chosen from the entire external archive, otherwise.

The cognitive leader of each particle is updated if the new
position dominates the current cognitive leader. If these solutions
are incomparable, the cognitive leader is randomly chosen.
MOPSO-CDLS uses a local search mechanism in the EA. The
inclusion of CD in the process of selecting leaders generated
Pareto fronts with more spread and well distributed solutions.

4.1.5. MOPSO-CDR
The MOPSO-CDR was proposed by Santana et al. [29] in 2009. It

was inspired on the MOPSO-CDLS algorithm and it incorporates a
roulette wheel selection based on the crowding distance to select
the social leader ( n!ðtÞ) and to prevent an excessive number of
non-dominated solutions in the EA. Solutions with lower Crowd-
ing Distance have more chance to be selected as a social leader.
Furthermore, MOPSO-CDR presents a novel procedure to update
the cognitive leader ( p!i). The p!i of a particle is updated if the
new position of the particle dominates the current p!i. If the new
position and the p!i are incomparable, the EA is used. The
algorithm searches in the EA for the nearest solution to the p!i

and for the nearest solution to the new position. If the closer
solution in the EA to the new position is in a less crowded region
than the closer solution in the EA to the p!i, the new position will
be chosen as the new p!i. Otherwise, the old p!i remains.

4.1.6. MOPSO-CDRS
MOPSO-CDRS was proposed by Miranda and Bastos-Filho [30]

in 2011 and it was inspired on MOPSO-CDR. This algorithm aims to
improve diversity and uniformity of the solutions. The MOPSO-
CDRS has two operation modes: basic and speciation. In the Basic
mode, the algorithm selects the social and the cognitive leaders
exactly in the same manner of the MOPSO-CDR algorithm [29]. In
the Speciation mode, the swarm is divided into mþ1 sub-swarms,
where m is the number of objectives of the MOP. All sub-swarms
have the same number of particles. Each sub-swarm has a distinct
task and performs the search guided by a different objective. One
sub-swarm continues executing the MOPSO-CDR algorithm, while
the other k sub-swarms select the leaders according to a specific
objective. At each iteration, the algorithm checks if it is necessary
to change the operation mode based on the evaluation of the EA
using two metrics, Maximum Spread and Spacing. The algorithm
analyzes the Maximum Spread when it is in the Basic mode,
whereas it analyzes the Spacing when it is in the Speciation mode.
The algorithm changes the operation mode when a stagnation
process occurs regarding the analyzed metric.

4.2. Meta-base

The meta-base creation involved 100 datasets corresponding to
100 different classification problems available for downloading in
the UCI Machine Learning repository [31]. The list of classification
problems used in this work is presented in Table 1.

In all datasets, the missing values were replaced by the average
values and the data sets had the order of his examples changed
randomly to minimize any tendency of the data collection of the
original set. These problems correspond to datasets associated
with different application domains. A variety of fields is positive in
our context, because the characteristics of datasets tend to have a
good variation.

Fig. 5. Selection process of the j most similar meta-examples compared to the new
dataset.

Table 1
Classification problems used for meta-examples generation.

Blood Northix Credit-a Mamography First-order
theorem proving

Leaf Vehicle Lung Cancer Optdigits Spoken Arabic Digit
Colic Soybean Hill Wholesale Istanbul

Valley customers Stock Exchange
Heart Splice Hepatitis Musk v.2 Image Segment.
Colon Libras Breast-w Ozone Lvl. Robot Execution

Detection Failures
SECOM Dexter Column-3c Bank Activity

Marketing Recognition
Iris Letter Parkinson Parfum Daily and Sports

data Activities
Sick Yeast Column-2c Ionosphere Cardiotocography
Sonar Cancer Kr-vs-kp MicroMass Energy

biodegrad. efficiency
Ecoli Gisette Fertility Vertebral Column Reuter-50-50
QSAR PEMS-SF Haberman Banknote auth. Demospongiae
Steel ISOLET Dorothea Japanese Vowels Primary Tumor
Seeds Madelon Mushroom Seismic bumps Heart-Statlog
Zoo Arcene Red Wine LSVT Voice Australian Sign

Qual Rehabilit.
Lymph Segment Semeion Haberman's Survival Hypothyroid
Autos Balance White UJI Pen EEG Eye

Scale Wine Qual Chars. v.2 State
Vote Breast Spambase Page Blocks MAGIC Gamma

Tissue Classif. Telescope
Wine Wine CNAE-9 Climate Model User Knowledge

Quality Simulation Crashes Modeling
Glass SPECTF p53 Statlog Handwritten

Heart Mutants Vehicle Digit
ILPD Pen Prina Thoracic Amazon Commerce

Digits Diabetes Surg. Data reviews set

Table 2
Meta-features for classification problems.

Simple
Number of examples
Number of attributes
Number of classes

Statistics
Mean of the attributes correlation
Geometric mean of attributes
Mean of skewness
Mean of kurtosis

Information theory
Class entropy
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As we mentioned before, the meta-base is a repository of meta-
examples M, where each meta-example is a tuple composed by a
vector c! of meta-features and a set of configurations of parameters
associated with their respective fitness values considering the vector
of objectives f

!
. Here, we used 8 meta-features to describe the

datasets of classification problems. These meta-features were selected
from the set of features defined in [12]. The meta-features are
categorized as Simple, Statistics and Information Theory (see Table 2).

The category of simple values is composed by the number of
examples, attributes and classes of a dataset. The category of
statistical values is composed by the mean correlation of attri-
butes; mean of Skewness, which measures the asymmetry of the
distribution regarding the central axis; mean of Kurtosis, which
measures the dispersion (characterized by the flatness of the
distribution curve) and the geometric mean of the attributes
which evaluates the mean of the data standard deviation. Finally,
the information theory category measures the randomness of the
instances; being composed by the class entropy which defines the
degree of uncertainty of classification [12].

Fig. 7. Mean of Spacing� Iteration, using 10 particles and considering 100 classification problems.

Fig. 6. Suggestion process of j solutions based on CD.
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In our work, each meta-example is composed by a set of 399
different configurations of parameters γ and C. By following the
guidelines provided in [23], we considered the following expo-
nentially growing sequences of γ and C as potentially good
configurations: the parameter γ assumed 19 different values (from
2�15 to 23) and the parameter C assumed 21 different values (from
2�5 to 215), thus yielding 19�21¼399 different combinations of
parameters in the search space. In order to evaluate the fitness
values of each configuration of a Meta-example, we performed
SVM in the cross-validation 10-fold experiment.

4.3. Meta-leaner

A new ML mechanism of suggestion was created and it is
executed in two steps; the first step is to select the j most similar
problems (meta-examples) from the meta-database for a given
input problem (see Fig. 5). The similarity is evaluated considering
the Euclidean distance (using the meta-features values) between
the input problem and each meta-example in the Meta-base.
After the comparison step, all meta-examples are sorted by the

similarity value. The j most similar meta-examples J pass for the
next step.

In the second step, as it can be seen in Fig. 6, we applied the
dominance mechanism (discussed in Section 4.1) for each meta-
example in J, filtering only the incomparable solutions (procedure
A in Fig. 6). Thus, for each meta-example in J was generated one
Pareto front. After that, all Pareto fronts are sorted by Crowding
Distance (presented in Section 4.1.4), which represents the density
of the region in which a given solution is inserted. The CD is
important to analyze how the solutions are distributed, allowing
us to investigate the closeness degree among them.

Once all Pareto fronts are sorted by CD values, we select one
configuration of parameters randomly, of each Pareto front, which
belongs to the group of solutions with higher CD value. This
mechanism selects a solution, located in low-density regions, from
each j most similar problems (procedure B in Fig. 6). This can
generate an initial population with higher spreading, making the
searching process more diverse.

A critical point in this mechanisms is to define j, the number of
similar problems to be selected. If j assumes a high value, it is

Fig. 8. Mean of hypervolume� Iteration, using 10 particles and considering 100 classification problems.
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possible that non-similar problems be selected. In the case in
which j assumes a low value, similar problems can be inconside-
rate, impacting in the quality of the initial population.

5. Experiments

In this section, we present the experiments which evaluated
the proposed solution on the set of 100 classification problems
considered in our work. The proposed solution was evaluated by
following a leave-one-out methodology described below.

At each step of leave-one-out, one meta-example was left out
to evaluate the implemented prototype and the remaining 39
meta-examples were considered in the meta-base to be selected
by the meta-learner module. A number of j meta-examples were
suggested by the meta-learner module as the initial population of
the MO algorithms (in our experiments, we adopted j¼10). The
MO algorithms then optimized the SVM configurations for the
problem left out up to the number of 10 iterations. In each
iteration, a Pareto front (repository of non-dominated solutions)

is formed and to evaluate its quality we applied four metrics. This
procedure was repeated 30 times to guarantee reliability.

This experiment was divided into three parts: initially, the
results are analyzed in Perspective 1, which presents the mean of
the metrics values of all problems for each iteration. After that, in
Perspective 2, we present the number of wins of the algorithms
per iteration regarding all problems, where the algorithm which
achieved better quality (according to a specific metric) is the
winner.

Although the analysis of Pareto front's quality is important, we
also performed an evaluation considering the test error in the
classification of the non-dominated solutions (Perspective 3). This
perspective allows to investigate whether the non-dominated
solutions really solve the problem adequately. No use the hybrid
approach presents superior Pareto fronts regarding the non-hybrid
techniques if its solutions do not present a significantly better
classification performance.

In order to evaluate the results under this perspective, it was
necessary to select a non-dominated solution from a Pareto front
and evaluate its classification error for the test set. In this

Fig. 9. Mean of Max. Spread� Iteration, using 10 particles and considering 100 classification problems.
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experiment, we used the ranking method Borda count [35] to
select a non-dominated solution from the Pareto. Once the solu-
tion was selected, it is evaluated regarding its classification
performance using the fast leave-one-out test proposed by [34].
During the simulation, this procedure was applied to all problems
per iteration.

As a basis of comparison, we used for each value of j a
randomly initialized population for the algorithms (without
meta-learning). Despite its simplicity, the random initialization
has the advantage of performing a uniform initial exploration of
the search space. Finally, we highlight that each algorithm was
executed 30 times and the average results were recorded.

5.1. Settings

Each algorithm considered here presents its own set of para-
meters. In the case of MOPSO, the mutation rate is 0.5, the number
of fractions for the adaptive grid is 30 and the inertia factor
decreases linearly from 0.4 to 0.0 [24]. In the MOPSO-CDLS the

inertia factor decreases linearly from 0.9 to 0.4 [27]. In the
m-DNPSO, m¼10 and the inertia factor is generated randomly at
each iteration in the interval ½0:5;1:0� [29]. The CSS-MOPSO uses
0.01 as standard deviation for the Gaussian mutation and the
inertia factor decreases linearly from 0.9 to 0.4 [26]. In the MOPSO-
CDR, the mutation rate is 0.05 and the inertia factor decreases
linearly from 0.9 to 0.4. The MOPSO-CDRS presents the same
configuration of the MOPSO-CDR, and the saturation limit for
Spacing and Maximum Spreading is 0.1%. In all algorithms, the
cognitive and social acceleration constants are equal to 1.49.
Moreover, the parameter j, relative to the number of suggestion
performed by the meta-learning (population size) is j¼10. We
used 10 iterations as stopping criteria of the algorithms.

5.2. Metrics

In our experiments, we evaluated the results (i.e., the Pareto
fronts) obtained by all hybrid and traditional algorithms for each
problem according to different quality metrics usually adopted in

Fig. 10. Mean of Coverage� Iteration, using 10 particles and considering 100 classification problems.
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the literature of MOO. The adopted metrics were Hypervolume,
Maximum Spread, Spacing and Coverage. Each metric considers a
different aspect of the Pareto front.

The hypervolume (HV) was proposed by Zitzler and Thiele [32]
and is defined by the hypervolume in the space of objectives
covered by the obtained Pareto front (Pn). For MOP with
k-objectives, HV is defined by

HV ¼ ⋃
i
ai j xiAPn

( )
; ð10Þ

where xi (i¼ 1;2;…;n) is a non-dominated solution of the Pareto
front (Pn), n is the number of solutions in the Pareto front and ai is
the hypervolume of the hypercube delimited by the position of
solution xi in the space of objectives and the origin. In practice, this
metric gives the size of the dominated space, which is also called
the “area under the curve”. A large value of HV is desired.

The maximum spread (MS) was proposed by Zitzler et al. [32]
and evaluates the maximum extension covered by the non-
dominated solutions in the Pareto front. MS is computed by using

the following equation:

MS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

m ¼ 1
max

n

i ¼ 1
f im� min

n

i ¼ 1
f im

� �2
s

; ð11Þ

where n is the number of solutions in the Pareto front and k is the
number of objectives. This measure determines which solution
covers a bigger extension of the search space; hence, large values
of this metric are preferred.

The spacing SP estimates the diversity of the achieved Pareto
front. SP is derived by computing the relative distance between
adjacent solutions of the Pareto front as follows:

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1
∑
n

i ¼ 1
ðd�diÞ2

s
; ð12Þ

where n is the number of non-dominated solutions, di is the
distance between adjacent solutions to the solution vi and d is
the average distance between the adjacent solutions. SP¼0 means
that all solutions of the Pareto front are equally spaced. Hence,
values of SP near zero are preferred.

Fig. 11. Number of wins of Spacing� Iteration, using 10 particles and considering 100 classification problems.
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The coverage CV was proposed by Zitzler et al. [32]. CV is
evaluated by using the following equation:

CVðA;BÞ ¼ j bAB; (aAA : a≽b
� �j

jBj ; ð13Þ

where A and B are two sets of non-dominated solutions. The
CVðA;BÞ ¼ 1 means that all solutions in B are weakly dominated by
A. On the other hand, CVðA;BÞ ¼ 0 means that none of the solutions
in B are weakly dominated by A. Note that both CVðA;BÞ and
CVðB;AÞ have to be evaluated, since CVðA;BÞ is not necessarily
equal to 1�CVðB;AÞ. If 0oCVðA;BÞo1 and 0oCVðB;AÞo1, then
neither A totally dominates B nor B totally dominates A.

6. Results

In order to analyze our results adequately we performed
statistical analysis. Initially, we applied the Kolmogorov–Smirnov

test to verify whether the data follows a normal distribution. As
the test result was negative, we applied the Wilcoxon test [33]
to verify our hypothesis: the hybrid approaches are superior to
traditional approaches. All the following analyses used this
methodology.

Initially we present the results of Perspective 1. Fig. 7 presents the
results regarding to SP. As it can be seen, the meta-learning generated
good initial solutions for all the algorithms, contributing for the
optimization process. In two algorithms, HMOPSO-CDR and HMOPSO-
CDRS we can see that in the first iteration, the Pareto front presented
worse quality when compared to MOPSO-CDR and MOPSO-CDRS
respectively. This happened due to the diverse nature that already
exists in both algorithms. As the meta-learning also uses a diverse
mechanism to suggest, the diversity is increased in these two
algorithms. However, this bad beginning of HMOPSO-CDR and
HMOPSO-CDRS did not influence the simulation as a whole.

Although the meta-learning contribution is visible, it becomes
necessary the application of the Wilcoxon test to guarantee, with

Fig. 12. Number of wins of Hypervolume� Iteration, using 10 particles and considering 100 classification problems.
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95% of reliability, the superiority of hybrid techniques over tradi-
tional ones considering all simulation.

Fig. 8 presents the results considering hypervolume. Here, we
can clearly see the influence of the meta-learning suggestions in
the first iteration. As the mechanism increases the diversity, the
solutions tend to be distant from each other expanding the area
under the Pareto front. These initial solutions provided by meta-
learning contributed for the refinement of the solutions resulting
in better Pareto fronts when compared with the traditional
algorithms. Considering all iterations, all hybrid algorithms
achieved, with 95% of reliability, better results than their tradi-
tional versions.

Fig. 9 presents the results for Max. Spread. Considering the first
iteration of all algorithms, it is visible that meta-learning provided
a good start for all of them. Despite this advantage, the nature
of MOPSO and m-DNPSO algorithms (both have no diversity
mechanisms) did not favor the convergence to a Pareto front with
good spread in the last iterations. Thus, the two hybrid approaches

are considered equal to their traditional algorithms, considering
the last three iterations. On the other hand, the results presented
in Fig. 9B, C, E and F show that the suggested initial MA
mechanisms and diversity of the native algorithms favored the
spreading of the solutions since early iterations to the end.

Fig. 10 presents the results for Coverage. This metric is very
important because it informs the percentage of dominance
between Pareto fronts. The results show the average percentage
of dominance achieved by the algorithms per iteration.

As it can be seen in Fig. 10, the hybrid algorithms generated
Pareto fronts with a high percentage of dominance since the first
iterations. The algorithms HMOPSO, HMOPSO-CDR and HMOPSO-
CDRS reached 100% of dominance at the end of the simulation,
with respect to their traditional approaches.

Besides Perspective 1, we also analyzed the results in Perspec-
tive 2, which considers the number of wins each algorithm
achieved among all problems per iteration. Fig. 11, for instance,
presents the number of wins for the SPmetric. In order to compute

Fig. 13. Number of wins of Max. Spread� Iteration, using 10 particles and considering 100 classification problems.
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a win for a given problem, we compare the SR achieved by the
traditional algorithm with the SR achieved by its hybrid version. If
the SR value of the hybrid algorithm is statistically better than the
SR value of the traditional algorithm, a win is assigned for the
hybrid algorithm. In this figure, the black segment of each bar
indicates the number of statistical wins the hybrid approach
received for the SP metric among the 100 problems at each
iteration. The same methodology was applied to produce Figs. 12,
13 and 14, respectively for metrics Hypervolume, Max. Spread and
Coverage.

The results shown in this perspective were in general positive
for all metrics considered, making clear the superiority of hybrid
algorithms. In the SP metric, for instance (Fig. 11), all hybrid
algorithms overcome at least 65 of the 100 classification problems
in all iterations. The algorithm HMOPSO-CDRS (see Fig. 11F) had
the highest number of wins compared to the others, winning in at
least 76 classification problems per iteration.

Considering the Hypervolume (Fig. 12), the number of victories
of hybrid algorithms was also very expressive. The algorithms

HMOPSO, HMOPSO-CDR, HCSS-MOPSO, m-HDNPSO, HMOPSO-
CDLS and HMOPSO CDRS won, on average, 74, 74.5, 74, 73.8, 74.4
and 76.9 classification problems, respectively. Concerning the
Max. Spread (Fig. 13), in turn, the HMOPSO-CDR, HCSS-MOPSO,
HMOPSO-CDLS and HMOPSO-CDRS won 74:5, 73:7, 72 and 76:3 of
problems considering all iterations, respectively.

The best results were found considering the Coverage metric
(Fig. 14). As it can be seen, the high number of wins among all
hybrid algorithms since the first iterations are consequence of the
suggestions performed by the ML. The suggestions favored the
generation of Pareto fronts with better quality for most classifica-
tion problems involved. Among the hybrid algorithms, three of
them (see Fig. 14A, B and F) achieved total dominance in all the
problems involved in the last iterations.

Finally, Fig. 15 presents the mean test error for the 100
classification problems at each iteration. As previously explained,
for each classification problem, the algorithms generate a Pareto
front per iteration. A non-dominated solution is selected from each
Pareto front and its classification test error is evaluated in the

Fig. 14. Number of wins of Coverage� Iteration, using 10 particles and considering 100 classification problems.
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current classification problem. As it can be seen in Fig. 15, the hybrid
algorithms outperformed the traditional algorithms since the first
iteration, confirming the positive influence of the ML technique in
the optimization process. We also performed the Wilcoxon test to
evaluate this experimental result and the predictive performance of
the hybrid approaches overcame the traditional approaches with 95%
of confidence considering all experiments.

This information confirms that our proposal has not only
generated Pareto fronts with a superior quality, but also the
solutions inside the front also have high predictive quality and
can be also useful for the problems considered here.

7. Conclusion

In this paper, Meta-Learning (ML) and multi-objective particle
swarm optimization algorithms were combined to select the
parameter γ of the RBF kernel and the regularization parameter

C. The ML component selects the solutions that will constitute the
initial population for the search algorithm. In the experiments
performed, it was possible to observe that the hybrid approaches
were able to generate better Pareto fronts when compared to
the randomly initialized algorithms, according to four evaluation
metrics. Besides, we also investigated the quality of the non-
dominated solutions regarding their test classification error and
all hybrid approaches obtained better predictive results than the
traditional approaches. For future works, we intend to collect more
classification problems in order to increase the number of meta-
examples in the meta-base and we believe that the performance of
the proposed approach can be improved as more meta-examples
are considered. Also, supplementary search techniques can be
used and different swarm sizes can be tested. Besides, we intend to
use other quality metrics to perform better analysis of the Pareto
fronts generated, as well as evaluate the proposed solution in
other case studies, such as in the SVM parameter selection for
regression problems.

Fig. 15. Mean of testing error� Iteration, using 10 particles and considering 100 classification problems.
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