
Combining Meta-Learning and Search Techniques to

Select Parameters for Support Vector Machines

Taciana A. F. Gomesa, Ricardo B. C. Prudêncioa, Carlos Soaresb, André L.
D. Rossic, André Carvalhoc

aCentro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
{tafg, rbcp}@cin.ufpe.br

bLIAAD-INESC Porto LA, Faculdade de Economia, Universidade do Porto, Portugal
csoares@fep.up.pt

cDepto. de Ciências da Computação, Universidade de São Paulo, São Carlos, Brazil
{alrossi, andre}@icmc.usp.br

Abstract

Support Vector Machines (SVMs) have achieved very good performance on
different learning problems. However, the success of SVMs depends on the
adequate choice of the values of a number of parameters, (e.g., the kernel and
regularization parameters). In the current work, we propose the combination
of Meta-Learning and Search algorithms to deal with the problem of SVM
parameter selection. In this combination, given a new problem to be solved,
Meta-Learning is employed to recommend SVM parameter values based on
parameter configurations that have been successfully adopted in previous
similar problems. The parameter values returned by Meta-Learning are then
used as initial search points by a search technique, which will further explore
the parameter space. In this proposal, we envisioned that the initial solutions
provided by Meta-Learning are located in good regions of the search space
(i.e. they are closer to optimum solutions). Hence, the search algorithm
would need to evaluate a lower number of candidate solutions when looking
for an adequate solution. In this work, we investigate the combination of
Meta-Learning with two search algorithms: Particle Swarm Optimization
and Tabu Search. The implemented hybrid algorithms were used to select the
values of two SVM parameters in the regression domain. These combinations
were compared with the use of the search algorithms without Meta-Learning.
The experimental results on a set of 40 regression problems showed that,
on average, the proposed hybrid methods obtained lower error rates when
compared to their components applied in isolation.

Preprint submitted to Neurocomputing March 18, 2011

Keywords: Support Vector Machines; Meta-Learning; Search

1. Introduction

An increasing attention has been given to Support Vector Machines (SVMs)
due to both their theoretical foundations and the good empirical performance
when compared to other learning algorithms in different applications [1].
However, the SVM performance strongly depends on the adequate choice of
its parameter values, including for instance, the kernel function, the values
of kernel parameters, the regularization parameter, among others [2]. An
exhaustive trial-and-error procedure for selecting good parameter values is
obviously not practical [3].

SVM parameter selection is commonly treated by different authors as
an optimization problem in which a search technique is employed to find
the configuration of parameters which maximizes the SVM performance esti-
mated on the problem at hand [4]. Although it represents a more systematic
approach to parameter selection, this approach can still be very expensive,
since a large number of candidate parameter configurations is often evaluated
during the search process [1].

An alternative approach to SVM parameter selection is the use of Meta-
Learning, which treats the SVM parameter selection as a supervised learn-
ing task [1, 5]. Each training example for Meta-Learning (i.e. each meta-
example) stores the characteristics of a past problem and the performance
obtained by a set of candidate configurations of parameters on the problem.
By receiving a set of such meta-examples as input, a meta-learner is able
to predict the best configuration of parameters for a new problem based on
its characteristics. Meta-Learning is a less expensive solution compared to
the search approach. In fact, once the knowledge is acquired by the meta-
learner, configurations of parameters can be suggested for new problems with-
out the need of empirically evaluating different candidate configurations (as
performed using search techniques).

In the current work, we propose the combination of search techniques and
Meta-Learning to the problem of SVM parameter selection. In this proposal,
configurations of parameters suggested by Meta-Learning are adopted as ini-
tial solutions which will be later refined by the search technique. In previous
work the search process starts evaluating solutions randomly sampled from
the parameter space (e.g., [6, 7, 8]). In the proposed hybrid approach, the

2

search process starts with successful solutions from previous similar prob-
lems. Hence, we expect that Meta-Learning guides the search directly to
promising regions of the search space, thus speeding up the convergence to
good solutions.

In order to evaluate our proposal, we investigated the selection of two
parameters for SVMs on regression problems (i.e., Support Vector Regres-
sors): the parameter γ of the RBF kernel and the regularization constant C,
which may have a strong influence in SVM performance [9]. In our work,
a database of 40 meta-examples was produced from the evaluation of a set
of 399 configurations of (γ, C) on 40 different regression problems. Each
regression problem was described by a number of 17 meta-features proposed
in [10, 1, 11]. Two search algorithms were used to optimize the parameters
(γ, C): Particle Swarm Optimization (PSO) [12] and Tabu Search (TS) [13]
These algorithms were used in two different scenarios: with the initial pop-
ulation suggested by Meta-Learning, leading to hybrid methods, and with
a random initial population. According to experimental results, the hybrid
methods were able to converge faster to good solutions when compared to
the randomly initialized PSO and TS.

This paper is organized as follows. Section 2 brings a brief presentation
on the SVM parameter selection task. Section 3 presents the proposed work,
followed by Section 4 which presents the implementation details. Section
5 describes the experiments performed and the obtained results. Finally,
Section 6 discusses the main conclusions and possibilities for future work.

2. SVM Parameter Selection

According to [14], the SVM parameter selection task is often performed
by evaluating a range of different combinations of parameters and retaining
the best one in terms of an objective function. There are two important issues
in this sense: (1) the objective function to be optimized, which is in general a
functional estimating the SVM performance using the problem’s dataset (e.g.,
leave-one-out and cross-validation estimates, error bounds, model complexity,
among others); (2) the strategy adopted to explore the space of parameters.
Regarding the second issue, an exhaustive procedure to explore the parameter
space can lead to good results, however it is a strategy that should be avoided
due to practical reasons.

In order to improve the search process and to avoid an exhaustive or a
random exploration of parameters, different authors have deployed search

3

and optimization techniques [3, 4, 6, 7, 8, 14, 15, 16]. In this context, the
search space consists on a set of possible configurations of parameters. Each
search technique deploys specific search operators and mechanisms to explore
the search space, aiming to reach optimized parameters with good values
for the chosen objective function. Among the search techniques adopted in
the literature, we can mention gradient-based techniques [3], Evolutionary
Algorithms [6, 7, 8], Tabu Search [14] and Particle Swarm Optimization [16].

Although the use of search techniques is more efficient when compared
to an exhaustive process of parameter selection, this solution may still be
very expensive since for each configuration generated during the search it is
necessary to train the SVM [1]. This limitation can be even more drastic
depending on the problem at hand and the number of parameters to be
optimized. Another limitation of this solution is that the search process
usually starts with random configurations uniformly sampled from the search
space. This can result on slow convergence and sensibility to local minima
depending on the adopted search technique.

Alternatively, Meta-Learning has been proposed and investigated in re-
cent years to SVM parameter selection [1, 5, 10, 11, 17, 18]. In this approach,
the choice of parameters for a problem is based on well-succeeded parameters
adopted to previous similar problems. For this, it is necessary to maintain a
set of meta-examples where each meta-example stores: (1) a set of character-
istics (called meta-features) describing a learning problem; and (2) the best
configuration of parameters (among a set of candidates) empirically eval-
uated on the problem. A meta-learner is then used to acquire knowledge
from a set of such meta-examples in order to recommend (predict) adequate
configurations of parameters for new problems based on their meta-features.
Meta-learning is able to predict not only one configuration of parameters
but also to recommend rankings of configurations (as performed in [1]). This
is interesting since the user has more alternatives if the first configuration
recommended by meta-learning does not achieve adequate results.

Compared to the search approach, meta-learning tends to be more effi-
cient in terms of computational cost. In fact, in the search approach it may
be necessary to evaluate a large number of configurations until good objective
values are achieved. In meta-learning in turn, the quality of a SVM config-
uration on a specific problem is predicted instead of directly estimated (as
it occurs in the search approach). Meta-learning however is very dependent
on the quality of its meta-examples. In the literature, it is usually difficult
obtaining good results since meta-features are in general very noisy and the

4

number of problems available for meta-example generation is commonly lim-
ited. Hence, the performance of meta-learning for SVM parameter selection
may be not so good as the performance of search techniques. The previous
statement however has to be taken with caution since no previous authors
have performed experiments comparing meta-learning to search techniques.

In this section we present the advantages and limitations of the search
and the meta-learning approaches to SVM parameter selection. In our work,
we combine the two approaches in such a way that meta-learning is used to
recommend parameters which will be later refined by a search technique.

3. Proposed Solution

As discussed in the previous section, although SVMs have a strong gen-
eralization capability, their performance depends on an adequate choice of
their parameter values. This work proposes a new hybrid method to auto-
mate the design of SVMs based on the combination of Meta-Learning and
search algorithms. In the proposal, a meta-learner suggests the initial search
points as successful parameter values from previous similar problems.

As discussed in [19], good solutions to a particular search problem can be
used to indicate promising regions of the search space for similar problems.
We highlight that the target output of meta-learning is essentially the same
objective function optimized by the search techniques (i.e. a given measure of
learning performance). The difference is that in meta-learning the objective
function is predicted using the meta-features instead of directly estimated.
The value of meta-features to predict learning performance has already been
demonstrated in different previous work on meta-learning (see [20]). It has
been also applied to improve optimization tasks but in very different contexts
(e.g. job shop scheduling [19], quadratic programming problems [21], travel-
ing salesman problems [22]). The positive results in these contexts motivated
us to apply similar ideas for optimizing SVM parameters. We expect that
the initialization provided by Meta-Learning enables the search algorithm to
speed up its convergence to good solutions.

Figure 1 depicts the general architecture of the proposed solution. Ini-
tially, the Meta-Learner (ML) module retrieves a predefined number of past
meta-examples stored in a Meta-Database (MDB), selected on the basis of
their similarity to the input problem. Following, the Search module adopts
as initial search points the configurations of successful parameter values on

5

Input
Problem

- ML -

Initial
Candidates

Search

SVM

6

?

Candidate
Parameters

Estimated
Performance

6

MDB

Meta-
Examples

- Best
Parameters

Figure 1: General Architecture

the retrieved meta-examples. In the Search module, a search process itera-
tively generates new candidate parameters to be evaluated in the SVM. The
output configuration of parameters will be the best one generated by the
Search module up to its convergence or other stopping criteria.

In [23], we presented the preliminary experiments which evaluated the
proposed hybrid method (using PSO in the Search module). In the current
work, we provide a more detailed description of the proposed method, by
formally presenting each component of the proposed architecture (see next
sub-sections). We also implemented a new technique in the Search module:
the Tabu Search algorithm which presents different characteristics compared
to the PSO. As it will be seen, different conclusions can be yielded by con-
sidering different search techniques in our solution. Finally, new experiments
were performed in the current paper. In [23], the hybrid solution was only
compared to the search technique in isolation. In the current work, we com-
pared the hybrid method to both the meta-learning and the search technique.
For this, we adapted the TopN procedure originally adopted in [1] for evaluat-
ing the SVM parameters recommended by meta-learning. We also performed
statistical tests for performance evaluation and provided more detailed re-
ports of our results that helped us to assess the advantages and limitations
of each evaluated method.

3.1. Search Module

The SVM parameter selection problem can be defined as an optimization
problem considering a search space of parameters S and an objective function
O : S → ℜ, which evaluates the configurations in S. The optimization task
is to find a set of good configurations Sopt ∈ S in terms of the objective

6

function O.
In an iterative optimization technique, the search process starts with an

initial set Sini ⊂ S of search points and progressively moves toward betters
solutions. The set Sini can be just a single configuration or a population of
search points (in the case of population-based techniques). Given a learning
problem d, the optimized configurations of parameters Sopt found during the
search can be seen as a function of the initial search points:

Sopt ← Search(d, Sini) (1)

In a conventional search approach, Sini is randomly and uniformly sam-
pled from S. Ideally, the search technique would be less dependent as pos-
sible from the initial search points. In our work, in order to minimize this
dependency, the set Sini is recommended by a meta-learning technique.

An important aspect in the Search module is the technique adopted to
perform the exploration of the search space. Global search techniques, Ge-
netic Algorithms (GA) and PSO, are more complex and would be potentially
better to perform the parameter optimization. However, as the search in our
hybrid method starts in a promising region of the search space, simple local
techniques could be also be adopted. In fact, the viability of using a local
technique in our hybrid search method was indicated in our experiments (see
Section 5).

3.2. Meta-Database

The meta-database is derived from a set of learning problems D, which
can be collected from dataset repositories or artificially generated datasets.
Formally, let M be the set of meta-examples derived from D. Each meta-
example ei ∈ M is related to a learning problem di ∈ D and stores: (1)
a vector of p meta-features xi = (x1

i , . . . , x
p
i) describing the problem di; (2)

the best configuration of parameters s∗i ∈ S evaluated on the problem. Two
important issues are considered for generating the meta-examples: (1) the
meta-features adopted to describe the learning problems; (2) the definition
of the best configuration for a problem.

Considering the first issue, a large amount of work has been developed to
define suitable meta-features, including general, statistical and information-
theoretic measures, landmarkers and model-based measures (see [24] for a
review). According to [25], one can follow some advices to choose the meta-
features. First, meta-features have to be feasible for the class of problem be-
ing solved (for instance, classification or regression). Second, meta-features

7

should be reliably identified, avoiding subjective analysis, such as visual in-
spection of plots. In fact, subjective feature extraction is expensive and
requires a lot of expertise. Finally, one should use a manageable number of
simple meta-features in order to avoid a time consuming feature extraction
process.

Finally, the configuration s∗i stored in a meta-example is defined from
an empirical evaluation of a set of candidates SC ⊂ S on the associated
problem (i.e. the best configuration in SC considering the objective function
O). The quality of the stored configurations closely depends on the number
of candidates available in SC . By considering a very small set of candidates,
the quality of meta-learning itself may be harmed. In turn, by considering a
very large set of candidates, the cost of system development increases.

3.3. Meta-Learner

Given a meta-database, a meta-learner L is used to predict good con-
figurations of parameters based on the description of the problem at hand.
Formally, let x be the description of a new problem d and letM be the set
of meta-examples. The meta-learner returns as output a set Srec of recom-
mended configurations:

Srec ← L(x,M) (2)

In our work, a simple meta-learner was adopted. Initially, given the
description x, the meta-learner retrieves the most similar meta-examples
from M. Similarity of meta-examples is defined in terms of the values of
meta-features. Afterwards, the best configurations stored in the retrieved
meta-examples are inserted in the recommended set Sini.

The set of configurations recommended by meta-learning is adopted as
initial search points for the Search module. Hence, the hybrid method can
be formally defined as:

Hybrid(d,x,M) = Search(d,L(x,M)) (3)

In the next section, we present an implemented prototype which followed
the hybrid solution described here. Experiments evaluating the implemented
prototype will be presented in Section 5.

8

4. Implementation

In the current work, we implemented a prototype to select SVM param-
eters for regression problems. In this case, we actually deployed Support
Vector Regressors (SVRs). Although our implementation and case study
has been focused on regression, we highlight that the proposed solution can
be also adopted for classification problems. Case studies evaluating the pro-
posed solution for SVMs in classification problems will be developed in future
work.

In our work, we adopted the LibSVM library to implement the SVMs for
regression problems [26]1. Two specific parameters were considered to select:
the γ parameter of RBF kernel and the regularization parameter C. The
choice of RBF kernel is due to its flexibility in different problems compared
to other kernels [9, 28]. It is known that the γ parameter has an important
influence in learning performance since it controls the linearity of the induced
SVM. The parameter C is also important for learning performance since it
controls the complexity (flatness) of the regression function derived by the
SVMs [28]. The other SVR parameters which were not the focus of the
current work were defined as the default values suggested by the LibSVM
tool.

In the implemented prototype, a meta-database was generated from the
application of LibSVM to 40 different regression problems collected from data
repositories. An instance-based learning method was employed in our work to
provide the initial parameter configurations. In the Search module, we eval-
uated two search algortihms with different characteristics: Particle Swarm
Optimization (PSO) [12] and Tabu Search (TS) [13]. The former algorithm,
based on population-based search, deploys adaptive mechanisms to combine
both global and local exploration of the search space. The second, TS, is a
simpler search technique that locally explores the search space. Information
regarding their implementation will be presented in the next sub-sections.

4.1. Search Module - PSO

In our prototype, we implemented the version of PSO originally proposed
in [29] and adapted here to perform the search for configurations (γ, C). The
objective function evaluated the quality of each configuration of parameters

1In our work, the ϵ-Support Vector Regression [27] formulation was adopted. More
details on this implementation can be found in http://www.csie.ntu.edu.tw/c̃jlin/libsvm.

9

on a given regression problem. In our work, given a SVM configuration,
we defined the objective function as the Normalized Mean Squared Error
(NMSE) obtained by the SVM in a 10-fold cross validation experiment. So,
the objective of PSO was to find the configuration (γ, C) with lowest NMSE
value for a given regression problem.

In our PSO implementation, each particle j represents a configuration
sj = (γ, C), indicating the position of the particle in the search space.
Each particle also has a velocity which indicates the current search direction
performed by the particle. PSO basically works by updating the position and
velocity of each particle in order to progressively explore the best regions in
the search space. The update of position and velocity in the basic PSO is
given by the following equations:

vj ← ωvj + c1r1(ŝj − sj) + c2r2(ĝ − sj) (4)

sj ← sj + vj (5)

In Equation 4, ŝj is the best position achieved by the particle so far, and ĝj
is the best position achieved by any particle in the population so far. Hence,
each particle is progressively moved in direction of the best global positions
achieved by the population (the social component of the search) and the
best local positions obtained by the particle (the cognitive component of the
search).

The parameters ω, c1 and c2 control the trade-off between exploring good
global regions in the search space and refining the search in local regions
around the particle. In equation 4, r1 and r2 are random numbers (uni-
formly sampled from the interval [0, 1]) used to enhance the diversity of
particle positions. In our prototype, we adopted decreasing values for the in-
ertia parameter ω (decreasing from 0.9 to 0.4 during the PSO generations).
Hence, the PSO performs a more global exploration in its initial generations
and a fine-tuned local exploration in the last generations. Regarding the pa-
rameters c1 and c2, we adopted fixed values: c1 = c2 = 2, commonly adopted
in the literature.

In our work, the PSO was implemented to perform a search in a space rep-
resented by a discrete grid of SVM configurations, consisting of 399 different
settings of parameters γ and C. By following the guidelines provided in [28],
we considered the following exponentially growing sequences of γ and C as
potentially good configurations: the parameter γ assumed 19 different values

10

(from 2−15 to 23) and the parameter C assumed 21 different values (from
2−5 to 215), thus yielding 19 x 21 = 399 different combinations of parameter
values in the search space. We highlight that in order to facilitate the search
process the particles were defined in the log space of these configurations.

4.2. Search Module - TS

In the previous section, we described our implementation of PSO, which
represents as a powerful population-based search algorithm. PSO is able to
balance global and local exploration during the search, thus leading to faster
and better results in different applications. In our work, we also evaluated
the TS algorithm, which deploys a simpler search mechanism performing a
local exploration of the search space. Our motivation here is to evaluate
to which extent the hybrid solution proposed in our work is dependent on
a potentially powerful search technique. We envisioned that a local search
mechanism would be good enough to refine the solutions provided by meta-
learning.

As previously stated, each position j in the search space represents a
configuration sj = (γ, C) of SVM parameters. At each iteration, the TS
generates a set of neighbors from the current position of the search. Following,
the current position is updated to the best solution observed in the generated
neighborhood. In order to prevent repeating movements and cycles in the
search space, each previously visited position is recorded on a tabu list.

An important aspect of the TS algorithm is how to generate neighbors
from a position. In our work, we added and subtract a unity on the parameter
values stored in the current position. Hence, for each position a number of
four neighbors can be generated. This operator is adopted just to produce
small variations on the current solution of TS.

4.3. Meta-Database

In order to generate meta-examples, we collected 40 datasets correspond-
ing to 40 different regression problems, available for downloading in the
WEKA project website2. The list of regression problems adopted in our
work for meta-example generation is presented in Table 1. These prob-
lems correspond to benchmarking datasets associated to different domains

2These datasets are specifically the sets provided in the files numeric and regression
available in http://www.cs.waikato.ac.nz/ml/weka/

11

Table 1: Regression problems adopted for meta-example generation

Auto-price Cloud Hungarian Pyrim

Auto93 Cpu Lowbwt Quake

AutoHorse Detroid Lowglew Schlvote

AutoMpg Diabetes-numeric Machinecpu Sensory

Baskball EchoMonths Mbagrade Sleep

Bodyfat Elusage Meta Stock

Bolts Fishcatch Pbc Triazines

BreastTumor Fruitfly Pharynx Veteran

Cholesterol Gascons Pollution Vineyard

Cleveland Housing PwLinear Wisconsin

of application. This diversity of domains is positive in our context since
the characteristics of the datasets tend to vary a lot as well. For instance,
the adopted datasets have 253.7 examples on average with a high standard
deviation (363.8). The minimum and maximum values of number of exam-
ples are 13 and 2178 respectively. Concerning the number of attributes, the
datasets have 9.5 attributes on average with 6.87 of standard deviation. The
minimum and maximum values in this case are 2 and 38 attributes. This
variation is convenient to meta-Learning, since it is expected that a learning
algorithm present significantly different patterns of performance, depending
on the problem being solved.

As previously mentioned, each meta-example is related to a single regres-
sion problem and stores: (1) the values of its meta-features; and (2) the best
configuration of parameters evaluated for the problem.

4.3.1. Meta-Features

In this work, a total number of 17 meta-features was used to describe the
datasets of regression problems. From these 17 meta-features, 14 were based
on the set of features defined in [10], corresponding to descriptive measures of
the regression datasets (see Table 2). Here we provide explanations for some
meta-features which are not straightforward to understand. Concerning for
instance the meta-feature Proportion of continuous attributes with outliers,
in a regression problem with a attributes this meta-feature is computed as:∑a

i=1 I(Houtl(ai) < 0.7)

a

12

where I is the indicator function 3, ai is the i-th (continuous) independent
attribute and Houtl(ai) is the ratio between the standard deviation of the
mean and the standard deviation of the α-trimmed mean of ai (with α set
to 0.05).

The meta-feature Sparsity of the target brings a categorical value derived
from the coefficient of variation (σT/T) of the target attribute T of a regres-
sion problem: 

0 (“not sparse”) σT/T < 0.2
1 (“sparse”) 0.2 ≤ σT/T ≤ 0.5
2 (“extremely sparse”) σT/T > 0.5

The meta-feature Presence of outliers in the target is computed following
the rule: {

1 (“yes”) Houtl(T) < 0.07
0 (“no”) Houtl(T) ≥ 0.07

The meta-feature Stationarity of the target is defined as:{
1 (“yes”) σT > T
0 (“no”) σT ≤ T

Finally, Average dispersion gain is defined as the mean error of the best
decision stump for each predictor attribute. The other meta-features are
computed based on well-known statistics and are not explained in detail
here.

The remaining 3 meta-features were defined by [1], corresponding to fea-
tures computed from the kernel matrix (see Table 3). These meta-features
evaluate the quality of the kernel matrix derived from the examples of a re-
gression problem. Both sets of meta-features have shown to be useful for
model selection purposes (see [10] and [1]). In our work, we combined these
sets in order to provide a more complete description of the regression prob-
lems.

4.3.2. Best Configuration

The best configuration stored on a meta-example is defined from the
empirical evaluation of the same 399 configuration settings defined in the

3The indicator function I(C) returns 1 if the condition C is true and 0, otherwise.

13

Table 2: Meta-features proposed by [10] for regression problems

Number of examples

Number of attributes

Proportion of symbolic attributes

Ratio of the number of examples to the number of
attributes

Proportion of the attributes with outliers

Coefficient of variation of the target (ratio of the
standard-deviation to the mean)

Sparsity of the target (coefficient of variation dis-
cretized into 3 values)

Presence of outliers in the target

Stationarity of the target (the standard-deviation is
larger than the mean)

R2 coefficient of linear regression (without symbolic
attributes)

R2 coefficient of linear regression (with binarized
symbolic attributes)

Average absolute correlation between numeric pre-
dictor attributes

Average absolute correlation between numeric pre-
dictor attributes and the target attribute

Average dispersion gain

Table 3: Meta-features proposed by [1] for regression problems

Mean of off-diagonal values

Variance of the off-diagonal values

Kernel-target alignment

14

Search module (see Section 4.1). For each of the 399 configurations, a 10-fold
cross validation experiment was performed to evaluate the SVM performance.
The 399 NMSE values obtained were compared and the lowest value was
retained. The configuration with lowest NMSE was then stored in the meta-
example. As previously observed, in these experiments, we deployed the
LibSVM library to implement the SVMs and to perform the cross-validation
procedure.

We highlight here that the candidate set of parameters adopted for meta-
example generation is equivalent to the parameter space explored by the
Search module. Hence, we could evaluate which configurations of parameters
were the best ones in the regression problems (i.e., the best points in a search
space) and use this information to guide the search process for new similar
problems.

4.4. Meta-Learner

Given a new input problem described by the vector x = (x1, . . . , xp), the
Meta-Learner retrieves the k most similar meta-examples from the database,
according to the lowest distance between the meta-features. The distance
function (dist) implemented in the prototype was the unweighted L1-Norm,
defined as:

dist(x,xi) =
p∑

j=1

|xj − xj
i |

maxi(x
j
i)−mini(x

j
i)

(6)

We adopted the L1-Norm following the original proposal of meta-learning
for SVM parameter selection (see [1]). For each retrieved meta-example,
the meta-learner collects the best configuration stored in the meta-example.
Then, the meta-learner suggests as initial configurations for searching the set
of k best configurations observed on the retrieved meta-examples.

Considering the PSO method, the k recommended configurations are di-
rectly adopted as the initial population of particles. Considering the TS, in
turn, the k configurations are initially evaluated and the best one is adopted
as the first position of the TS. In both cases, the derived hybrid methods
(named here as Hybrid-PSO and Hybrid-TS) starts with a number of k search
points (i.e. those ones suggested by meta-learning). From the (k+1)-th point,
the space is explored only using a search method (either PSO or TS).

There are other alternatives that can be adopted to recommend the SVM
configurations once the most similar meta-examples are retrieved. For in-
stance, the meta-learner could return the configurations that obtained the

15

highest average or alternatively the highest median performance on the re-
trieved meta-examples. Also, the configurations could be ranked for each
retrieved meta-example and the meta-learner could return the configurations
with best average rank. In our implementation, we choose to return the best
configuration of each retrieved meta-example since this approach is simple
and fast, however other alternatives can be evaluated in future work.

5. Experiments

In this section, we present the experiments performed to evaluate the pro-
posed hybrid solution for SVM parameter selection. Initially, we present the
experiments which evaluated the Hybrid-PSO method (Section 5.1). Fol-
lowing, we present the experiments performed to evaluate the Hybrid-TS
method, and also discuss the relative performance of this method compared
to the Hybrid-PSO (Section 5.2).

Besides the empirical evaluation of the hybrid solution, we also performed
an empirical evaluation comparing individually the meta-learning and the
search approaches to SVM parameter selection. To the best of our knowledge,
no previous authors have compared these two approaches in order to have a
better assessment of their relative costs and benefits. Hence, this comparison
can be pointed out as a specific contribution of our work.

5.1. Hybrid-PSO method

The proposed hybrid solution was evaluated on the set of 40 regression
problems by following a leave-one-out methodology. At each step of leave-
one-out, one meta-example was left out to evaluate the implemented proto-
type and the remaining 39 meta-examples were considered in the MDB to
be selected by the ML module. Initially, a number of k configurations were
suggested by the ML module as the initial PSO population (see Section 4.4)
(in our experiments, we adopted k = 5). The PSO then optimized the SVM
configurations for the problem left out up to the number of 10 generations.
In each generation, we recorded the lowest NMSE value obtained so far (i.e.
the best fitness). Hence, for each problem left out a curve of N values of
NMSE was generated aiming to analyze the search progress on the problem.
Finally, the curves of NMSE values were averaged over the 40 steps of the
leave-one-out experiment in order to evaluate the quality of the PSO search
on optimizing SVM parameters for the 40 regression problems considered.

16

0 1 2 3 4 5 6 7 8 9 10

0,32

0,34

0,36

0,38

0,4

Number of generations

M
in

im
um

 N
M

S
E

Hybrid−PSO
PSO
Random Search

Figure 2: Lowest NMSE results obtained at each generation

As a basis of comparison, the same above experiment was adopted to
evaluate a randomly initialized population for PSO (also using k=5 as the
population size). As said, the randomly initialization corresponds to the
conventional strategy adopted in the literature. We also evaluated a purely
random procedure for parameter selection. Despite its simplicity, the random
search has the advantage of performing a uniform initial exploration of the
search space and has been commonly used to verify the utility of more com-
plex search techniques. Finally, we highlight that each search procedure (the
Hybrid-PSO search, the randomly initialized PSO and the purely random
search) was executed 1000 times and the average results were recorded.

Figure 2 shows the NMSE curves (over 1000 runs) obtained by the three
evaluated search techniques. As expected, the random initialized PSO had
a similar performance compared to random search on the initial generations,
and then it progressively increases its relative performance during the search.
This result indicates the viability of the PSO search technique. However,
the convergence of the random initialized PSO to good solutions is slower
than the convergence observed for the Hybrid-PSO. In fact, from the third
generation the Hybrid-PSO yields results which were better than the results
of PSO after ten generations. The Hybrid-PSO converges faster to good
solutions since it starts its search on more promising solutions in the search
space. The Search module in our hybrid solution just refined the initial

17

0 2 4 6 8 10 12 14 16 18 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of recommended configurations

M
in

im
um

 N
M

S
E

Hybrid−PSO
Meta−Learning
PSO

Best Configuration

Default LibSVM

Figure 3: TopN - NMSE result obtained at each recommended configuration

solutions provided by Meta-Learning, which were in fact closer to the best
found solutions.

In the previous experiment, we evaluated the relevance of using meta-
learning to speed up the convergence of PSO. In our work, we also evaluated
the performance of the Hybrid-PSO compared to its components in isolation:
the meta-learning and the search procedure. For this, we adopted a TopN
evaluation procedure as described in [1]. The TopN curve is just a plot of the
minimum NMSE achieved versus the number of different SVM configurations
recommended by a method. By analysing a TopN curve, we can balance the
trade-off between benefits and costs of a method for parameter selection. In
a TopN curve, we can evaluate how many alternatives configurations can be
tested on the SVM in order to achieve a given level of performance. In our
experiments, a TopN curve is generated for each method on each regression
problem (up to 20 different recommended configurations). Then, the average
TopN curve across the 40 problems is presented.

Figure 3 presents the average TopN curves for the three approaches: (1)
PSO (with random initialization); (2) meta-learning; and (3) the Hybrid-
PSO. We also present in Figure 3 the average NMSE achieved by the default
heuristic adopted by the LibSVM tool (γ = inverse of the number of at-
tributes and C=1). Although simple, this heuristic may be adequate for

18

naive users and it is used here as baseline for benchmarking comparison. Fi-
nally, Figure 3 shows the average NMSE that would be achieved if the best
parameter configuration had been chosen on all problems.

By comparing PSO and meta-learning in isolation, we can identify a
trade-off in their relative performances. Meta-learning is better than PSO
when one considers a small number of recommended parameter configura-
tions. It is also better than the default LibSVM parameters. Hence, meta-
learning alone would be indicated in situations in which the SVM user had
strong resources constraints. In these situations, the meta-learning could
recommend a lower number of configurations with intermediate performance
levels. We highlight that there is an additional cost in recommending the
configurations by the hybrid approach which is the cost of the meta-learning
process (specially the cost of computing the meta-features). However, by
following the guidelines of previous work in meta-learning, we deployed non-
expensive meta-features, in such a way that the total cost of computing them
is in general lower than the cost of directly training a single SVM. The gain
in performance using the hybrid approach in this case compensates this ad-
ditional cost. The PSO in turn is able to find better configurations along
its search and then it is more adequate considering a higher number of rec-
ommended configurations. Hence, PSO search would be more indicated in
situations in which the user could afford the costs of evaluating a higher
number of parameter configurations. The preference among quality and cost
of the recommendation process is clearly dependent on the user’s domain.
Multi-criteria metrics could be adopted to support the user in this decision
(e.g., [30]).

By considering the Hybrid-PSO solution, we can see that it was able to
combine the advantages of its individual components, as it can be seen in Fig-
ure 3. The performance of the Hybrid-PSO in the initial five recommended
configurations is of course the same as the performance of meta-learning
(since the initial configurations are recommended by meta-learning). From
that point of the TopN curve, the Hybrid-PSO consistently achieves better
results compared to both the PSO and the meta-learning. It converges earlier
to solutions with similar NMSE values compared to the best configurations
observed in the 40 problems.

The good performance of the hybrid approach can also be confirmed by
considering the number of problems that it achieved lower NMSE values
compared to the values yielded by its components (see Figure 4). As it can
be seen, the hybrid approach obtained lower NMSE values in more than a

19

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

(b) Hybrid−PSO vs. Meta−Learning

Number of recommended configurations

N
um

be
r

of
 w

in
s

(a
m

on
g

40
 p

ro
bl

em
s)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

(a) Hybrid−PSO vs. PSO

Number of recommended configurations

N
um

be
r

of
 w

in
s

(a
m

on
g

40
 p

ro
bl

em
s)

Figure 4: Number of wins (among 40 problems) obtained by the hybrid method

half of the problems (i.e. a higher number of successes on the 40 problems)
compared to both PSO and meta-learning. In order to take into account the
variability of the results, we applied an statistical test (the Wilcoxon signed-
rank test [31] at a 95% level of confidence) for each number of recommended
configurations. In this experiment, the Hybrid-PSO was statistically better
than the randomly initialized PSO for all numbers of recommendations. By
comparing the Hybrid-PSO and the meta-learning in isolation, we verified
a statistical gain from 11 to 14 recommendations and, in the other points,
the methods were equivalent. This result closely reflects the number of wins
which can be observed in Figure 4.

In the above experiments, we assume that the meta-features are relevant
to identify similar problems and hence to support the suggestion of good
solutions for new problems. However one could argue that good results in
the hybrid solution could be achieved by initializing the PSO population
with any parameter configuration well-succeeded in the past, independently
on the meta-features’ values. In this case, the meta-features would be just
noise. In order to consider this issue, we performed an additional experiment
evaluating the PSO initialized with the best configurations of parameters
on k = 5 meta-examples chosen at random in the MDB. This is essentially
a new hybrid PSO in which the meta-feautures are not taken into account
and the meta-examples are chosen randomly. Figure 5 presents the TopN

20

0 2 4 6 8 10 12 14 16 18 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of recommended configurations

M
in

im
um

 N
M

S
E

Hybrid−PSO
PSO (modified)

Figure 5: TopN curves evaluating the Hybrid-PSO against PSO initialized with good
solutions observed in randomly choosen meta-examples

curves observed for the modified version of PSO initialized with the best
configurations of random meta-examples and for the Hybrid-PSO. As it can
be seen, the Hybrid-PSO which considers the meta-features to retrieve the
most similar problems is better than the hybrid PSO using random meta-
examples. This result provides an additional evidence of the usefulness of
meta-features to recommend SVM parameters.

5.2. Hybrid-TS method

In our proposal, we emphasized that the Search module is used just to
refine the initial configurations recommended by the Meta-Learner. Hence,
we envisioned whether good results could also be achieved by deploying a
local search technique in our hybrid solution. In this sub-section, we present
the experiments performed using the Tabu Search algorithm combined to
meta-learning.

As in the previous experiments with PSO, we adopted here a leave-one-out
procedure to evaluate the Hybrid-TS method on the 40 available problems.
At each step of leave-one-out, one meta-example was left out to evaluate the
hybrid method. For each problem left out, a number of k = 5 configurations
was initially retrieved by the Meta-Learner. The best retrieved configuration
is then defined as the initial search point for the Tabu Search (as described

21

0 2 4 6 8 10 12 14 16 18 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of recommended configurations

M
in

im
um

 N
M

S
E

PSO
Tabu Search

Default LibSVM

Best Configuration

Figure 6: TopN curves comparing PSO vs TS

in 4.4). As a basis of comparison, this same experiment was performed with
a randomly initialized Tabu search. Both evaluated methods were executed
1000 times and the average NMSE values were recorded.

Figure 6 presents the average topN curves across the 40 problems consid-
ering both the PSO and the TS algorithms (with random initialization). As
it can be seen, the PSO was better than Tabu search when the algorithms
started their search with random initial points. The PSO starts its search
by performing a global exploration of the search space and progressively per-
forms a fine search (as a result of the time decreasing inertia parameter).
This strategy was in fact adequate in our context. The Tabu search, in turn,
only performs local exploration. Therefore, it was not as successful as PSO
in fastly finding good regions in the search space.

On other hand, Figure 7 shows that the relative performance of PSO and
TS did not present the same behavior when they are part of the hybrid so-
lution. As it can be seen, the Hybrid-TS method can be even better than
Hybrid-PSO, as shown by the 8 to 12 recommended configurations. The
good performance of the Hybrid-TS method can also be inferred by consid-
ering the number of wins obtained by this method compared to Hybrid-PSO
(see Figure 8). The Hybrid-TS consistently obtained a higher number of
wins (among the 40 problems), specially if one considers its initial recom-
mendations (a peak was observed at 8 recommended configurations). The

22

0 2 4 6 8 10 12 14 16 18 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of recommended configurations

M
in

im
um

 N
M

S
E

Hybrid−PSO
Hybrid−TS

Best Configuration

Default LibSVM

Figure 7: TopN curves comparing Hybrid-PSO vs Hybrid-TS

results suggest that TS was more successful to rapidly explore the neighbor-
hood of the solutions recommended by the Meta-Learning module. In this
experiment, we also applied the Wilcoxon test (as applied in the previous
section). We verified that the Hybrid-TS was statistically better than TS
for all number of recommendations. Compared to meta-learning in isola-
tion, the Hybrid-TS was statistically better from 8 to 12 recommendations
and equivalent in the other points. Finally, the Hybrid-TS was statistically
better than Hybrid-PSO from 7 to 11 recommendations (which reflects the
results shown in Figure 8) and equivalent in the other points.

Although the PSO strategy of balancing between global and local explo-
ration was more successful when starting from random points, it was not the
best choice in the hybrid solution. In fact, by starting the search at promising
solutions provided by meta-learning, a global exploration is no more neces-
sary. Contrarily, a global exploration can move away from the regions that
would have to be actually explored. In the final part of the curves, the hybrid
methods become more similar, since PSO works more as a local mechanism
(since the inertia value is smaller).

23

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

Number of recommended configurations

N
um

be
r

of
 w

in
s

(a
m

on
g

40
 p

ro
bl

em
s)

Hybrid−TS vs Hybrid−PSO

Figure 8: Number of wins (among 40 problems) obtained by the Hybrid-TS vs Hybrid-PSO

6. Conclusion

In this work, we combined Meta-Learning and search techniques to the
problem of SVM parameter selection. Two search algorithms, PSO and TS,
were used to optimize two parameters of SMVs (γ, C). These algorithms were
used in two different ways: as hybrid methods, using the initial population
suggested by Meta-Learning, and with a random initial population. In the
experiments performed, 40 regression problems were used to generate meta-
examples. According to the experimental results, the proposed approach was
able to find adequate parameters in a lower number of iterations compared to
the randomly initialized algorithms. The results also showed, for the hybrid
methods, that the use of TS can lead to better parameter values than the
use of PSO.

In future work, we intend to augment the number of meta-examples as
we believe that the performance of the proposed approach can be improved
as more meta-examples are considered. Besides, different search techniques
can be considered in the future implementations. Our experiments suggested
that the search process just refines the initial solutions provided by Meta-
Learning. Hence, we believe that simpler techniques (e.g., hill climbing) once
adopted in the Search Module can achieve good relative results compared
to more complex technique (e.g., PSO). Finally, we intend to evaluate the
proposed solution in other case studies, such as SVM parameter selection for
classification problems.

24

Acknowledgments: The authors would like to thank CNPq, CAPES, FAPESP
and FACEPE (Brazilian Agencies) and FCT project Rank! (PTDC/EIA/81178
/2006) for their financial support.

References

[1] C. Soares, P. Brazdil, P. Kuba, A meta-learning approach to select
the kernel width in support vector regression, Machine Learning 54 (3)
(2004) 195–209.

[2] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Ma-
chines and Other Kernel-Based Learning Methods, Cambridge Univer-
sity Press, 2000.

[3] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple
parameters for support vector machines, Machine Learning 46 (1) (2002)
131–159.

[4] N. Cristianini, C. Campbell, J. Shawe-Taylor, Dynamically adapting
kernels in support vector machines, in: NIPS, 1998, pp. 204–210.

[5] S. Ali, K. A. Smith-Miles, A meta-learning approach to automatic kernel
selection for support vector machines, Neurocomputing 70 (1-3) (2006)
173–186.

[6] S. Lessmann, R. Stahlbock, S. Crone, Genetic algorithms for support
vector machine model selection, in: International Joint Conference on
Neural Networks, 2006, pp. 3063–3069.

[7] F. Friedrichs, C. Igel, Evolutionary tuning of multiple svm parameters,
Neurocomputing 64 (2005) 107–117.

[8] A. Lorena, A. de Carvalho, Evolutionary tuning of svm parameter values
in multiclass problems, Neurocomputing 71 (2008) 16–18.

[9] S. S. Keerthi, C.-J. Lin, Asymptotic behaviors of support vector ma-
chines with gaussian kernel, Neural Computation 15 (7) (2003) 1667–
1689.

[10] P. Kuba, P. Brazdil, C. Soares, A. Woznica, Exploiting sampling and
meta-learning for parameter setting support vector machines, in: Pro-
ceedings of the IBERAMIA 2002, 2002, pp. 217–225.

25

[11] C. Soares, P. Brazdil, Selecting parameters of svm using meta-learning
and kernel matrix-based meta-features, in: SAC, 2006, pp. 564–568.

[12] J. Kennedy, R. C. Eberhart, Particle swarm optimization, in: Proceed-
ings of the IEEE International Joint Conference on Neural Networks,
1995, pp. 1942–1948.

[13] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, Dor-
drecht, The Netherlands, 1998.

[14] G. Cawley, Model selection for support vector machines via adaptive
step-size tabu search, in: International Conference on Artificial Neural
Networks and Genetic Algorithms, 2001, pp. 434–437.

[15] X. Guo, J. Yang, C. Wu, C. Wang, Y. Liang, A novel ls-svms hyper-
parameter selection based on particle swarm optimization, Neurocom-
puting 71 (2008) 3211–3215.

[16] B. de Souza, A. de Carvalho, R. Ishii, Multiclass svm model selection
using particle swarm optimization, in: Sixth International Conference
on Hybrid Intelligent Systems, 2006, pp. 441–446.

[17] S. Ali, K. A. Smith, Matching svm kernel’s suitability to data charac-
teristics using tree by fuzzy c-means clustering, in: Third International
Conference on Hybrid Intelligent Systems, 2003, pp. 553–562.

[18] S. Ali, K. Smith-Miles, On optimal degree selection for polynomial kernel
with support vector machines: Theoretical and empirical investigations,
KES Journal 11 (1) (2007) 1–18.

[19] S. Louis, J. McDonnell, Learning with case-injected genetic algorithms,
IEEE Transactions on Evolutionary Computation 8 (4) (2004) 316–328.

[20] K. Smith-Miles, Cross-disciplinary perspectives on meta-learning for al-
gorithm selection, ACM Computing Surveys 41 (1) (2008) 1–25.

[21] K. Smith-Miles, Towards insightful algorithm selection for optimisation
using meta-learning concepts, in: Proceedings of the IEEE International
Joint Conference on Neural Networks, 2008, pp. 4118–4124.

26

[22] J. Kanda, A. Carvalho, E. Hruschka, C. Soares, Using Meta-learning
to Classify Traveling Salesman Problems, in: Brazilian Symposium on
Neural Networks, 2010, pp. 73–78.

[23] T. Gomes, R. B. C. Prudêncio, C. Soares, A. Rossi, , A. Carvalho, Com-
bining meta-learning and search techniques to svm parameter selection,
in: Brazilian Symposium on Neural Networks, 2010, pp. 79–84.

[24] P. Brazdil, C. Giraud-Carrier, C. Soares, R. Vilalta, Metalearning: Ap-
plications to Data Mining, Cognitive Technologies, Springer, 2009.

[25] R. B. C. Prudêncio, T. B. Ludermir, Meta-learning approaches to se-
lecting time series models, Neurocomputing 61 (2004) 121–137.

[26] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines
(2001).

[27] V. Vapnik, Statistical Learning Theory, Wiley, New York, NY, 1998.

[28] C.-W. Hsu, C.-C. Chang, C.-J. Lin, A practical guide to support vector
classification, Technical report, Department of Computer Science and
Information Engineering, National Taiwan University, Taipei (2003).

[29] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: IEEE
World Congress on Computational Intelligence, 1998, pp. 69–73.

[30] P. Brazdil, C. Soares, J.P. Costa, S. Louis, J. McDonnell, Ranking learn-
ing algorithms - Using IBL and meta-learning on accuracy and time
results, Machine Learning 50 (3) (2003) 251–277.

[31] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics 1
(1945) 80-83.

27

