
Definition 1 (The formal theory of β-equality)

Formulae The formulae of λβ are just equations M = N for all λ-term
M and N .

Axioms (1) λx.M = λy.[y/x]M , whenever y 6∈ FV (M);

(2) (λx.M)N = [N/x]M ;

(3) M = M

Inference Rules

M = M ′

NM = NM ′ (µ) N = N ′

NM = N ′M
(ν) M = M ′

λx.M = λx.M ′ (ξ)

M = N
N = M

(σ) M = N N = L
M = L

(τ)

Definition 2 (The formal theory of weak equality)

Formulae The formulae of CLw are just equations X = Y for all CL-
term X and Y .

Axioms (1) KXY = X;

(2) SXY Z = XZ(Y Z);

(3) X = X

Inference Rules

X = X ′

ZX = ZX ′ (µ′) Z = Z ′

ZX = Z ′X
(ν ′)

X = Y Y = Z
X = Z

(τ ′) X = Y
Y = X

(σ′)
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Definition 3 (The formal theory of β-reduction)

Formulae The formulae of λβ are just equations M B N for all λ-term
M and N .

Axioms (1) λx.M B λy.[y/x]M , whenever y 6∈ FV (M);

(2) (λx.M)N B [N/x]M ;

(3) M B M

Inference Rules

M B M ′

NM B NM ′ (µ) N B N ′

NM B N ′M
(ν) M B M ′

λx.M B λx.M ′ (ξ)

M B N N B L
M B L

(τ)

Definition 4 (The formal theory of weak reduction)

Formulae The formulae of CLw are just equations X B Y for all CL-
term X and Y .

Axioms (1) KXY B X;

(2) SXY Z B XZ(Y Z);

(3) X B X

Inference Rules

X B X ′

ZX B ZX ′ (µ′) Z B Z ′

ZX B Z ′X
(ν ′)

X B Y Y B Z
X B Z

(τ ′)
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Lemma 5 The following holds:

(1) M =β N ⇔ λβ ` M = N ;

(2) M Bβ N ⇔ λβ ` M B N ;

(3) M =w N ⇔ CLw ` M = N ;

(4) M Bw N ⇔ CLw ` M B N .

Proof. By straightforward induction. I will show only (1), but the other
parts are similarly proven.

(⇒) By induction on β-reduction. Suppose that M =β N and N B1
β

L. By I.H., we can assume that λβ ` M = N . If N Bβ L is obtained
from α-conversion, then λβ ` M = L by rule (τ) and axiom (1). We
will show the β-reduction case by subinduction on N .

• If N ≡ z for some variable z, there is no β-redex.

• Suppose N ≡ λxP . Then the main redex occurs in P , and there
exists Q such that

P Bβ Q

L ≡α λx.Q.

Thus we have λβ ` M = L by rule (ξ), (τ) and I.H.

• Suppose N ≡ PQ. If the main redex is in P , then λβ ` M = L by
rule (ν), (τ) and I.H. If, on the other hans, the main redex is in Q.
Similarly we have λβ ` M = L by rule (µ), (τ) and I.H. Otherwise,
PQ itself is the main redex. Then by Axiom (2) and (τ), we have
λβ ` M = L.

(⇐) Almost obvious by what we have learned from the class.
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Definition 6 Let σ be a first order vocabulary consisting of:

• Constant symbols S and K;

• 2-ary function symbol ∗.

Function symbol ∗ represent a concatenation of terms; e.g., (S∗K)∗(x∗y)
represents a CL-term, SK(xy). In the following, we omit the functioni
symbol ∗.

CL+ consists of the following three axioms:

(1) ∀x, y(Kxy = x);

(2) ∀x, y, z(Sxyz = xz(yz));

(3) S 6= K.

We write CLw+ `pc X = Y , if a formula X = Y is derivable from
CLw+ by predicate calculus.

Lemma 7 (Barendregt) CLw+ is a conservative extention of CLw:
i.e., for any CL-term X and Y , if CLw+ `pc X = Y then CLw ` X = Y .

Proof. First of all, it is easily seen that CLw+ is an extention of CLw.
For instance, if CLw+ `pc X = X ′, then CLw+ `pc X ∗ Y = X ′ ∗ Y , just
because ∗ is a function symbol; therefore (ν ′) is valid.

For conservativity, suppose CLw+ `pc X = Y . Then by soundness,
A |= X = Y for any model A of CLw+.

Consider the following first order structure A:

the domain A of A is the set of all equivalence class X/ ≈ of
CL-terms, where the equivalence relation ≈ is defined by:

X ≈ Y ⇔ CLw ` X = Y.

Then it sufficies to show that A is a model of CLw+; for, if A is a model
then, by soundness, CLw+ ` X = Y implies A |= X = Y and thus
CLw ` X = Y . However, it is obvious that A is a model of CLw+. The
proof is completed.
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Definition 8 Suppose we are given the set F of all formulae in any
means: this means just we are give a certain set. Then a inference
rule over F is a partial function R : Fα ' F , where α is an ordinal (or
cardinal); but we will consider only the case where α ≤ ω. We call a set
I of inference rules a formal theory.

For instance, suppose R : F n ' F , 〈A1, . . . , An〉 ∈ dom(R), and
R(A1, . . . , An) = A. Then we say that we have a inference rule:

A1, . . . , An

A
(R)

.

We call inferencerules R with no premises (i.e., dom(R) = F 0 = {∅})
axioms.

Let I be a set of inference rules over F . We can define as usual the
derivation of A from 〈Aβ}β<α in I; we write this as 〈Aβ〉β<α `I A.

Definition 9 Let I be a set of inference rules, and let R : Fα ' F be
a inference rule. Then we say R is derivable in I, if for any 〈Aβ〉β<α ∈
dom(R) we have 〈Aβ〉β<α `I R(〈Aβ〉β<α).

Definition 10 Let I be a set of inference rules, and let R : Fα ' F be
a inference rule. Then we say R is admissible in I, if the following holds:

for any 〈Aβ〉β<α ∈ dom(R), if we have `I Aβ for all β < α,
then `I R(〈Aβ〉β<α).

Lemma 11

(1) R is admissible in I, iff the theorems of I ∪ {R} coincides with the
theorems of I: i.e.,

Th(I) := {φ ∈ F |`I φ} = Th(I ∪ {R}) := {φ ∈ F |`I ∪{R}φ}.

(2) If R is derivable in I, then R is admissible in I, but not vice versa.

(3) If R is derivable in I, then R is also derivable in any extention of
I.
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Proof. (1) (⇒) Suppose R is admissible in I and A is a theorem of
I ∪ {R}. We will show that A is also a theorem of I by induction
on the deduction of A. If the last inference is R, then since the
premises are all theorem of I by I.H. and R is admissible, A is a
theorem of I. Otherwise, the last inference is in I and obviously A
is a theorem of I by I.H.

(⇐) Let 〈Aβ | β < α〉 ∈ dom(R). If Aβ is a theorem of I for all β <
α, then they are also a theorem of I ∪{R} and thus A = R(Aβ)β<α

is a theorem of I ∪ {R}. Then by the assumption, A is a theorem
of I; this means that R is admissible in I.

(2) Obvious.

(3) Obvious.

Lemma 12 In the previous lemma, the opposit direction in (2) does
not hold.

Proof. Trivial. Let I = ∅. Then every inference rule is trivially admis-
sible. But every inference rule trivially non-derivable.

Example. Let add just four new constants a, b, c and d to λβ; that is,

Term(λβ) ::= a|b|c|d|x|MN |λzM.

Let λβ∗ denote this new system.
Consider the following new rule R.

a = b
c = d

R

In fact, R is admissible in λβ′, since a = b is not a theorem in λβ.
However, R is not derivable in λβ′, since we cannot derive c = d, even if
we assume a = b.

This fact is proven by showing (modified) Curch-Rosser Theorem
holds for λβ.
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Definition 13 Let I and I ′ be formal theories (i.e., sets of inference
rules) with the same set of formulae. We say I and I ′ are therem-
equivalent, iff every inference rules in I is admissible in I ′, and vice
versa. We say I and I ′ are rule-equivalent, iff every inference rules in I
is derivable in I ′, and vice versa.

Lemma 14 Let I and I ′ be formal theories with the same set of for-
mulae. Then, I and I ′ are theorem-equivalent, iff they have the same
set of theorems: i.e., `I A ⇔`I′ A.

Proof. By easy and straightforward induction on deduction.

Definition 15 Let I be a formal theory, and let some of its formulae
be of the form X = Y . Then the equality relation determined by I,
written by =I , is defined by

X =I Y :⇔ `I X = Y.

Lemma 16 Let I and I ′ be formal theories with the same formulae.
Suppose it includes some formulae of the form X = Y . Then, if I and
I ′ are theorem-equivalent, then they give the same equality relation.

Proof. Immediate from the previour lemma.
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