Definition 1 (The formal theory of β -equality)

Formulae The formulae of $\lambda\beta$ are just equations M=N for all λ -term M and N.

Axioms (1) $\lambda x.M = \lambda y.[y/x]M$, whenever $y \notin FV(M)$;

- (2) $(\lambda x.M)N = [N/x]M;$
- (3) M = M

Inference Rules

$$\frac{M=M'}{NM=NM'} \; (\mu) \qquad \frac{N=N'}{NM=N'M} \; (\nu) \qquad \frac{M=M'}{\lambda x. M=\lambda x. M'} \; (\xi)$$

$$\frac{M=N}{N=M} \ (\sigma) \qquad \frac{M=N-N=L}{M=L} \ (\tau)$$

Definition 2 (The formal theory of weak equality)

Formulae The formulae of CLw are just equations X = Y for all CL-term X and Y.

Axioms (1) KXY = X;

- (2) SXYZ = XZ(YZ);
- (3) X = X

Inference Rules

$$\frac{X=X'}{ZX=ZX'}\;(\mu') \qquad \frac{Z=Z'}{ZX=Z'X}\;(\nu')$$

$$\frac{X=Y\quad Y=Z}{X=Z}\ (\tau') \qquad \frac{X=Y}{Y=X}\ (\sigma')$$

Definition 3 (The formal theory of β -reduction)

Formulae The formulae of $\lambda\beta$ are just equations $M \triangleright N$ for all λ -term M and N.

Axioms (1) $\lambda x.M \triangleright \lambda y.[y/x]M$, whenever $y \notin FV(M)$;

- (2) $(\lambda x.M)N \rhd [N/x]M;$
- (3) M > M

Inference Rules

$$\frac{M\rhd M'}{NM\rhd NM'}\;(\mu) \qquad \frac{N\rhd N'}{NM\rhd N'M}\;(\nu) \qquad \frac{M\rhd M'}{\lambda x.M\rhd \lambda x.M'}\;(\xi)$$

$$\frac{M \rhd N \quad N \rhd L}{M \rhd L} \ (\tau)$$

Definition 4 (The formal theory of weak reduction)

Formulae The formulae of CLw are just equations $X \triangleright Y$ for all CL-term X and Y.

Axioms (1) $KXY \triangleright X$;

- (2) $SXYZ \triangleright XZ(YZ)$;
- $(3) X \rhd X$

Inference Rules

$$\frac{X\rhd X'}{ZX\rhd ZX'}\;(\mu')\qquad \frac{Z\rhd Z'}{ZX\rhd Z'X}\;(\nu')$$

$$\frac{X \rhd Y \quad Y \rhd Z}{X \rhd Z} \ (\tau')$$

Lemma 5 The following holds:

(1)
$$M =_{\beta} N \Leftrightarrow \lambda \beta \vdash M = N;$$

(2)
$$M \rhd_{\beta} N \Leftrightarrow \lambda \beta \vdash M \rhd N;$$

(3)
$$M =_w N \Leftrightarrow CLw \vdash M = N;$$

$$(4) \ M \rhd_w N \quad \Leftrightarrow \quad CLw \vdash M \rhd N.$$

Proof. By straightforward induction. I will show only (1), but the other parts are similarly proven.

(⇒) By induction on β-reduction. Suppose that $M =_{\beta} N$ and $N \rhd_{\beta}^{1} L$. By I.H., we can assume that $\lambda \beta \vdash M = N$. If $N \rhd_{\beta} L$ is obtained from α-conversion, then $\lambda \beta \vdash M = L$ by rule (τ) and axiom (1). We will show the β-reduction case by subinduction on N.

- If $N \equiv z$ for some variable z, there is no β -redex.
- Suppose $N \equiv \lambda x P$. Then the main redex occurs in P, and there exists Q such that

$$P \rhd_{\beta} Q$$
$$L \equiv_{\alpha} \lambda x.Q.$$

Thus we have $\lambda\beta \vdash M = L$ by rule (ξ) , (τ) and I.H.

- Suppose $N \equiv PQ$. If the main redex is in P, then $\lambda\beta \vdash M = L$ by rule (ν) , (τ) and I.H. If, on the other hans, the main redex is in Q. Similarly we have $\lambda\beta \vdash M = L$ by rule (μ) , (τ) and I.H. Otherwise, PQ itself is the main redex. Then by Axiom (2) and (τ) , we have $\lambda\beta \vdash M = L$.
- (\Leftarrow) Almost obvious by what we have learned from the class.

Definition 6 Let σ be a first order vocabulary consisting of:

- Constant symbols S and K;
- 2-ary function symbol *.

Function symbol * represent a concatenation of terms; e.g., (S*K)*(x*y) represents a CL-term, SK(xy). In the following, we omit the functioni symbol *.

CL⁺ consists of the following three axioms:

- (1) $\forall x, y(Kxy = x);$
- (2) $\forall x, y, z(Sxyz = xz(yz));$
- (3) $S \neq K$.

We write $CLw^+ \vdash_{pc} X = Y$, if a formula X = Y is derivable from CLw^+ by predicate calculus.

Lemma 7 (Barendregt) CLw⁺ is a conservative extention of CLw: i.e., for any CL-term X and Y, if CLw⁺ $\vdash_{pc} X = Y$ then CLw $\vdash X = Y$.

Proof. First of all, it is easily seen that CLw^+ is an extention of CLw . For instance, if $\operatorname{CLw}^+ \vdash_{pc} X = X'$, then $\operatorname{CLw}^+ \vdash_{pc} X * Y = X' * Y$, just because * is a function symbol; therefore (ν') is valid.

For conservativity, suppose $CLw^+ \vdash_{pc} X = Y$. Then by soundness, $\mathfrak{A} \models X = Y$ for any model \mathfrak{A} of CLw^+ .

Consider the following first order structure \mathfrak{A} :

the domain A of $\mathfrak A$ is the set of all equivalence class X/\approx of CL-terms, where the equivalence relation \approx is defined by:

$$X \approx Y \Leftrightarrow \text{CLw} \vdash X = Y.$$

Then it sufficies to show that \mathfrak{A} is a model of CLw^+ ; for, if \mathfrak{A} is a model then, by soundness, $\operatorname{CLw}^+ \vdash X = Y$ implies $\mathfrak{A} \models X = Y$ and thus $\operatorname{CLw} \vdash X = Y$. However, it is obvious that \mathfrak{A} is a model of CLw^+ . The proof is completed.

Definition 8 Suppose we are given the set F of all formulae in any means: this means just we are give a certain set. Then a inference rule over F is a partial function $R: F^{\alpha} \simeq F$, where α is an ordinal (or cardinal); but we will consider only the case where $\alpha \leq \omega$. We call a set \mathcal{I} of inference rules a formal theory.

For instance, suppose $R: F^n \simeq F$, $\langle A_1, \ldots, A_n \rangle \in dom(R)$, and $R(A_1, \ldots, A_n) = A$. Then we say that we have a inference rule:

$$\frac{A_1,\ldots,A_n}{A}$$
 (R)

We call inference rules R with no premises (i.e., $dom(R) = F^0 = \{\emptyset\})$ axioms.

Let \mathcal{I} be a set of inference rules over F. We can define as usual the derivation of A from $\langle A_{\beta} \rangle_{\beta < \alpha}$ in \mathcal{I} ; we write this as $\langle A_{\beta} \rangle_{\beta < \alpha} \vdash_{\mathcal{I}} A$.

Definition 9 Let \mathcal{I} be a set of inference rules, and let $R \colon F^{\alpha} \simeq F$ be a inference rule. Then we say R is derivable in \mathcal{I} , if for any $\langle A_{\beta} \rangle_{\beta < \alpha} \in dom(R)$ we have $\langle A_{\beta} \rangle_{\beta < \alpha} \vdash_{\mathcal{I}} R(\langle A_{\beta} \rangle_{\beta < \alpha})$.

Definition 10 Let \mathcal{I} be a set of inference rules, and let $R \colon F^{\alpha} \simeq F$ be a inference rule. Then we say R is admissible in \mathcal{I} , if the following holds:

for any $\langle A_{\beta} \rangle_{\beta < \alpha} \in dom(R)$, if we have $\vdash_{\mathcal{I}} A_{\beta}$ for all $\beta < \alpha$, then $\vdash_{\mathcal{I}} R(\langle A_{\beta} \rangle_{\beta < \alpha})$.

Lemma 11

(1) R is admissible in \mathcal{I} , iff the theorems of $\mathcal{I} \cup \{R\}$ coincides with the theorems of \mathcal{I} : i.e.,

$$Th(\mathcal{I}) := \{ \phi \in F \mid \vdash_{\mathcal{I}} \phi \} = Th(\mathcal{I} \cup \{R\}) := \{ \phi \in F \mid \vdash_{\mathcal{I}} \cup \{R\}\phi \}.$$

- (2) If R is derivable in \mathcal{I} , then R is admissible in \mathcal{I} , but not vice versa.
- (3) If R is derivable in \mathcal{I} , then R is also derivable in any extention of \mathcal{I} .

- **Proof.** (1) (\Rightarrow) Suppose R is admissible in \mathcal{I} and A is a theorem of $\mathcal{I} \cup \{R\}$. We will show that A is also a theorem of \mathcal{I} by induction on the deduction of A. If the last inference is R, then since the premises are all theorem of \mathcal{I} by I.H. and R is admissible, A is a theorem of \mathcal{I} . Otherwise, the last inference is in \mathcal{I} and obviously A is a theorem of \mathcal{I} by I.H.
 - (\Leftarrow) Let $\langle A_{\beta} \mid \beta < \alpha \rangle \in dom(R)$. If A_{β} is a theorem of \mathcal{I} for all $\beta < \alpha$, then they are also a theorem of $\mathcal{I} \cup \{R\}$ and thus $A = R(A_{\beta})_{\beta < \alpha}$ is a theorem of $\mathcal{I} \cup \{R\}$. Then by the assumption, A is a theorem of \mathcal{I} ; this means that R is admissible in \mathcal{I} .
- (2) Obvious.
- (3) Obvious.

Lemma 12 In the previous lemma, the opposit direction in (2) does not hold.

Proof. Trivial. Let $\mathcal{I} = \emptyset$. Then every inference rule is trivially admissible. But every inference rule trivially non-derivable.

Example. Let add just four new constants a, b, c and d to $\lambda\beta$; that is,

$$Term(\lambda\beta) ::= a|b|c|d|x|MN|\lambda zM.$$

Let $\lambda \beta^*$ denote this new system.

Consider the following new rule R.

$$\frac{a=b}{c=d} R$$

In fact, R is admissible in $\lambda \beta'$, since a=b is not a theorem in $\lambda \beta$. However, R is not derivable in $\lambda \beta'$, since we cannot derive c=d, even if we assume a=b.

This fact is proven by showing (modified) Curch-Rosser Theorem holds for $\lambda\beta$.

Definition 13 Let \mathcal{I} and \mathcal{I}' be formal theories (i.e., sets of inference rules) with the same set of formulae. We say \mathcal{I} and \mathcal{I}' are theremequivalent, iff every inference rules in \mathcal{I} is admissible in \mathcal{I}' , and vice versa. We say \mathcal{I} and \mathcal{I}' are rule-equivalent, iff every inference rules in \mathcal{I} is derivable in \mathcal{I}' , and vice versa.

Lemma 14 Let \mathcal{I} and \mathcal{I}' be formal theories with the same set of formulae. Then, \mathcal{I} and \mathcal{I}' are theorem-equivalent, iff they have the same set of theorems: i.e., $\vdash_{\mathcal{I}} A \Leftrightarrow \vdash_{\mathcal{I}'} A$.

Proof. By easy and straightforward induction on deduction.

Definition 15 Let \mathcal{I} be a formal theory, and let some of its formulae be of the form X = Y. Then the equality relation determined by \mathcal{I} , written by $=_{\mathcal{I}}$, is defined by

$$X =_{\mathcal{I}} Y \quad :\Leftrightarrow \quad \vdash_{\mathcal{I}} X = Y.$$

Lemma 16 Let \mathcal{I} and \mathcal{I}' be formal theories with the same formulae. Suppose it includes some formulae of the form X = Y. Then, if \mathcal{I} and \mathcal{I}' are theorem-equivalent, then they give the same equality relation.

Proof. Immediate from the previour lemma.