
Guided Test Generation from CSP Models

Sidney Nogueira1,2, Augusto Sampaio1, and Alexandre Mota1

1 Centro de Informática, Universidade Federal de Pernambuco
Caixa Postal 7851 - 50732-970 - Recife/PE - Brazil
2 Mobile Devices R&D Motorola Industrial Ltda,

Rod SP 340 - Km 128, 7 A - 13820 000 - Jaguariuna/SP - Brazil

Abstract. We introduce an approach for the construction of feature test models
expressed in the CSP process algebra, from use cases described in a controlled
natural language. From these models, our strategy automatically generates test
cases for both individual features and feature interactions, in the context of an
industrial cooperation with Motorola Inc., where each feature represents a mobile
device functionality. The test case generation can be guided by test purposes,
which allow selection based on particular traces of interest. More generally, we
characterise a testing theory in terms of CSP: test models, test purposes, test
cases, test execution, test verdicts and soundness are entirely defined in terms
of CSP processes and refinement notions. We have also developed a tool, ATG,
which mechanises the entire generation process.

1 Introduction

Some of the main problems of effective testing is the selection of a good set of test
cases and its automation [7], aiming at making the process more agile, less susceptible
to errors and less dependent on human interaction. Formal notations like Finite State
Machines (FSM) and Labelled Transition Systems (LTS) can provide accurate models
for software that can be processed by tools that automatise the test design activity. There
are several test generation approaches that use such models, as, for instance, [5, 21].

While LTS and FSM are the main models used as basis to automate test genera-
tion, they are very concrete models and often adopted as the operational semantics of
more abstract process algebras like CSP [15], CCS [12] and LOTOS [11]. Contrasting
with operational models, process algebra models can naturally evolve to incorporate
additional requirements; the operators of a process algebra also allow complex models
to be built from simpler ones, compositionally. Test generation can take advantage of
this modular structure, and can be formalised in terms of the process algebra semantic
models.

Particularly, CSP is the standard formalism of the Brazil Test Center (BTC) re-
search project [16], a cooperation between the Federal University of Pernambuco and
Motorola Inc., in the context of testing embedded software that run over mobile phones.
The rich repertoire of CSP operators are used to model individual features (mobile de-
vice functionalities) as well as several patterns of feature interaction. The CSP models
are automatically constructed [2] from use cases described in a domain specific lan-
guage [18, 9] (a small subset of English with a fixed grammar) for mobile applications.

The main contribution of this paper is a uniform strategy for generating test cases
from CSP models. Instead of devising explicit generation algorithms (for instance, to
deal separately with individual features and with feature interaction), our approach is
based on using the CSP model checker (FDR) [10] in background. Test scenarios are
incrementally generated as counter-examples of refinement verifications using FDR.
Test selection is captured by CSP processes that describe the properties of interest,
based on the concept of test purpose [8]; writing test purposes can also benefit from the
expressiveness of CSP. The refinement relations submitted to FDR involves the original
model and an annotated model obtained from the parallel composition of the original
model and the test purposes.

In our testing theory, we consider as test hypothesis that the class of implementa-
tions to be tested can be specified by some CSP process [3]. We introduce an imple-
mentation relation, cspio, which defines the set of observations considered in testing:
the implementation must produce a subset of the outputs for the inputs that are specified;
although CSP does not differentiate input and output events, we make this distinction
using separate input and output alphabets. Moreover, assuming that implementations
are input enabled (accept all inputs from the alphabet) and output available (always
produce an output for a given input), we prove that test cases are sound in the sense that
they do not reject correct implementations according to cspio. All the elements of our
approach are entirely characterised in terms of CSP processes and refinement notions.

Some previous approaches have addressed test generation [13, 17, 3] in the context
of CSP. The focus of [17] is the formalisation of conformance relations, while [13,
3] also consider the generation of infinite test sets. Nevertheless, these works do not
distinguish input and output events nor address test purposes as selection criteria.

Section 2 presents our application domain (mobile device software). Section 3 shows
how CSP is used to construct test models, both for individual features and for feature
interaction. Section 4 addresses test scenario generation based on process refinement,
and test selection based on test purposes is the subject of Section 5. Section 6 introduces
our CSP characterization of conformance testing and shows how to obtain sound test
cases from a set of test scenarios. Section 7 presents details about the ATG tool and the
results of a case study performed with such a tool. The final section considers related
and future work.

2 Application Domain

The development process of mobile phone software follows an iterative approach, where
sets of functionalities (known as features) are incrementally considered in each develop-
ment cycle. An example of a feature is the set of requirements for sending a multimedia
message. In general, new features are developed and tested, firstly, in isolation, and later
integrated with other features, giving rise to feature interactions.

Figure 1 presents an overview of the automatic test generation approach in the BTC
project. The main inputs are use case documents that describe the behaviour of the
features to be tested, and selection criteria defined in terms of test purposes; the output
is a test case suite suitable for manual execution. Input and output templates obey a
Controlled Natural Language (CNL) standard [18, 9] that can be translated to and from
CSP. We have developed a tool, Abstract Test Generator (ATG), which plays a central

role in the automation flow; ATG takes as input a test model (which is generated [2]
from use cases in CNL) and a set of test purposes. Internally, the tool generates a set of
test scenarios that satisfy the test purposes; the user can inform the number of scenarios
to be generated. The test scenarios are then used to generate sound test cases (still
expressed as CSP processes). Finally, the test cases are translated back to CNL [18],
yielding the test case suite.

Fig. 1. Test automation workflow

In what follows, we overview the use case documents, see Figures 2 and 3.

Fig. 2. Main flow Fig. 3. Alternative and interaction flows

Feature Use Cases A feature use case has a set of interconnected flows (main, alter-
native and exception); each flow is a sequence of steps, and each step has an identifier
(Id) that is used for referencing (use cases can be shared by different features and doc-
uments). Features and use cases also have unique identifiers. The complete reference
for a step has the form FEATURE ID#UC ID#STEP ID. Moreover, each flow step
specifies an user input action (User Action column), the expected system output in the
System Response column, and the (optional) condition required to produce the expected
system output (System State column). Figure 2 shows the main flow of the use case of
the Important Messages Feature. Such a flow specifies the sequence of actions that the
user must perform to move a message from the Inbox to the Important Messages Folder.

For instance, in step 5M, to get a message dialog that confirms the success of moving a
message, the memory storage must not be full.

The fields ‘From Step’ and ‘To Step’ are used to indicate the set of steps from where
the flow must start and to where it must continue. As a default, the main flow uses the
constants START (no previous step) and END (no subsequent step) for these fields. Al-
ternative flows are simply defined by characterising where (From Step) they can assume
control and where they must resume (To Step), with respect to the flows they are ref-
erencing. Figure 3 (top) shows a possible alternative flow for the Important Messages
use case. It specifies that, after step 4M of the Feature main flow, if the memory stor-
age is full, the selected message is not moved because a clean up action is requested.
After the clean up the message is moved to the Important Messages Folder and the al-
ternative flow finalizes. The exception flows are similar to alternative flows, except for
representing exceptional behaviours.

Feature Interaction Feature interactions are extensions of feature use cases by intro-
ducing interaction points. Using the field Interaction Point one can indicate a set of steps
from which the interactive flow can assume and resume control to the next step in the
original flow. Figure 3 (bottom) shows the specification of a flow that can interact after
step 1M of the main flow. This interaction specifies that after the main action “Go to
Message Center”, the feature can continue its main flow or verify the message storage
status (interaction flow), and then continue the main flow from step 2M.

3 Test Models as CSP Processes

A process is the central element of a CSP specification. Processes can offer events from
Σ (the set of possible events) to establish communication with the environment or with
other processes. The alphabet of a CSP process, say P , is the set of events it can com-
municate, say αP , where αP ⊆ Σ. Furthermore, the primitive process Stop specifies
a broken process (deadlock), and the primitive Skip a process that communicates an
event X and terminates successfully.

Although there is no semantic distinction between input and output events in CSP,
we consider that Σ is split into three disjoint sets of events: inputs Σi , outputs Σo and
conditionals Σc . In our application domain, input events represent user actions, the out-
put events model system responses, and conditional events abstract the system internal
state. Then, Σ = Σi ∪Σo ∪Σc . Similarly, the alphabets of the processes follow the same
structure: αP = αPi ∪ αPo ∪ αPc .

The rest of this section shows how CSP operators are used to build test models for
our application domain. The operators are introduced by demand.

Modelling Individual Features Basic CSP operators as prefix and external choice are
suitable to model feature use cases. The CSP prefix operator P = ev → Q specifies
that event ev is communicated by P , which then behaves as the process Q . The external
choice operator P = Q � R indicates that the process P can behave as Q or R; the
choice is made by the environment.

As an example, applying the translation approach presented in [2] to the main and
alternative flows of the use case of Important Messages Feature (Figures 2 and 3) we

obtain the model specified as follows. For conciseness, we abbreviate the event names
that represent the elements of the use case templates.

UC1 = goToMsgCenter → IMFolderIsDisp → goToInbox → inboxMsgsDisp →
scrollToAMsg → msgHighlighted → goToCSM → moveToIMOptDisp →
selMoveToIMOpt → (UC11 � UC12)

UC11 = msgStoIsNotFull → msgMovedToIMDisp → Skip
UC12 = msgStoIsFull → cleanUpReqDisp →

performCleanUp → msgMovedToIMDisp → Skip

The process UC1 specifies the main use case flow (Figure 2) up to Step 4M (event
selMoveToIMOpt). From this point, it behaves as the choice UC11 � UC12. The pro-
cess UC11 specifies Step 5M of the main flow, and UC12 the behaviour of the alternative
flow (Figure 3). Both main and alternative flows finish with success (behave as Skip).

Modelling Feature Interactions Now we show an approach to capture feature inter-
actions using CSP, by combining the CSP processes that specify interaction flows with
the processes that specify main, alternative and exception flows.

Consider the CSP notation P \ s that defines a process which behaves like P
communicates all its events, except the events that belong to s , which become inter-
nal (invisible): \ stands for the hiding operator. The process P |[X]| Q stands for the
generalised parallel composition of the processes P and Q with synchronisation set X .
This expression states that P and Q must synchronize on events that belong to X . Each
process can evolve independently for events that are not in X .

Figures 4 and 5 give a graphical overview on how to model feature interaction by us-
ing CSP parallel composition. The top of Figure 4 represents the use cases process UC1
modified with the insertion of one interaction point (the events beginI .1 and endI .1 are
control events). The bottom of the same figure illustrates the interaction process for the
interaction flow of Figure3. Finally, putting these processes in parallel with synchro-
nization set {beginI .1, endI .1} and hiding this set, we obtain the model exhibited in
Figure 5. The transition labelled as tau in Figure 5 denotes invisible event and appears
in the resulting model to allow the interaction to occur optionally.

Fig. 4. Marked use case and interaction Fig. 5. Feature interaction model

The rest of this section materializes the graphical modelling of interaction shown in
Figures 4 and 5 motivated above in terms of CSP. Consider the indexed external choice
construction of CSP � x : A • F (x), where x can be a value or an event from set A,

and F (x) any CSP term involving x . This construction behaves as the external choice
F (x1) � F (x2) � ... � F (xn) for A = {x1, x2, ..., xn }.

We define the auxiliary process InteractionPoint that is used to introduce control
points in the use case processes that are affected by interactions.

InteractionPoint(indices) = Skip � (� i : indices • beginI .i → endI .i → Skip)

The parameter indices is a set of interaction identifiers used to characterise which inter-
actions are allowed in the same point of a given use case. The events from IntControl =

{beginI .i , endI .i } are used to specify such points. For each i ∈ indices the process
InteractionPoint offers a choice with the prefix begin .i → end .i → Skip. Further-
more, the external choice with Skip allows the original flow to perform without any
interaction.

Consider the CSP process P ; Q that behaves like P until it terminates successfully,
when the control passes to Q . The process UC ′1 in Figure 4 (top) is the process UC1
from the previous section modified by the insertion of an interaction point after the
step 1M. In UC ′1 the processes UC11 and UC12 remain unchanged because there are no
interactions for them.

UC ′1 = goToMsgCenter → IMFolderIsDisp → Skip; InteractionPoint({1});
goToInbox → inboxMsgsDisp → scrollToAMsg → msgHighlighted →
goToCSM → moveToIMOptDisp → selMoveToIMOpt → (UC11 � UC12)

The parameter {1} for the process InteractionPoint above is the index for the interac-
tion in Figure 3 whose CSP specification is the process

STORAGE STATUS = selStoStaOpt → stoStaDiaDisp →
dismStoStaDia → stoStaDiaClosed → Skip

In addition, we define the auxiliary process I that is similar to InteractionPoint except
that it handles a unique control point (instead of a set), and between the beginI .index
and endI .index events it includes the interaction flow itself.

I (index , interaction) = Skip � (beginI .index → interaction; endI .index → Skip)

Finally, the CSP interaction specification of the use case flows of Figures 2 and 3 is

UC1 I = (UC ′1 |[IntControl]| I (1,STORAGE STATUS)) \ IntControl

where the process I (1,STORAGE STATUS) (represented in Figure 4, at bottom) al-
lows the flow STORAGE STATUS to occur in the point where InteractionPoint({1})
is included in UC ′1 . The events of IntControl are hidden from the model since they only
play the role of control events. Figure 5 shows a graphical view of the process UC1 I .
Note that the original flow can be interrupted at point 2, where the subflow demarcated
by 11, 12 and 13 is the interruption behaviour.

The notation µX .F (X) stands for a nameless recursive CSP process. For the gen-
eral case, the CSP process below specifies the feature interaction model for a set of
independent feature model processes {UC ′1 , ...,UC ′N } with a set of independent interac-
tions {I (1, inti), ..., I (n , intn)} that can occur in any point of the feature models.

UC I = (� k : {1..N } • UC ′k |[IntControl]|
µX .� i : {1..n} • I (i , inti); X) \ IntControl

On the left-hand side of the parallelism, the use cases are modelled as the external
choice of the respective processes; each process UC ′k (1 ≤ k ≤ N) stands for the
use case UCk modified with the insertion of interaction points. On the right-hand side,
there is a choice among the possible interactions I (i , inti) (1 ≤ i ≤ n) that recurs after
successful termination. This recursion allows the run of any interaction whenever the
respective interaction points are reached in the use cases.

A more elaborate model of feature interaction can be achieved using the interleav-
ing operator of CSP. We can define that the occurrences of the process I (i , inti) are
interleaved, and that each occurrence is itself recursive. Similarly, the use case models
can as well be combined using interleaving. This allows multiple interactions to occur
simultaneously, and is useful in the context of concurrent features.

Semantic Models for CSP Trace semantics is the simplest model for a CSP process.
The traces of a process P , given by traces(P), correspond to the set of all possi-
ble sequences (even infinite) of events P can communicate. For the process Stop,
traces(Stop) = {〈〉}, and for Skip, traces(Skip) = {〈〉, 〈X〉}, where X < Σ. For pre-
fix, traces(a → P) = ({〈〉, 〈a〉}) ∪ traces(P). Let P1 and P2 be two CSP processes,
then traces(P1 � P2) = traces(P1) ∪ traces(P2). For the sequential composition,
traces(P ; Q) = (traces(P) ∩ Σ∗) ∪ {s a t | s a 〈X〉 ∈ traces(P) ∧ t ∈ traces(Q)}. A
complete definition for all CSP operators can be found in [15].

It is possible to compare the traces semantics of two processes by refinement verifi-
cation using the FDR [10] tool. A process Q refines the process P in the traces model,
say P vτ Q , if and only if traces(P) ⊇ traces(Q). Otherwise, FDR yields a trace (the
shortest counter-example), say ce, such that ce ∈ traces(Q) but ce < traces(P). For
instance, UC11 � UC12 vτ UC12 holds, since traces(UC11 � UC12) ⊇ traces(UC12).
However, the relation Skip vτ Skip; accept .1 → Stop does not, since 〈accept .1〉 ∈
traces(accept .1 → Stop) but 〈accept .1〉 < traces(Skip). Thus, the trace 〈accept .1〉 is
a counter-example.

Structuring the process UC I as explained previously, we have that UC I vτ UC
holds: the traces of the use case model without interactions is included in the traces of
the interaction model. For instance, UC1 I vτ UC1 holds.

Other more elaborate semantic models of CSP are the failures and the failures-
divergences models. The former captures deadlock situations, whereas the latter cap-
tures livelocks as well. See [15] for further details.

4 Test Scenario Generation

Given a test model S and a safety property Φ, we can obtain the traces of S that satisfy
Φ (e.g. traces from S that lead to a successful termination). We call these traces test
scenarios, say ts , when Φ describes some test selection criteria. A test scenario is the
central element used to construct a CSP test case. This Section shows how to generate
test scenarios as the counter-examples of refinement verifications.

Consider the set MARK = {accept .n} for n ∈ N, the alphabet of mark events used
in our test generation approach. Let S be the process that specifies the model we want
to select tests from, then we define S ′ to be S with the addition of mark events after test
scenarios that satisfies Φ. The idea is to perform refinement verifications of the form

S vτ S ′ that generate the test scenarios as counter-examples. Consider that s1
a s2

indicates the concatenation of sequences s1 and s2, and 〈ev〉 a sequence containing the
element e . Then, S ′ is defined in such a way that for all test scenarios ts ∈ traces(S)
that satisfies Φ, there is a trace ts a 〈m〉 ∈ traces(S ′), such that m ∈ MARK and
MARK ∩ αS = ∅. As a consequence ts a 〈m〉 < traces(S), so the relation S vτ S ′

does not hold and the counter-examples are traces of the form ts a 〈m〉. The shortest
test scenario, say ts1, is retrieved by FDR when S vτ S ′ does not hold.

To illustrate the proposed test scenario generation approach, we show how to gener-
ate a set of test scenarios (ts ∈ traces(S)) that lead the test model to successful termina-
tion. Consider the process ACCEPT (id) = accept .id → Stop that is used to mark test
scenarios by communicating the mark event accept .id (accept .id ∈ MARK). Thus,
we define S ′ as the process (S ; ACCEPT (i)). This process inserts marks (accept .i)
after each successful termination of S . As a consequence, the verification of relation
(S vτ S ′) yields as counter-examples the test scenarios that lead the specification to
successful termination (if they exist).

For example, checking the relation UC1 vτ UC1; ACCEPT (1) using FDR results
in the shortest counter-example, as displayed below.

UC1 ts1 = 〈goToMsgCenter , IMFolderIsDisp, goToInbox , inboxMsgsDisp,
scrollToAMsg ,msgHighlighted , goToCSM ,moveToIMOptDisp, selMoveToIMOpt ,
msgStoIsNotFull ,msgMovedToIMDisp, accept .1〉

The above trace (ignoring the marking event accept .1) is the shortest successful termi-
nation test scenario to UC1. It corresponds to the main use case flow of the Important
Messages Feature (Figure 2).

To obtain from S subsequent test scenarios lengthier than a test scenario ts1, we use
the function Proc that receives as input a sequence of events and generates a process
whose maximum trace corresponds to the input sequence. For instance, Proc(〈a , b, c〉)
yields the process a → b → c → Stop. The reason for using Stop, rather than Skip, is
that Stop does not generate any visible event in the traces model, while Skip generates
the event X.

The second counter-example is generated from S using the previous refinement, but
the process formed by the counter-example ts1 (Proc(ts1)) as an alternative to S on the
left-hand side. The second test scenario can then be generated as the counter-example
to the refinement S � Proc(ts1) vτ S ′. As traces(S � Proc(ts1)) is equivalent to
traces(S) ∪ ts1, ts1 cannot be a counter-example of the second refinement iteration.
Thus, if the refinement does not hold again, then we have ts2 as the counter-example.

The iterations can be repeated until the desired set of test scenarios is obtained (for
instance, a fixed number of tests is generated). In general, the n + 1th test scenario can
be generated as a counter-example of the following refinement.

S � Proc(ts1) � Proc(ts2) � ... � Proc(tsn) vτ S ′ (1)

Continuing the selection of successful termination traces of UC1, checking the relation
UC1 � Proc(UC1 ts1) vτ UC1; ACCEPT (1) yields a second counter-example.

UC1 ts2 = 〈goToMsgCenter , IMFolderIsDisp, goToInbox , inboxMsgsDisp,
scrollToAMsg ,msgHighlighted , goToCSM ,moveToIMOptDisp, selMoveToIMOpt ,
msgStoIsFull , cleanUpReqDisp, performCleanUp,msgMovedToIMDisp, accept .1〉

The above trace is another successful termination test scenario for UC1. It corresponds
to the alternative flow of the Important Messages (Figure 3). Finally, since there is no
more successful termination scenarios to generate from UC1, the following refinement
UC1 � Proc(UC1 ts1) � Proc(UC1 ts2) vτ UC1; ACCEPT (1) holds.

This strategy applies both to feature models and to feature interaction models, in-
troduced in the previous section.

5 Test Scenario Selection

Although successful termination can itself be used as a selection criteria, as illustrated
in the previous section, this section shows a more flexible strategy for selecting a set of
test scenarios from a test model S based on the concept of a test purpose TP , described
as a CSP process. A CSP test purpose is based on the notion introduced in [8]: a test
purpose is a partial specification describing the characteristics of the desired tests. The
definition below formalizes the concept.

Definition 1 Let TP and S be CSP processes. The process TP is a test purpose for S
if it has deterministic behaviour and ∀ ts a 〈m〉 : traces(TP) • ts ∈ traces(S) ∧ m ∈
MARK .

A TP must be deterministic to avoid the selection of inconsistent test scenarios. The
other relevant property of a TP is that its traces (excluding the mark event) must be
traces of the specification model. To ease the task of writing TP in CSP following
Definition 1, we provide a set of primitive processes that can be combined to design
possibly complex test purposes.

Table 1 presents the names and parameters of the primitives (left-hand column) and
their definitions (right-hand column).

The process ACCEPT (id) was already explained in the previous section. We in-
troduce a similar process REFUSE (id) = refuse.id → Stop that marks refusal test
scenarios by communicating the special event refuse.id . It is used to stop the test se-
lection ignoring useless test scenarios and saving computational resources.

The primitive ANY (evset ,next) = � ev : evset • ev → next performs basic
selection. It selects the events offered by the specification that belong to evset . If any
of these events can occur, it behaves as next . Otherwise, it deadlocks.

The process NOT (αS , evset ,next) is complementary to ANY . It selects from the
events offered by the specification those that belong to αS − evset .

The primitive MATCH (αS , evset ,next , init) is used to select from the events of-
fered by the specification those that belong to evset . If it is the case, it behaves as next .
Otherwise, it behaves as init . The parameter init indicates the initial state of a test
purpose. Whenever the specification offers events that do not match the test purpose
objective, the test purpose process restarts the selection, behaving as init . Consider
the functions head (s) and tail (s) that yields the head and the tail of the sequence s .
The primitive process MATCHS (αS , s ,next , initial) is an extension of MATCH . It is
used to select a sequence s from the specification. If this is possible, it behaves as next .
Otherwise, it behaves as init .

Table 1. Constructors for test purposes

Process Name Process Specification

ACCEPT (id) accept .id → Stop
REFUSE (id) refuse .id → Stop

ANY (evset ,next) � ev : evset • ev → next

NOT (αS , evset ,next) ANY (αS − evset ,next)
MATCH (αS , evset ,next , init) ANY (evset ,next) � NOT (αS , evset , init)
MATCHS (αS , s ,next , init) if (s = 〈〉) then next

else (
ANY ({head(s)},

MATCHS (αS , tail(s),next , init)
)

�
NOT (αS , {head(s)}, init)

)
EXCEPT (αS , evset ,next , init) MATCH (αS , evset , init ,next)
UNTIL(αS , evset ,next) RUN (αS − evset)

4 ANY (evset ,next)

The process EXCEPT (αS , evset ,next , initial) is complementar to MATCH . If
the offered events belong to αS − evset , it continues the selection, otherwise, it restarts
and behaves as init .

Consider the process RUN (s) = � ev : s • ev → RUN (s) that continuously offers
the events from the set s , and P 4 Q which indicates that Q can interrupt the behaviour
of P if an event offered by Q is communicated. The process UNTIL(αS , evset ,next) =

RUN (αS − evset) 4 ANY (evset ,next) selects all sequences offered by the specifica-
tion events until it engages on some event that belongs to evset .

The following is an example of a test purpose TP1 that is used to select scenarios
from UC1. The objective of TP1 is to select from UC1 test scenarios whose final output
is a message confirming that the selected important message is moved to the folder
(msgMovedToIMDisp), and at some point before the user has performed a cleanup
action (performCleanUp).

TP1 = UNTIL(αUC1 , {performCleanUp},
UNTIL(αUC1 , {msgMovedToIMDisp},ACCEPT (1)))

The process TP1 offers the events of αUC1 until it engages on performCleanUp. Next,
it offers the events of αUC1 until it engages on msgMovedToIMDisp, when it behaves
as ACCEPT (1) that inserts the mark event accept .1.

Based on the test scenario generation approach from the previous section, one can
select test scenarios for a given CSP test purpose TP by defining the process S ′ (here
referred to as PP (S ,TP)) as the parallel product of S with a test purpose TP with
synchronisation set αS : PP (S ,TP) = S |[αS]|TP . The process TP synchronises
in all events offered by S until the test purpose that follows Definition 1 matches a
test scenario, when TP communicates an event mark ∈ MARKS . At this point, the
process TP deadlocks, and consequently PP (S ,TP) deadlocks as well. This makes

the parallel product to produce traces ts a 〈mark〉, where ts are the test scenarios. If
S does not contain scenarios specified by TP , no mark event is communicated, the
parallel product does not deadlock and the relation S vτ PP (S ,TP) holds.

Considering again our example, the shortest test scenario from UC1 that matches
TP1 is obtained from a counter-example of the relation UC1 vτ PP (UC1,TP1), where
PP (UC1,TP1) = UC1 |[αUC1]|TP1. The counter-example is given below.

UC1 TP1 ts1 = 〈goToMsgCenter , IMFolderIsDisp, goToInbox , inboxMsgsDisp,
scrollToAMsg ,msgHighlighted , goToCSM ,moveToIMOptDisp, selMoveToIMOpt ,
msgStoIsFull , cleanUpReqDisp, performCleanUp,msgMovedToIMDisp, accept .1〉

Further test scenarios that satisfy a given test purpose can be generated incrementally
as explained in the previous section.

6 Constructing Sound Test Cases

In conformance testing, the minimum requirement for the generated test cases is that
they do not reject correct implementations; they must be sound. In this section we show
that our test case generation strategy always produces sound test cases.

CSP Input-Output Conformance To obtain soundness, conformance testing [20] re-
quires the definition of an implementation relation between the domain of specifications
and the domain of implementations. In our work elements of such domains are ex-
pressed as CSP processes. Thus, to present our definition for such a relation we assume
as test hypothesis [3] that there is a CSP process which specifies an implementation
under test (IUT), say IUTCSP .

We also assume that implementations are always able to accept any input from the
alphabet (input enabled), and always produce some output after a given input (output
available). These properties are formalized by the two following definitions. An imple-
mentation is input enabled when the inputs communicated after each of its traces equals
its input alphabet.

Definition 2 Let IUTCSP be an implementation model. It is input enabled iff
∀ t : traces(IUTCSP) • {e : αIUTCSP i | t a 〈e〉 ∈ traces(IUTCSP)} = αIUTCSP i

An implementation is output available when we can always find an output event imme-
diately after each input event.

Definition 3 Let IUTCSP be an implementation model. It is output available iff
∀ t : traces(IUTCSP); i : αIUTCSP i •

t a 〈i〉 ∈ traces(IUTCSP)⇒ (∃ o : αIUTCSPo • t a 〈i , o〉 ∈ traces(IUTCSP))

From now on we assume that any implementation model IUTCSP is both input enabled
and output available.

Our implementation relation cspio (CSP Input-Output Conformance), formalised
in Definition 4, is the basis for our generation of sound CSP test cases. Consider that
initials(P) = {a | 〈a〉 ∈ traces(P)} yields the initial events offered by the process P ,
and the function out(P , s) gives the set of output events of P after the trace s . More pre-
cisely, out(P , s) = if s ∈ traces(P) then initials(P/s) ∩ αPo else ∅. The relation cspio

establishes that any output event observed in an implementation model IUTCSP is also
observed in the specification S , after any trace of S . In this case, IUTCSP cspio S .

Definition 4 Let IUTCSP be an implementation model, and S a specification, such
that αSc = ∅, αSi ⊆ αIUTCSP i , αSo ⊆ αIUTCSPo . Then,

IUTCSP cspio S ⇔ ∀ s : traces(S) • out(IUTCSP , s) ⊆ out(S , s)

Consider the notation P ||| Q represents the interleaving between the processes P and
Q . In such a composition both processes communicate any event freely (no synchroni-
sation). The following theorem captures cspio using process refinement.

Theorem 1 Let IUTCSP be an implementation model, and S a specification, such that
αSc = ∅, αSi ⊆ αIUTCSP i and αSo ⊆ αIUTCSPo . The relation IUTCSP cspio S holds
iff the following refinement holds.

S vτ (S ||| RUN (αIUTCSPo)) |[αIUTCSP
]| IUTCSP (2)

Proof

S vτ (S ||| RUN (αIUTCSPo)) |[αIUTCSP
]| IUTCSP

= [by the definition of vτ]

traces(S) ⊇ traces((S ||| RUN (αIUTCSPo)) |[αIUTCSP
]| IUTCSP)

= [by assumption αS ⊆ αIUTCSP
and definition traces(P |[αP ∪ αQ]|Q)] in [15],

page 54]

traces(S) ⊇ traces(S ||| RUN (αIUTCSPo)) ∩ traces(IUTCSP)

= [by set theory and predicate logics]

∀ s , x • s a 〈x 〉 ∈ (traces(S ||| RUN (αIUTCSPo)) ∩ traces(IUTCSP))⇒
s a 〈x 〉 ∈ traces(S)

= [by definition traces(P/s) in [15], page 48]

∀ s , x • 〈x 〉 ∈ traces((S ||| RUN (αIUTCSPo))/s) ∩ traces(IUTCSP/s)⇒
〈x 〉 ∈ traces(S/s)

= [by set theory]

∀ s , x • 〈x 〉 ∈ traces((S ||| RUN (αIUTCSPo))/s) ∧ 〈x 〉 ∈ traces(IUTCSP/s)⇒
〈x 〉 ∈ traces(S/s)

= [by definition initials(.) in [15], page 47]

∀ s , x • x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∧ x ∈ initials(IUTCSP/s)⇒
x ∈ initials(S/s)

= [by hypothesis αIUTCSP
= αIUTCSP i ∪ αIUTCSPo]

∀ s , x • x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∧
x ∈ initials(IUTCSP/s)⇒

x ∈ initials(S/s)

 ∧ x ∈ αIUTCSP i ∨ x ∈ αIUTCSPo

= [from boolean algebra]

∀ s , x • x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∧
x ∈ initials(IUTCSP/s)⇒

x ∈ initials(S/s)

 ∧ x ∈ αIUTCSP i

∨ x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∧
x ∈ initials(IUTCSP/s)⇒

x ∈ initials(S/s)

 ∧ x ∈ αIUTCSPo

= [by set theory]

∀ s , x • x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSP i ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSP i ⇒

x ∈ initials(S/s) ∩ αIUTCSP i

∨ x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒

x ∈ initials(S/s) ∩ αIUTCSPo

= [by Lemma 1]

∀ s , x • x ∈ initials(S/s) ∩ αIUTCSP i ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSP i ⇒

x ∈ initials(S/s) ∩ αIUTCSP i

∨ x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒

x ∈ initials(S/s) ∩ αIUTCSPo

= [by Definition 2, initials(IUTCSP/s) ∩ αIUTCSP i = αIUTCSP i]

∀ s , x • x ∈ initials(S/s) ∩ αIUTCSP i ∧

x ∈ αIUTCSP i ⇒

x ∈ initials(S/s) ∩ αIUTCSP i

∨ x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒

x ∈ initials(S/s) ∩ αIUTCSPo

= [by set theory]

∀ s , x •(
x ∈ initials(S/s) ∩ αIUTCSP i ⇒

x ∈ initials(S/s) ∩ αIUTCSP i

)
∨ x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒

x ∈ initials(S/s) ∩ αIUTCSPo

= [from propositional calculus A⇒ B = true]

∀ s , x •(
true

)
∨ x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒

x ∈ initials(S/s) ∩ αIUTCSPo

= [from boolean algebra]

∀ s , x • x ∈ initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo ∧

x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒

x ∈ initials(S/s) ∩ αIUTCSPo

= [by Lemma 2]

∀ s , x • x ∈ αIUTCSPo ∧ x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒

x ∈ initials(S/s) ∩ αIUTCSPo

= [by set theory]

∀ s , x • x ∈ initials(IUTCSP/s) ∩ αIUTCSPo ⇒ x ∈ initials(S/s) ∩ αIUTCSPo

= [by hypotheses αSo ⊆ αIUTCSPo , and definition out(P , s)]

∀ s , x • x ∈ out(IUT , s)⇒ x ∈ out(S , s)

= [by set theory]

∀ s • out(IUT , s) ⊆ out(S , s)

= [since out(P , s) is defined only for s ∈ traces(P), and αS ⊆ αIUTCSP
]

∀ s : traces(S) • out(IUT , s) ⊆ out(S , s)

= [by definition of cspio]

IUT cspio S

^

Lemma 1

initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSP i = initials(S/s) ∩ αIUTCSP i

Proof

initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSP i

= [by definition initials(.)]

{e | 〈e〉 ∈ traces((S ||| RUN (αIUTCSPo))/s)} ∩ αIUTCSP i

= [by definition traces(P ||| Q) in [15], page 67]

{e | 〈e〉 ∈
⋃
{t ||| u | t ∈ traces(S/s) ∧ u ∈ traces(RUN (αIUTCSPo)/s)}} ∩ αIUTCSP i

= [by definitions traces(RUN (s)) = (s)∗ and P/s]

{e | 〈e〉 ∈
⋃
{t ||| u | t ∈ traces(S/s) ∧ u ∈ (αIUTCSPo)∗}} ∩ αIUTCSP i

= [by definition s ||| t in [15], page 67]

{e | 〈e〉 ∈ (
{〈v〉 a z | v ∈ initials(S/s) ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s/〈v〉) ∧

u ∈ (αIUTCSPo)∗}
∪

{〈v〉 a z | v ∈ αIUTCSPo ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s) ∧
u ∈ (αIUTCSPo)∗}

)
} ∩ αIUTCSP i

= [by set theory]

{e | 〈e〉 ∈ {〈v〉 a z | v ∈ initials(S/s) ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s/〈v〉) ∧
u ∈ (αIUTCSPo)∗}} ∩ αIUTCSP i

∪

{e | 〈e〉 ∈ {〈v〉 a z | v ∈ αIUTCSPo ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s) ∧
u ∈ (αIUTCSPo)∗}} ∩ αIUTCSP i

= [since v ∈ αIUTCSPo]

{e | 〈e〉 ∈ {〈v〉 a z | v ∈ initials(S/s) ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s/〈v〉) ∧
u ∈ (αIUTCSPo)∗}} ∩ αIUTCSP i

∪

αIUTCSPo ∩ αIUTCSP i

= [since αIUTCSP i ∩ αIUTCSPo = ∅, and from boolean algebra]

{e | 〈e〉 ∈ {〈v〉 a z | v ∈ initials(S/s) ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s/〈v〉) ∧
u ∈ (αIUTCSPo)∗}} ∩ αIUTCSP i

= [since v ∈ initials(S/s)]

{e | 〈e〉 ∈ traces(S/s)} ∩ αIUTCSP i

= [by definition initials(.)]

initials(S/s) ∩ αIUTCSP i

^

Lemma 2

initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo = αIUTCSPo

Proof

initials((S ||| RUN (αIUTCSPo))/s) ∩ αIUTCSPo

= [by definition initials(.)]

{e | 〈e〉 ∈ traces((S ||| RUN (αIUTCSPo))/s)} ∩ αIUTCSPo

= [by definition traces(P ||| Q) in [15], page 67]

{e | 〈e〉 ∈
⋃
{t ||| u | t ∈ traces(S/s) ∧ u ∈ traces(RUN (αIUTCSPo)/s)}} ∩ αIUTCSPo

= [by definitions traces(RUN (s)) = (s)∗ and P/s]

{e | 〈e〉 ∈
⋃
{t ||| u | t ∈ traces(S/s) ∧ u ∈ (αIUTCSPo)∗}} ∩ αIUTCSPo

= [by definition s ||| t in [15], page 67]

{e | 〈e〉 ∈ (
{〈v〉 a z | v ∈ initials(S/s) ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s/〈v〉) ∧

u ∈ (αIUTCSPo)∗}
∪

{〈v〉 a z | v ∈ αIUTCSPo ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s) ∧
u ∈ (αIUTCSPo)∗}

)
} ∩ αIUTCSPo

= [by set theory]

{e | 〈e〉 ∈ {〈v〉 a z | v ∈ initials(S/s) ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s/〈v〉) ∧
u ∈ (αIUTCSPo)∗}} ∩ αIUTCSPo

∪

{e | 〈e〉 ∈ {〈v〉 a z | v ∈ αIUTCSPo ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s) ∧
u ∈ (αIUTCSPo)∗}} ∩ αIUTCSPo

= [since v ∈ αIUTCSPo]

{e | 〈e〉 ∈ {〈v〉 a z | v ∈ initials(S/s) ∧ z ∈ (t ||| u) ∧ t ∈ traces(S/s/〈v〉) ∧
u ∈ (αIUTCSPo)∗}} ∩ αIUTCSPo

∪

αIUTCSPo ∩ αIUTCSPo

= [from set theory]

αIUTCSPo

^

The intuition for this theorem is as follows. Consider an input event that occurs in
IUTCSP , but not in S . On the right-hand side of the refinement, the parallel composition
cannot progress through this event, so it is refused. Because refused events are ignored
in the traces model, new IUTCSP inputs are allowed by the above refinement. The
objective of the interleaving with the process RUN (αIUTCSPo) is to avoid that the right-
hand process refuses output events that the implementation can perform but S cannot.
Thus, RUN (αIUTCSPo) allows that such outputs be communicated to IUTCSP . Finally,
if IUTCSP can perform such output events, then they appear in the traces of the right-
hand side process, which falsifies the traces refinement.

In summary, the expression on the right-hand side captures new inputs performed
by IUTCSP generating deadlock from the trace where the input has occurred, in such a
way that any event that comes after is allowed. Also, it keeps in the traces all the output
events of IUTCSP for the inputs from S , allowing a comparison in the traces models.

If we know IUTCSP we can verify if IUTCSP cspio S by checking (using FDR) the
relation (2) directly. This is equivalent to generating all the traces of S and exercising
them against the implementation according to cspio. However, in general we do not
know IUTCSP and the number of traces of S is infinite. Therefore, we need to exercise
the implementation with a selected subset of test cases and look for possible violations
of IUT cspio S during the test execution.

Test Case and Successful Test Execution We need to state what is the meaning of
a test execution and the verdicts it can produce. The execution of a test TC against
an implementation IUTCSP , named EX (IUTCSP ,TC), is the parallel composition
IUTCSP |[αIUTCSP

]|TC . Such an execution must yield a verdict event v ∈ VER =

{pass , fail , inc}, which does not belong to αIUTCSP
. To check this in CSP, we need these

verdict elements expressed as CSP processes. Thus, we use process PASS = pass →
Stop to express when the test passes in the execution. Similarly INC = inc → Stop
for an inconclusive execution, and FAIL = fail → Stop for a failed execution.

A test execution EX (IUTCSP ,TC) for a given implementation IUTCSP and a test
case TC must always be successful. This is captured by the following definition.

Definition 5 Let TC be a test case process, IUTCSP an implementation model and
T = traces(EX (IUTCSP ,TC)). The execution of TC against IUTCSP is a successful
test execution if the following holds.

∀ t : T | (¬∃ t ′ : T | t , t ′ • t ≤ t ′) • last(t) ∈ {pass , inc, fail }

where last(s) yields the last element of the sequence s .

The above definition states that the last element of each execution trace, which is not a
prefix of any other execution trace, is a verdict event.

Constructing Sound Test Cases To construct a test case from a test scenario ts , first we
create an output complete sequence lt that contains pairs (evi , outsi) such that evi is the
i th element of ts and outsi is the set of output events after the specification performs
the trace 〈ev1, ..., evi−1〉. Formally, outsi = out(S , 〈evi , ..., evi−1〉), for 1 ≤ i ≤ #ts , and
lt = 〈 (ev1, outs1), ..., (ev#ts , outs#ts)〉, where #s yields the size of the sequence s .

The function TC BUILDER(lt) defines how a sound test case can be constructed
from a test scenario.

TC BUILDER (〈〉) = PASS
TC BUILDER (〈(evi , outsi)〉 a tail) = SUBTC ((evi , outsi)); TC BUILDER(tail)

where

SUBTC ((evi , outsi)) = if (evi ∈ αIUTCSP i) then ev → Skip
else (evi → Skip � ANY (outsi − {evi }, INC)

� ANY (αIUTCSPo − outsi , FAIL))

The process TC BUILDER(lt) recursively applies the process SUBTC for each pair
(evi , outsi) of lt and yields the process PASS when the last element of lt is reached.
The goal of the process SUBTC is to create the body of the test, inserting the verdicts
fail and inconclusive at intermediate points of the test case according to the following.

If the event evi is an input, the test case communicates this event to the implemen-
tation, and finishes the verification of this test fragment successfully (Skip). Otherwise,
if evi is an output, the test must be ready to synchronise with any output response of the
IUTCSP (output completeness), including evi . If IUTCSP communicates evi , the test
synchronises on this event and ends with success (Skip). Case the IUTCSP communi-
cates an event that belongs to outsi−{evi }, the test reaches the verdict inconclusive since
the IUTCSP response is not exactly the one expected by the test scenario (evi), but it is
a behaviour foreseen by the specification. Otherwise, if the IUTCSP communicates an
event not foreseen by the specification the test reaches the verdict fail.

Before we address soundness of a test case, the following theorem states that a test
case constructed from TC BUILDER terminates successfully when executed against
an implementation model.

Theorem 2 Let IUTCSP be an implementation model, S a specification, ts a test sce-
nario from S , such that αSc = ∅, αSi ⊆ αIUTCSP i and αSo ⊆ αIUTCSPo . If lt is an
output complete sequence of ts and TC = TC BUILDER(lt), then the execution of
TC against IUTCSP is a successful test execution.

Proof

Our goal is to reach the statement from Definition5 assuming that TC is TC BUILDER(lt).

T = traces(EX (IUTCSP ,TC BUILDER(lt)))

= [by definition EX (.)]

T = traces(IUTCSP |[IUTCSP]|TC BUILDER(lt))

= [by assumption αTC BUILDER ⊆ αIUTCSP
∪VER and definition P |[X |Y]| Q in

[15], page 68]

T = traces((IUTCSP |[αIUTCSP
|αTC BUILDER(lt)]| TC BUILDER(lt))

= [by definition traces(P |[X |Y]| Q) in [15], page 60]

T = {t ∈ (αIUTCSP
∪VER)∗ | (t � αIUTCSP

) ∈ traces(IUT) ∧
(t � (αIUTCSP

∪VER)) ∈ traces(TC BUILDER(lt))}

= [by definition traces(TC BUILDER(lt))]

T = {t ∈ (αIUTCSP
∪VER)∗ | (t � αIUTCSP

) ∈ traces(IUT) ∧
(t � (αIUTCSP

∪VER)) ∈ traces(TC BUILDER(lt)) ∧
∀ s : prefixes(ts); o : αIUTCSPo | s = 〈get(1, ts), . . . , get(i , ts)〉 ∧

1 ≤ i < #lt ∧ s a 〈o〉 < prefixes(ts) •
traces(TC BUILDER(lt)) = prefixes(ts a 〈pass〉)∪
{ s a 〈o, inc〉 | o ∈ outi+1 } ∪ { s a 〈o, fail〉 | o < outi+1 }

}

⇒ [by hypothesis αIUTCSP
∩VER = ∅ and Definition??]

∀ t , t ′ : T • t = t ′ a 〈m〉 ∈ VER ∧ {t , t ′} ⊆ (αIUTCSP
∪VER)∗ ∧

t � αIUTCSP
∈ traces(IUTCSP) ∧

t � (IUTCSP ∪VER) ∈ traces(TC BUILDER(lt))

⇒ [by predicate calculus]

∀ t , t ′ : T • t = t ′ a 〈m〉 ∈ VER ⇒ last(t) ∈ VER

= [by predicate calculus]

∀ t : T • (∀ t ′ : T • t = t ′ a 〈m〉 ∈ VER)⇒ last(t) ∈ VER

⇒ [by predicate calculus]

∀ t : T • (∀ t ′ : T • t = t ′ ∨ t , t ′ ∧ t > t ′)⇒ last(t) ∈ VER

= [by boolean algebra]

∀ t : T • (∀ t ′ : T • (t = t ∨ t , t ′) ∧ (t = t ′ ∨ t > t ′))⇒ last(t) ∈ VER

= [by predicate calculus]

∀ t : T • (∀ t ′ : T • t = t ′ ∨ t > t ′)⇒ last(t) ∈ VER

= [by predicate calculus]

∀ t : T • (¬∃ t ′ : T • ¬(t = t ′ ∨ t > t ′))⇒ last(t) ∈ VER

= [by predicate calculus]

∀ t : T • (¬∃ t ′ : T • t , t ′ ∧ t ≤ t ′)⇒ last(t) ∈ VER

= [by predicate calculus]

∀ t : T | (¬∃ t ′ : T | t , t ′ • t ≤ t ′) • last(t) ∈ VER

= [by definition VER]

∀ t : T | (¬∃ t ′ : T | t , t ′ • t ≤ t ′) • last(t) ∈ {pass , inc, fail }

^ Soundness is stated as: if the test execution leads to a
fail verdict then the implementation does not conform to the specification. A CSP test
execution of a test TC with an implementation IUTCSP fails when the test execution
EX (IUTCSP ,TC) has the event fail as part of at least one of its traces.

Definition 6 Let IUTCSP be an implementation process, S the specification and TC
a test case process. Then TC is a sound test case if the following holds.

〈fail〉 ∈ traces(EX (IUTCSP ,TC) \ αIUTCSP
)⇒ ¬(IUTCSP cspio S)

A CSP test suite is sound if all its tests are also sound. The following theorem states
that a test case constructed from TC BUILDER is sound.

Theorem 3 Let S be a specification, ts a test scenario from S and IUTCSP an imple-
mentation model, such that αSc = ∅, αSi ⊆ αIUTCSP i and αSo ⊆ αIUTCSPo . If lt is an
output complete sequence of ts , then TC BUILDER(lt) is a sound test case.

Proof

= [Assumption]

〈fail〉 ∈ traces(EX (IUTCSP ,TC BUILDER(lt)) \ αIUTCSP
)

= [by definition of EX (.)]

〈fail〉 ∈ traces((IUTCSP |[αIUTCSP
]|TC BUILDER(lt)) \ αIUTCSP

)

= [by assumption αTC BUILDER ⊆ αIUTCSP
∪VER and definition P |[X |Y]| Q in

[15], page 68]

〈fail〉 ∈ traces((IUTCSP |[αIUTCSP
|αTC BUILDER(lt)]| TC BUILDER(lt)) \ αIUTCSP

)

= [by definition P \ X in [15], page 84; and from αTC BUILDER]

〈fail〉 ∈ traces((IUTCSP |[αIUTCSP
|αIUTCSP

∪VER]| TC BUILDER(lt)) �
(αIUTCSP

∪VER) − αIUTCSP
)

= [by set theory]

〈fail〉 ∈ traces((IUTCSP |[αIUTCSP
|αIUTCSP

∪VER]| TC BUILDER(lt)) � VER)

= [by definition traces(P |[X |Y]| Q) in [15], page 60]

〈fail〉 ∈ {s ∈ (αIUTCSP
∪VER)∗ | (s � αIUTCSP

) ∈ traces(IUT) ∧
(s � (αIUTCSP

∪VER)) ∈ traces(TC BUILDER(lt))} � VER

⇒ [by definition traces(TC BUILDER(lt)), and by hypothesis αIUTCSP
−VER = ∅]

∃ s : prefixes(ts); o ∈ αIUTCSPo | s = 〈get(1, ts), . . . , get(i , ts)〉 ∧ 1 ≤ i < #lt ∧
s a 〈o〉 < prefixes(ts) •
s a 〈o, fail〉 ∈ traces(EX (IUTCSP ,TC BUILDER(lt))) ∧
s a 〈o, fail〉 ∈ traces(TC BUILDER(lt)) ∧ s a 〈o〉 ∈ traces(IUTCSP) ∧
o < outsi+1

⇒ [by definition outi]

∃ s : prefixes(ts); o ∈ αIUTCSPo | s = 〈get(1, ts), . . . , get(i , ts)〉 ∧ 1 ≤ i < #lt ∧
s a 〈o〉 < prefixes(ts) •
s a 〈o, fail〉 ∈ traces(EX (IUTCSP ,TC BUILDER(lt))) ∧
s a 〈o, fail〉 ∈ traces(TC BUILDER(lt)) ∧ s a 〈o〉 ∈ traces(IUTCSP) ∧
o < out(S , s)

⇒ [by hypothesis ts ∈ traces(S) and definition out(.)]

∃ s : traces(S); o ∈ αIUTCSPo | s = 〈get(1, ts), . . . , get(i , ts)〉 ∧ 1 ≤ i < #lt ∧
s a 〈o〉 < prefixes(ts) •
s a 〈o, fail〉 ∈ traces(EX (IUTCSP ,TC BUILDER(lt))) ∧
s a 〈o, fail〉 ∈ traces(TC BUILDER(lt)) ∧ s a 〈o〉 ∈ traces(IUTCSP) ∧
o < out(S , s) ∧ o ∈ out(IUT , s)

⇒ [by predicate calculus]

∃ s : traces(S); o ∈ αIUTCSPo | o < out(S , s) ∧ o ∈ out(IUTCSP , s)

⇒ [by predicate calculus and set theory]

∃ s : traces(S) • out(IUTCSP , s) * out(S , s)

⇒ [by predicate calculus and set theory]

¬(∀ s : traces(S) • out(IUTCSP , s) ⊆ out(S , s))

⇒ [by definition cspio]

¬(IUTCSP cspio S)

^ To exemplify the construction of a sound test case, we assume the test scenario
UC1 ts1 and build the process TC1 = TC BUILDER (lt ts1), where lt ts1 =

〈(goToMsgCenter , ∅), (IMFolderIsDisp, {IMFolderIsDisp}), (goToInbox , ∅),
(inboxMsgsDisp, {inboxMsgsDisp}), (scrollToAMsg , ∅),
(msgHighlighted , {msgHighlighted }), (goToCSM , ∅),
(moveToIMOptDisp, {moveToIMOptDisp}), (selMoveToIMOpt , ∅),
(msgMovedToIMDisp, {msgMovedToIMDisp})〉. The resulting process is

TC1 = goToMsgCenter → Skip;
(IMFolderIsDisp → Skip � ANY (αUC1o − {IMFolderIsDisp},FAIL));
goToInbox → Skip;
(inboxMsgsDisp → Skip � ANY (αUC1o − {inboxMsgsDisp},FAIL));
scrollToAMsg → Skip;
(msgHighlighted → Skip � ANY (αUC1o − {msgHighlighted },FAIL));
goToCSM → Skip;
(moveToIMOptDisp → Skip � ANY (αUC1o − {moveToIMOptDisp},FAIL));
selMoveToIMOpt → Skip;
(msgMovedToIMDisp → PASS � ANY (αUC1o − {moveToIMOptDisp},FAIL));

According to Theorem 3 TC1 is a sound test case.

7 The ATG

Abstract Test Generator (ATG) is a tool that we have developed to implement the test
generation approach we propose. It constructs processes and refinements to be verified
by FDR, as well as produces test cases. Fig. 6 displays the internal information work-
flow used by the proposed tool for test case generation. ATG receives as inputs a system
specification process (SPEC) described in CSP, and a list of pseudo test purposes (PTP).

Fig. 6. Abstract Test Generator Tool

A pseudo test purpose (PTP) is a simpler representation of a test purposes. The aim
of a PTP is to make the test purpose specification more user friendly, hiding from the
user the underlying notation of CSP. Fig. 7 shows the pseudo test purposes PTP1 that
represents the test purposes TP1 from Section 5.

PTP1 = any .{y} → until .{z } → accept .1
| any .{z } → refuse .1
| not .{y , z } → start

Fig. 7. Pseudo test purpose

Each channel of a pseudo test purpose is mapped into a test purpose process, except
the channel start that is mapped into the test purpose process itself. Table 2 left-hand
column shows the pseudo test purpose channels, and the right-hand column shows the
test purpose process that represents the channel. The value v communicated by each
channel is the value for the parameter evset of the process on the right-hand column.
The value for the parameter next of the processes on the right-hand column is set auto-
matically.

Table 2. Pseudo test purpose vs. test purpose

Pseudo Test Purpose Channel Test Purpose Process

accept .{id } ACCEPT (id)
refuse .{id } REFUSE (id)

any .v ANY (...)
not .v NOT (...)

match .v MATCH (...)
matchs .v MATCHS (...)
except .v EXCEPT (...)
until .v UNTIL(...)

Furthermore, the tool receives the test generation criteria (GC). Since each refine-
ment checking retrieves the shortest test scenario, the GC information is useful to set
the number of test cases concerning the iterative process presented in Sect. 4.

Since ATG runs FDR in background, it can check classical properties of the specifi-
cation like absence of deadlock, livelock and nondeterministic behaviour. Furthermore,
it can verify the consistency of test purposes (if the scenario specified by the test pur-
pose can be found in the specification). Also, ATG uses FDR Explorer [4] to retrieve
from FDR the LTS representation of processes to produce a format for visualisation that
can be displayed by a freeware graph visualisation tool [22].

ATG was implemented using the Java 1.5 technology that enables it to run over
multiple platforms. Its server mode allows the user to run all the tool functionalities
remotely, freeing the user from having to interact with FDR, while executing it from a
desktop machine.

Case Study ATG has been applied to generate test cases in the context of mobile phone
applications. We briefly describe one case study performed to compare a test suite gen-
erated using ATG (TSA — Test Suite from ATG) with a test suite manually designed

(TSM — Test Suite Manually designed). Both test suites were generated for the same
Motorola mobile application, and were compared with respect to test suite size, code
coverage measured for test execution, bug detection rate and effort for design and exe-
cute the suites.

The selected application for the study was an SMS software used to compose, send
and manage short messages in a specific Motorola mobile phone. The functional be-
haviour of the application was specified using the use case format of [2]. A CSP speci-
fication, the main input for ATG, was automatically extracted from the use case specifi-
cation. Also, a pseudo test purpose was written for each software requirement to guide
ATG test generation. Then, the CSP test suite was translated to the test format of [?],
which is suitable for manual test execution. The effort to produce TSA was about 50%
of the effort to produce TSM, considering the construction of the use case specification.
The generation itself takes only a few seconds. Therefore, for generating additional test
cases, the gain of the automated generation would be much more significant.

The TSM included 84 test cases, while the TSA included 37 generated test cases.
This size difference is mainly related to the abstraction of the use case specification
used to obtain the CSP specification. The use case model had a high abstraction level
that yielded test cases in TSA with a higher level of abstraction than those in TSM. A
unique test case from TSA could be compared to several test cases from TSM.

Both TSM and TSA test cases where executed against the same IUT. The effort
to execute TSA was about 45% of the effort to execute TSM, and the bug detection
rate was exactly the same in both cases, with the detection of two bugs each. The IUT
software was instrumented to allow the code coverage tool to generate code coverage
analysis reports. Considering the same coverage metrics, TSA and TSM had, in average,
an equivalent coverage of the IUT.

8 Conclusions

The main contribution of this paper is a uniform strategy for generating sound test cases,
based on the cspio conformance relation, from test scenarios extracted from CSP test
models. All the elements of our approach are entirely characterised in terms of CSP
processes and refinement notions. We have shown how to specify test models both for
individual features and for feature interaction, from use case documents that are written
in a controlled natural language (CNL). Test scenarios are incrementally generated from
the test models as counter-examples of refinement verifications using the FDR tool; test
selection is captured by CSP processes based on the concept of test purpose.

Tretmans [20, 21, 19] outlines a formal testing theory and tool that is based on
IOLTS (Input-Output LTS) models and on the implementation relation named ioco.
Our relation cspio is similar to ioco; both use input and output events to define confor-
mance. However ioco is formulated in terms of IOLTS, while cspio is defined in terms
of the CSP denotational semantics. The relation ioco considers quiescence behaviours,
that we currently forbid by assuming that implementations are both input enabled and
output available; we plan to allow quiescence in a future work. Based on the ioco re-
lation, Jard and Jéron [6] present the TGV tool that is able to select test cases based
on test purposes and uses a test generation approach that is close to ours, but based on

IOLTS. Expressing test models (particularly feature interaction) and test purposes in a
process algebra has proved very convenient in our application domain.

Andrade et al. [1] made an alternative effort to capture the mobile devices appli-
cation domain based on LTS. This has demanded a strategy to deal with individual
features and a separate one to capture feature interaction. Our approach does not need
explicit generation algorithms, and deals uniformly with features and (flexible patterns
of) interactions.

Cavalcanti and Gaudel [3] stated the testability hypothesis for CSP and proposed
a characterization of a test generation approach proved to be complete with respect to
their implementation relation that is based on traces and failures refinement of CSP.
However, they do not address test purposes; also, their work does not distinguish inputs
and outputs, and does not propose an automatic approach to test generation.

Peleska and Siegel [13] present some implementation relations based on the seman-
tic models of CSP. Their definitions are based on several refinement relations that define
the observations of testing; however, unlike our approach, input and output are not ob-
servations. Scheneider [17] defines a partition that classifies refusable and non-refusable
events, and high-level and low-level events, for specifying fault-tolerance systems with
CSP. He defines two conformance relations and refinement is used to check whether
conformance holds, but no approach for test generation is proposed.

Based on our results on the formal composition of components and frameworks
[14] we plan to explore compositional test generation, which avoids the retesting of
already assembled components. We believe that this kind of application will emphasise
the distinguishing nature of our approach entirely based on a process algebra, where we
can make explicit the application architecture, including the interaction patterns among
components, unlike more operational models based on LTS or FSM.

Acknowledgements We would like to thank the feedback from the IFIP WG 2.3, from
the UK Motorola Labs, and from the members of the CIn-BTC Research Project. Also,
we want to thank Lars Frantzen for feedbacks in an earlier draft, and Jim Woodcock for
having suggested to us the relation (1).

References

1. A W. . Interruption Test Case Generation for Mobile Phone Applications (in
Portuguese). In XXV Brazilian Symposium in Computer Networks and Distributed Systems
(2007).

2. C, G., S, A. Formal Specification Generation from Requirement Documents.
Electron. Notes Theor. Comput. Sci. 195 (2008), 171–188. Best Paper Award.

3. C, A., G, M.-C. Testing for Refinement in CSP. In ICFEM (2007),
vol. 4789 of LNCS, Springer, pp. 151–170.

4. F, L., W, J. Fdr explorer. ENTCS 187 (2007), 19–34.
5. H, R. Checking states and transitions of a set of communicating finite state. Micro-

processors and Microsystems, Special Issue on Testing and testing techniques for real-time
embedded software systems 24, 9 (2001), 443– 452.

6. J, C., J́, T. TGV: theory, principles and algorithms: A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Int. J. Softw.
Tools Technol. Transf. 7, 4 (2005), 297–315.

7. K. B . Working together: Formal Methods and Testing. ACM Computing
Surveys (Dec. 2003).

8. L Y. . Test Purposes: Adapting the Notion of Specification to Testing. ASE 00
(2001), 127.

9. L̃ D., T D., B F. A. Nlforspec: Translating natural language descriptions
into formal test case specifications. In SEKE (2007), Knowledge Systems Institute Graduate
School, pp. 129–134.

10. F S. Failures-Divergence Refinement - FDR2 User Manual. Formal Systems
(Europe) Ltd, June 2005.

11. ISO 8807:1989. LOTOS : A formal description technique based on the temporal ordering of
observational behaviour. ISO, 1989.

12. M, R. Communication and Concurrency. Prentice Hall, 1989.
13. P, J., S, M. Test automation of safety-critical reactive systems. South African

Computer Journal, 19 (1997), 53–77.
14. R, R., S, A., M, A. Framework composition conformance via refinement

checking. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing
(2008), vol. 23, pp. 119–125.

15. R, A. W., H, C. A. R., B, R. The Theory and Practice of Concurrency.
Prentice Hall PTR, 1997.

16. S A. . Software test program: a software residency experience. In ICSE ’05: Pro-
ceedings of the 27th international conference on Software engineering (2005), ACM Press,
pp. 611–612.

17. S, S. Abstraction and testing. In FM ’99, Wold Congress on Formal Methods-Volume
I (1999), Springer-Verlag, pp. 738–757.

18. T D., L̃ D., B F. A. Motorola SpecNL: A Hybrid System to Generate NL
Descriptions from Test Case Specifications. HIS 0 (2006), 45.

19. T, J. Test Generation with Inputs, Outputs and Repetitive Quiescence. Software—
Concepts and Tools 17, 3 (1996), 103–120.

20. T, J. Testing concurrent systems: A formal approach. In CONCUR’99 (1999),
J. Baeten and S. Mauw, Eds., vol. 1664 of LNCS, Springer-Verlag, pp. 46–65.

21. T, J., B, A. Automatic testing with formal methods. In EuroSTAR’99:
7th European Int. Conference on Software Testing, Analysis & Review (November 8–12
1999), pp. 8–12.

22. W. yEd : Java Graph Editor. http://www.yworks.com/en/ products yed about.htm,
Aug. 2006.

