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Foreword  by the Workshop Co-Chairs 
 

Requirements Engineering and Software Architecture have become established areas of research, education and practice 
within the software engineering community. Requirements Engineering is concerned with identifying the purpose of a 
software system, and the contexts in which it will be used. Software architecture is concerned with the structure of software 
systems from large grained software components, including their properties, interactions, and patterns of combination.  
Significant advances have been made on both fronts. We have seen the development of techniques for eliciting and analysing 
stakeholders’ goals, modelling scenarios that characterise different contexts of use, the use of social techniques for studying 
organisations and work settings, and the use of formal methods for analysing safety and security requirements [1,2]. Using an 
architecture based approach, applications have been built which exhibit remarkable flexibility, demonstrate significant use of 
off-the-shelf components, leverage experience from related applications in the same problem domain, and are analysable 
earlier in their development than ever before [3]. 

Despite these advances, we still need frameworks, techniques and tools to support the systematic achievement of 
architectural objectives in the context of complex stakeholders’ relationships.  For example, although most agree that 
requirements that are free of architectural influence tend to be very difficult to elicit and analyse, little effort has been devoted 
to date to techniques for deriving architectural descriptions in concert with the requirements specifications. It also remains 
very difficult to show that a given software architecture satisfies a set of functional and non-functional requirements. This is 
somewhat surprising, as software architecture has long been recognised to have a profound impact on the achievement of 
non-functional goals ("ilities") such as availability, reliability, maintainability, safety, confidentiality, evolvability, and so 
forth. Therefore greater effort should be devoted to bridging the gap between Requirements Engineering research and 
Software Architecture  research. 

The goal of the workshop is to bring together professionals from academia and industry to exchange ideas and experiences 
to improve our understanding of  the relationship between requirements engineering and software architecture. Topics of 
interest include: 

 
• Requirements and Architecture modelling; 
• Deriving architectural description in concert with requirements specifications; 
• Tracing architectural decisions to requirements; 
• Systematic derivation of parameter settings from requirements; 
• Dealing with requirements and architectural evolution; 
• Formal foundations and analyses; 
• Object-Oriented Requirements to Object Oriented Architectures; 
• Agent-Oriented Requirements to Architectures; 
• Education and Training: skills and traits for good requirements engineers and software architects; 
• Case studies and empirical studies; 
• Tools/Environments for Requirements Engineers and Software Architects. 

 
A maximum of 30 participants attend the workshop, partially selected on the basis of the submitted material. Papers were 

reviewed by a programme committee in terms of their relevance to the aims of the workshop and technical content. The best 
papers of the workshop are to be invited to submit extended versions for a Special Issue of the Requirements Engineering 
Journal to be published in the Fall of 2001. 

The workshop features two invited speakers, Richard Taylor and John Mylopoulos, who present views on the interplay 
between software architecture and requirements engineering. The aim is to set the scene, indicating where we are, where we 
should be, where the hard problems are, and where the strong leverage points are.  

The workshop is an interactive forum. Accepted papers were made available electronically to all workshop participants 
before the workshop, so that presentations can be kept short. The presentation of selected papers is restricted to allow time for 
intensive discussions. At the end of the workshop there will be a general discussion, including a brainstorming session about 
areas or topics of research that the participants perceived as important. # 

A summary of the workshop discussions is to be published as a technical report and made electronically available in the 
organizers' web sites. It aims to highlight outstanding issues that should form a part of the forthcoming research agenda.     

For further details, please visit the  First International Workshop From Software Requirements to Architectures 
(STRAW´01)  website:   http://www.cin.ufpe.br/~straw01 
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We extend our sincerest thanks to all  members of the Programme Committee for their efforts. Moreover, we hope you 
enjoy and benefit from the STRAW´01  programme. 

  
                                                                                            Jaelson Castro  &   Jeff Kramer 
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Software Architectures as Social Structures 

 

  John Mylopoulos  
  University of Toronto, Canada  
  jm@cs.toronto.edu  
 
 

Abstract 
 

The explosive growth of the internet -- and a host of relevant technologies, such as the Web, eCommerce, peer-to-
peer computing, Application Service Providers and more -- is posing new challenges for Software Engineering research and 
practice. These application areas call for software architectures that are totally open and evolve over time to meet the needs 
of their users. 

 
We adopt the i* framework, originally intended as a modeling language for early requirements, to propose a 

social perspective on software architectures.According to this perspective, software is viewed as an evolving collection of 
actors (agents, positions or roles) who have associated goals and depend on other actors for the fulfillment of these goals. 
These dependencies can be set up at design time or run time. The presentation motivates our approach and sketches a 
process for generating a software architecture from a requirements specification (also modelled in i*). 

 
The presentation is based on on-going research with Jaelson Castro, Paolo Giorgini and Manuel Kolp. 
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Requirements engineering is *SO* twentieth century... 

Richard Taylor 
University of California, Irvinie, USA 

  
 

Abstract 

Ever since Watergate in the 70's the dictum "Follow the money" has led investigators to interesting places.  If we "follow the 
money" in the software development profession, does it lead us to careful requirements engineering? Or does it rather lead us 
to discussions of market share, time-to-market, "owning a market", and so on?  And when people set out to solve a problem 
or create a product, do they do that best by thinking carefully and abstractly about the goals, proceeding carefully until all the 
stakeholders are known, the constraints described, and the risks identified? Nuseibeh's "Twin Peaks" model starts us down an 
attractive road, interweaving requirements and architectures. I will argue a bit stronger position, that economic factors drive 
us further down the road, where domain expertise, building block components, and select architectural styles provide the 
leadership in system development ... and specification. 

Jaelson 
4



 
 

A Social Organization Perspective on Software Architectures 
 

Manuel Kolp 
Dept. of Computer Science 

University of Toronto 
10 King’s College Road 

Toronto M5S3G4, Canada 
mkolp@cs.toronto.edu 

 

Jaelson Castro 
Centro de Informática 

Universidade Federal de 
Pernambuco 

Av. Prof. Luiz Freire s/n 
Recife PE, Brazil 50732-970 

jbc@cin.ufpe.br 

John Mylopoulos 
Dept. of Computer Science 

University of Toronto 
10 King’s College Road 

Toronto M5S3G4, Canada 
jm@cs.toronto.edu

 
 

Abstract 
 

This paper proposes a set of concepts for describing a 
software architecture as a social organization. This social 
structure consists of actors who have goals to fulfil and 
social dependencies describing their obligations. The 
framework is an adaptation of i* [17] proposed as a 
modeling language for early requirements. Based on this 
framework, the paper advocates architectural styles for 
software which adopt concepts from organization theory 
and strategic alliances literature. The styles are modeled 
in i* and formalized in terms of Telos metaconcepts. Each 
proposed style is evaluated with respect to a set of 
software quality attributes, such as predictability, 
adaptability and openness. The use of these styles is 
illustrated and contrasted with two examples of software 
architectures reported in the literature. 
 
 
1. Introduction 
 

We are interested in narrowing the semantic gap 
between a software architecture and the requirements 
model from which it was derived. One way to achieve this 
is to adopt the same concepts for describing requirements 
and software architectures. This paper reports on an 
experiment to use concepts from i*, a modeling 
framework for early requirements, to model software 
architectures. 

i* offers concepts such as actor, goal, and social 
dependency intended to model social structures involving 
social actors, their goals and social inter-dependencies. To 
adopt this framework for software architectures, we first 
propose a set of architectural styles inspired by 
organizational theory and strategic alliance literature, and 
formalize these as Telos [9] metaconcepts. To guide the 
selection process among the styles, we evaluate them with 
respect to a number of software qualities. Finally, we 

illustrate their use by applying them to two examples of 
software architectures reported in the literature. 

This research is being conducted in the context of the 
Tropos project [1], which is developing a requirements-
driven methodology for software systems. 

Section 2 presents our organization-inspired 
architectural styles described in terms of the strategic 
dependency model from i* and specified in Telos. Section 
3 introduces a set of desirable software quality attributes 
for comparing them. Section 4 overviews a mobile robot 
and an e-business examples while Section 5 sketches the 
Tropos project within which this research has been 
conducted. Finally, Section 6 summarizes the 
contributions of the paper and points to further research. 
 
2. Organizational Styles 
 

Organizational theory (such as [7, 10]) and strategic 
alliances (e.g., [5, 16]) study alternatives for (business) 
organizations. These alternatives are used to model the 
coordination of business stakeholders -- individuals, 
physical or social systems -- to achieve common goals. 
Using them, we view a software system as a social 
organization of coordinated autonomous components (or 
agents) that interact in order to achieve specific, possibly 
common goals. We adopt (some of) the styles defined in 
organizational theory and strategic alliances to design the 
architecture of the system, model them with i*, and 
specify them in Telos [9]. 

In i*, a strategic dependency model is a graph, in 
which each node represents an actor, and each link 
between two actors indicates that one actor depends on 
another for something in order that the former may attain 
some goal.  We call the depending actor the depender and 
the actor who is depended upon the dependee.  The object 
around which the dependency centers is called the 
dependum. By depending on another actor for a 
dependum, an actor is able to achieve goals that it is 
otherwise unable to achieve, or not as easily or as well. At 
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the same time, the depender becomes vulnerable. If the 
dependee fails to deliver the dependum, the depender 
would be adversely affected in its ability to achieve its 
goals. 

The model distinguishes among four types of 
dependencies -- goal-, task-, resource-, and softgoal-
dependency -- based on the type of freedom that is 
allowed in the relationship between depender and 
dependee. Softgoals are distinguished from goals because 
they do not have a formal definition, and are amenable to 
a different (more qualitative) kind of analysis [2]. 

For instance, in the structure-in-5 style (Figure 1),  the 
coordination, middle agency and support actors depend on 
the apex for strategic management purposes. Since the 
goal Strategic Management is not well-defined, it is 
represented as a softgoal (cloudy shape). The middle 
agency actor depends on both the coordination and 
support actors respectively through goal dependencies 
Control and Logistics represented as oval-shaped icons. 
The operational core actor is related to the coordination 
and support actors respectively through the Standardize 
task dependency and the Non-operational service resource 
dependency.   

In the sequel we briefly discuss ten common 
organizational styles. 

The structure-in-5 (Figure 1) style consists of the 
typical strategic and logistic components generally found 
in many organizations. At the base level one finds the 
operational core where the basic tasks and operations -- 
the input, processing, output and direct support 
procedures associated with running the system -- are 
carried out. At the top of the organization lies the apex 
composed of strategic executive actors. 

  

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

 
Figure 1. Structure-in-5. 

 
Below it sit the control/standardization, management 

components  and logistics, respectively coordination,  
middle agency and  support. The coordination component 

carries out the tasks of standardizing the behavior of other 
components, in addition to applying analytical procedures 
to help the system adapt to its environment. Actors joining 
the apex to the operational core make up the middle 
agency. The support component assists the operational 
core for non-operational services that are outside the basic 
flow of operational tasks and procedures. 

Figure 2 specifies the structure-in-5 style in Telos [9]. 
Telos is a language intended for modeling requirements, 
design, implementation and design decisions for software 
systems. It provides features to describe metaconcepts that 
can be used to represent the knowledge relevant to a 
variety of worlds – subject, usage, system, development 
worlds -  related to a software system. Our styles are 
formulated as Telos metaconcepts, primarily based on the 
aggregation semantics for Telos presented in [8]. 

The structure-in-5 style is then a metaclass -  
StructureIn5MetaClass -  aggregation of five (part) 
metaclasses: ApexMetaClass, CoordinationMetaClass, 
MiddleAgencyMetaClass, SupportMetaClass and  
OperationalCoreMetaClass, one for each actor 
composing the structure-in 5 style depicted in Figure 1. 
Each of these five components exclusively belongs 
(exclusivePart) to the composite (StructureIn5MetaClass) 
and their existence depend (dependentPart) on the 
existence of the composite. A structure-in-5 specific to an 
application domain will be defined as a Telos class, 
instance of StructureIn5MetaClass (See Section 4). 
Similarly each structure-in-5 component specific to a 
particular application domain will be defined as a class, 
instance of one of the five StructureIn5Metaclass 
components. 

 
TELL CLASS StructureIn5MetaClass 

IN Class WITH /*Class is here used as a MetaMetaClass*/  
attribute 

  name: String 
part, exclusivePart, dependentPart 

 ApexMetaClass: Class 
 CoordinationMetaClass: Class 
 MiddleAgencyMetaClass: Class 
 SupportMetaClass: Class 
 OperationalCoreMetaClass: Class 

END StructureIn5MetaClass 

Figure 2. Structure-in-5 in Telos. 
 

Figure 3 formulates in Telos one of these five 
structure-in-5 components: the coordination actor. 
Dependencies are described following Telos 
specifications for i* models [17]. The coordination actor 
is a metaclass, CoordinationMetaclass. According to 
Figure 1, the coordination actor is the dependee of a task 
dependency StandardizeTask and a goal dependency 
ControlGoal, and the depender of a softgoal dependency 
StrategicManagementSoftGoal. 
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TELL CLASS CoordinationMetaclass 
IN Class WITH /*Class is here used as a MetaMetaClass*/ 

attribute 
name: String 

taskDepended 
 s:StandardizeTask  

WITH depender 
OperationalCoreMetaClass: Class 

END 
goalDepended 

 c:ControlGoal  
WITH depender 

MiddleAgencyMetaClass: Class 
END 

softgoalDepender 
 s:StrategicManagementSoftGoal  

WITH dependee 
ApexMetaClass: Class 

END 
END CoordinationMetaclass 
 

Figure 3. Structure-in-5 coordination actor in Telos. 

 
The flat structure has no fixed structure and no 

control of one actor over another is assumed. The main 
advantage of this architecture is that it supports autonomy, 
distribution and continuous evolution of an actor 
architecture. However, the key drawback is that it requires 
an increased amount of reasoning and communication by 
each participating actor. 

The pyramid style is the well-known hierarchical 
authority structure exercised within organizational 
boundaries. Actors at the lower levels depend on actors of 
the higher levels. The crucial mechanism is direct 
supervision from the apex. Managers and supervisors are 
then only intermediate actors routing strategic decisions 
and authority from the apex to the operating level. They 
can coordinate behaviors or take decisions by their own 
but only at a local level. This style can be applied when 
deploying simple distributed systems.  

Moreover, this style encourages dynamicity since 
coordination and decision mechanisms are direct, not 
complex and immediately identifiable. Evolvability and 
modifiability can thus be implemented in terms of this 
style at low costs. However, it is not suitable for huge 
distributed systems like multi-agent systems requiring 
many kinds of agents. Even tough, it can be used by these 
systems to manage and resolve crisis situations. For 
instance, a complex multi-agent system faced with a non-
authorized intrusion from external and non trustable 
agents could dynamically, for a short or long time, decide 
to migrate itself into a pyramid organization to be able to 
resolve the security problem in a more efficient way. 

The joint venture style (Figure 4) involves agreement 
between two or more principal partners to obtain the 
benefits of larger scale, partial investment and lower 
maintenance costs. Through the delegation of authority to 
a specific joint management actor that coordinates tasks 
and operations and manages sharing of knowledge and 

resources they pursue joint objectives and common 
purpose. Each principal partner can manage and control 
itself on a local dimension and interact directly with other 
principal partners to exchange, provide and receive 
services, data and knowledge. However, the strategic 
operation and coordination of such a system and its 
partner actors on a global dimension are only ensured by 
the joint management actor. Outside the joint venture, 
secondary partners supply services or support tasks for the 
organization core. 

 

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Ressource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

 
Figure 4. Joint Venture. 

 
The takeover style involves the total delegation of 

authority and management from two or more partners to a 
single collective takeover actor. It is similar in many ways 
to the joint venture style. The major and crucial difference 
is that while in a joint venture identities and autonomies of 
the separate units are preserved, the takeover absorbs 
these critical units in the sense that no direct relationships, 
dependencies or communications are tolerated except 
those involving the takeover. 

The arm’s-length style implies agreements between 
independent and competitive but partner actors. Partners 
keep their autonomy and independence but act and put 
their resources and knowledge together to accomplish 
precise common goals. No authority is delegated or lost 
from a collaborator to another. 

The bidding style (Figure 5) involves competitivity 
mechanisms and actors behave as if they were taking part 
in an auction. The auctioneer actor runs the show, 
advertises the auction issued by the auction issuer, 
receives bids from bidder actors and ensure 
communication and feedback with the auction issuer. 

The auctioneer might be a system actor that merely 
organizes and operates the auction and its mechanisms. It 
can also be one of the bidders (for example selling an item 
which all other bidders are interested in buying). The 
auction issuer is responsible for issuing the bidding.  
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Figure 5. Bidding. 

 
The hierarchical contracting style (Figure 6) 

identifies coordinating mechanisms that combine arm’s-
length agreement features with aspects associated with 
pyramidal authority. Coordination mechanisms developed 
to manage arm’s-length (independent) characteristics 
involve a variety of negotiators, mediators and observers 
at different levels handling conditional clauses to monitor 
and manage possible contingencies, negotiate and resolve 
conflicts and finally deliberate and take decisions. 
Hierarchical relationships, from the executive apex to the 
arm’s-length contractors (top to bottom) restrict autonomy 
and underlie a cooperative venture between the 
contracting parties. Such dual and admittedly complex 
contracting arrangements can be used to manage 
conditions of complexity and uncertainty deployed in 
high-cost-high-gain (high-risk) applications. 
 

Controller

Negociator Deliberator

Routing Brokering

Observer

Executive

Mediator

Conflict
Solving

Contractor_1 Contractor_2 Contractor_3 Contractor_n

Authority
Strategic
Decisions

Coordinate

Monitoring Matching

Raw
Data

 
Figure 6.  Hierarchical Contracting. 

 
The vertical integration style merges, backward or 

forward, one or more system actors engaged in related 
tasks but at different stages of a production process. A 
merger synchronizes and controls interactions between 
each of the participants that can be considered 
intermediate workshops. Vertical integrations take place 
between exchange partners, actors symbiotically related. 

The co-optation style (Figure 7) involves the 
incorporation of representatives of external systems into 
the decision-making or advisory structure and behavior of 
an initiating organization. By co-opting representatives of 
external systems, organizations are, in effect, trading 
confidentiality and authority for resource, knowledge 
assets and support. The initiating system, and its local 
contractors, has to come to terms with what is doing on its 
behalf; and each co-optated actor has to reconcile and 
adjust his own views with the policy of the system he has 
to communicate. 

 

Knowledge
Sharing

Support

Cooptated_1

Contractor_1 Contractor_n

Services
Foreign

Provides
Assets Cooptated_2 Cooptated_n

Ressource
External

 
Figure 7. Cooptation. 

 
3. Evaluating Architecture 

 
The organizational styles defined in Section 2 can be 

evaluated and compared using the following software 
quality attributes identified for architectures involving 
coordinated autonomous components (e.g., Web, internet, 
agent or peer-to-peer software systems) : 

1 - Predictability [15]. Autonomous components like 
agents have a high degree of autonomy in the way that 
they undertake action and communication in their 
domains. It can be then difficult to predict individual 
characteristics as part of determining the behavior of a 
distributed and open system at large. 

2 - Security. Autonomous components are often able 
to identify their own data sources and they may undertake 
additional actions based on these sources [15]. Protocols 
and strategies for verifying authenticity for these data 
sources by individual components are an important 
concern in the evaluation of overall system quality since, 
in addition to possibly misleading information acquired by 
components, there is the danger of hostile external entities 
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spoofing the system to acquire information accorded to 
trusted domain components.  

3 - Adaptability. Components may be required to 
adapt to modifications in their environment. They may 
include changes to the component’s communication 
protocol or possibly the dynamic introduction of a new 
kind of component previously unknown or the 
manipulations of existing components.  

- Coordinability. Autonomous components are not 
particularly useful unless they are able to coordinate with 
other components. This can be realized in two ways:  

4 - Cooperativity. They must be able to coordinate 
with other entities to achieve a common purpose. 

5 - Competitivity. The success of one component 
implies the failure of others. 

6 - Availability. Components that offer services to 
other components must implicitly or explicitly guard 
against the interruption of offered services. Availability 
must actually be considered a sub-attribute of security [2]. 
Nevertheless, we deal with it as a top-level software 
quality attribute due to its increasing importance in multi-
agent system design. 

7 - Integrity. A failure of one component does not 
necessarily imply a failure of the whole system. The 
system then needs to check the completeness and the 
accuracy of data, information and knowledge transactions 
and flows. To prevent system failure, different 
components can have similar or replicated capabilities and 
refer to more than one component for a specific behavior.  

8 - Modularity [14] increases efficiency of task 
execution, reduces communication overhead and usually 
enables high flexibility. On the other hand, it implies 
constraints on inter-module communication.  

9 - Aggregability. Some components are parts of 
other components. They surrender to the control of the 
composite entity. This control results in efficient tasks 
execution and low communication overhead, however 
prevents  the system to benefit from flexibility.  

 
 1 2 3 4 5 6 7 8 9 

Flat -- -- -   + + ++ - 

Struct-5 + +  + - + ++ ++ ++ 

Pyramid ++ ++ + ++ - + -- -  

Joint-Vent + + ++ + - ++  + ++ 

Bid -- -- ++ - ++ - -- ++  

Takeover ++ ++ - ++ -- +  + + 

Arm’s-Lgth - -- + - ++ -- ++ +  

Hierch Ctr   + + + +  + + 

Vert Integr + + - + - + -- -- -- 

Coopt - - ++ ++ + -- - --  

Table 1.  Correlation catalogue. 

Table 1 summarizes the correlation catalogue for the  
organizational patterns and top-level quality attributes we 
have considered. Following notations used by the NFR 
(non functional requirements) framework [2], +, ++, -, --, 
respectively model partial/positive, sufficient/positive, 
partial/negative and sufficient/negative contributions. 
 
4. Examples 
 

To motivate our organizational styles, we consider two 
application domains where distributed and open 
architectures (e.g., Web, internet, agent or peer-to-peer 
software systems) are becoming increasingly important: 
mobile robots and e-business systems.  

We first consider the mobile robot example presented 
in [13]. That case study describes notably the layered 
architecture (Figure 8) implemented in the Terregator and 
Neptune robots and used more recently to design the 
architecture of the Xavier office delivery robot [11]. 

 

 
Figure 8. Classical mobile robot layered architecture. 

 
According to [13] at the lowest level, reside the robot 

control routines (motors, joints,...). Levels 2 and 3 deal 
with the input from the real world. They perform sensor 
interpretation (the analysis of the data from one sensor) 
and sensor integration (the combined analysis of different 
sensor inputs). Level 4 is concerned with maintaining the 
robot's model of the world. Level 5 manages the 
navigation of the robot. The next two levels, 6 and 7, 
schedule and plan the robot's actions. Dealing with 
problems and replanning is also part of the level-7 
responsibilities. The top level provides the user interface 
and overall supervisory functions. 
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The following software quality attributes are relevant 
for the robot's architecture [13]: Cooperativity, 
Predictability, Adaptability, Integrity. Take for instance, 
consider Cooperativity and Predictability.  

Cooperativity: the robot has to coordinate the actions 
it  undertakes to achieve its designated objective with the 
reactions forced on it by the environment (e.g., avoid an 
obstacle). The idealized layered architecture (Figure 8) 
implemented on some mobile robots does not really fit the 
actual data and control-flow patterns [13]. The layered 
architecture style suggests that services and requests are 
passed between adjacent layers. However, data and 
information exchange is actually not always straight-
forward. Commands and transactions may often need to 
skip intermediate layers to establish direct 
communication. A structure-in-5 proposes a more 
distributed architecture allowing more direct interactions 
between component.   

Another recognized problem is that the layers do not 
separate the data hierarchy (sensor control, interpreted 
results, world model) from the control hierarchy (motor 
control, navigation, scheduling, planning and user-level 
control). Again the structure-in-5 could better differentiate 
the data hierarchy - implemented by the operational core, 
and support components - from the control structure – 
implemented by the operational core, middle agency and 
strategic apex as will be described in Figure 9. 

Adaptability: application development for mobile 
robots frequently requires customization, experimentation 
and dynamic reconfiguration. Moreover, changes in tasks 
may require regular modification. In the layered 
architecture, the interdependencies between layers prevent 
the addition of new components or deletion of existing 
ones. The structure-in-5 style separates independently 
each typical component of an organizational structure but 
a joint venture isolating components and allowing 
autonomous and dynamic manipulation should be a better 
candidate. Partner components, except the joint manager, 
can be added or deleted in a more flexible way. 

Figure 9 depicts a mobile robot architecture following 
the structure-in-5 style from Figure 1. The control 
routines component is the operational core managing the 
robot motors, joints, etc. Planning/Scheduling is the 
coordination component scheduling and planning the 
robot’s actions. The real world interpreter is the support 
component composed of two sub-components: Real world 
sensor accepts the raw input from multiple sensors and 
integrates it into a coherent interpretation while World 
Model is concerned with maintaining the robot’s model of 
the world and monitoring the environment for landmarks. 
Navigation is the middle agency component, the central 
intermediate module managing the navigation of the 
robot. Finally, the user-level control is the human-oriented 
strategic apex providing the user interface and overall 
supervisory functions. 
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Figure 9. A structure-in-5 mobile robot architecture. 

 
Figure 10 formulates the media robot structure-in-5 in 

Telos.  MobileRobotClass is a Telos class, instance of the 
StructureIn5Metaclass specified in Figure 2. This 
aggregation is composed of  five exclusive and dependent 
parts ControlRoutinesClass, RealWorldInterpreterClass, 
NavigationClass, PlanningClass and UserLevelControl-
Class, each of them is instance of one metaclass, 
component of StructureIn5MetaClass.  
 
TELL CLASS MobileRobotClass 

IN StructureIn5MetaClass WITH 
attribute 
  name: String 
part, exclusivePart, dependentPart 
 ControlRoutinesClass: OperationalCoreMetaClass 
 RealWorldInterpreter: SupportMetaClass 
 NavigationClass: MiddleAgencyMetaClass 
 PlanningClass: CoordinationMetaClass 
 UserLevelControl: ApexMetaClass 

END MobileRobotClass 
 
Figure 10. Mobile robot structure-in-5 architecture in Telos. 

 
Our second example is a user-to-online-buying 

application. E-business systems are designed to implement 
“virtual enterprises”. By now, software architects have 
developed catalogues of web architectural styles (e.g., 
[3]). Some most common styles are the Thin Web Client, 
Thick Web Client and Web Delivery. These architectural 
styles focus on web concepts, protocols and underlying 
technologies but not on business processes nor non 
functional requirements of the application. As a result, the 
organization of the architecture is not described nor the 
conceptual high-level perspective of the e-business 
application. The following requirements for a business-to-
consumer architecture could be stated according [1]: 
Security, Availability and Adaptability.  
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Adaptability (decomposed into Updatability and 
Maintainbility) deals with the way the system can be 
designed using generic mechanisms to allow web pages 
and user interfaces to be dynamically and easily changed. 
Indeed, information content and layout need to be 
frequently refreshed and updated to give correct 
information to customers or simply be fashionable for 
marketing reasons.  

Availability (decomposed into Usability, Integrity and 
Response Time): Network communication may not be 
very reliable causing sporadic loss of the server. There 
should be concerns with the capability of the e-business 
system to do what needs to be done, as quickly and 
efficiently as possible: in particular with the ability of the 
system to respond in time to client requests for its 
services. It is also important to provide the customer with 
a usable application to be usable, i.e., comprehensible at 
first glimpse, intuitive and ergonomic. Equally strategic to 
usability concerns is the portability of the application 
across browser implementations and the quality of the 
interface.  

Security (decomposed into Authorization and 
Confidentiality): Clients, especially those on the internet 
are, like servers, at risk in web applications. It is possible 
for web browsers and application servers to download or 
upload content and programs that could open up the client 
system to crackers and automated agents all over the net. 
JavaScript, Java applets, ActiveX controls, and plug-ins 
all represent a certain degree of risk to the system and the 
information it manages.  

Figure 11 suggests a possible assignment of system 
responsibilities, based on the joint venture architectural 
style for such a e-business application. The system is 
decomposed into three principal partners (Store Front, 
Billing Processor and Back Store) controlling themselves 
on a local dimension and exchanging, providing and 
receiving services, data and resources with each other.  

Each of them delegates authority to and is controlled 
and coordinated by the joint management actor (Joint 
Manager) managing the system on a global dimension. 
Store Front interacts primarily with Customer and 
provides her with a usable front-end web application. 
Back Store keeps track of all web information about 
customers, products, sales, bills and other data of strategic 
importance to Media Shop. Billing Processor is in charge 
of the secure management of  orders and bills, and other 
financial data; also of interactions to Bank Cpy. Joint 
Manager manages all of them controlling security gaps, 
availability bottlenecks and adaptability issues. 

To accommodate the responsibilities of Store Front, 
we introduce Item Browser to manage catalogue 
navigation, Shopping Cart to select and custom items, 
Customer Profiler to track customer data and produce 
client profiles, and On-line Catalogue to deal with digital 
library obligations. To cope with the identified software 

quality attributes (Security, Availability and Adaptability), 
Joint Manager is further refined into four new system sub-
actors Availability Manager, Security Checker and 
Adaptability Manager each of them assuming one of the 
main softgoals (and their more specific subgoals) and 
observed  by  a Monitor.  Further refinements are shown 
on Figure 11. 

 

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Information
Cart

Delivery
Processor

Processor
Statistics

Integrity

Usability

Order
Processor

Confiden-
tiality

Detail
Delivery

Information
Billing

Profile
Customer

Selected
Items

Ratings

Updatability

Accounting
Processor

Check
Out

Authori-
zation

Security
Checker

Response
time

Payment
Request

Front
Store

Catalogue
On-line

Consult
Catalogue

Item
Select

Invoice
Processor

ability
Adapt-

Manager

Avail-
ability

Manager

Processor
Billing

Store
BackJoint

Manager

Invoice
Process

Maintain-
ability

Monitor

Observe

 
Figure 11. An  e-commerce system joint venture 

architecture. 
 

5. A Requirements-Driven Methodology  
 

This research is conducted in the context of Tropos 
[1], a software system development methodology which is 
founded on the concepts of actor and goal. Tropos is 
intended as a seamless methodology which describes in 
terms of the same concepts the organizational 
environment within which a system will eventually 
operate, as well as the system itself. The proposed 
methodology supersedes traditional development 
techniques, such as structured and object-oriented ones in 
the sense that it is tailored to systems that will operate 
within an organizational context and is founded on 
concepts used during early requirements analysis. To this 
end, we adopt the concepts offered by i* [17], a modeling 
framework offering concepts like actor, agent, position 
and role, as well as social dependencies among actors, 
including goal, softgoal, task and resource ones. 

Tropos spans four phases of software development: 

- Early requirements, concerned with the 
understanding of a problem by studying an organizational 
setting; the output is an organizational model which 
includes relevant actors, their goals and dependencies. 
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- Late requirements, in which the system-to-be is 
described within its operational environment, along with 
relevant functions and qualities. 

- Architectural design, in which the system's global 
architecture is defined in terms of subsystems, 
interconnected through data, control and dependencies.  

- Detailed design, in which behaviour of each 
architectural component is defined in further detail. 
 
 

6. Conclusion 
 

The paper proposes a set of concepts for specifying 
software architectures which is inspired by requirements 
modeling research. As such, we believe that our proposal 
narrows the gap between a requirements specification and 
the software architecture to be produced from it. The 
software architectures produced within our framework are 
intentional in the sense that components have associated 
goals that are supposed to fulfil. The architectures are also 
social in the sense that each component has 
obligations/expectations towards/from other components. 
Obviously, such architectures are best suited to open, 
dynamic and distributed applications, such as those that 
are becoming prevalent with Web, internet, agent, and 
peer-to-peer software technologies. 

The research reported here is still in progress. We are 
working on formalizing precisely the styles that have been 
identified, as well as formalizing the sense in which a 
particular architecture is an instance of such a pattern.  

The organizational styles we have described will 
eventually define a software architectural macrolevel. At a 
micro level we will be focusing on the notion of patterns. 
Many existing patterns can be incorporated into system 
architecture, such as those identified in [4]. For distributed 
and open systems characteristics, patterns like the broker, 
matchmaker, embassy, mediator, wrapper are more 
appropriate [6, 15]. Another direction for further work is 
to relate the architectural styles proposed in this work to 
extentional, classical  architectural components  such as 
(software) components, ports, connectors, interfaces, 
libraries and configurations [12].  
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Abstract 
 
Today's requirements engineering approaches focus on 
notation and techniques for modeling the intended 
functionality and qualities of a software system. Little 
attention has been given to systematically understanding 
and modeling the relationships between business goals and 
system qualities, and how these goals are met during 
architectural design. In particular, modeling must 
encompass changes to business goals over time and their 
effects upon a system's architecture. This paper reports on 
a case study, performed at a telecommunication company, 
that illustrates the decision-making process regarding 
architectural changes introduced into an existing switching 
system product. A notation including goals, strategic 
agents and intentional dependency relationships is used to 
support the architectural modeling and reasoning.  
 
Keywords: 
Goal, architecture, non-functional requirement, architect-
ural evolution, knowledge-based design 
 
1. Introduction 
During architectural design, many of the quality aspects of 
a system are determined. System qualities are often 
expressed as non-functional requirements, also called 
quality attributes [1,2]. These are requirements such as 
reliability, usability, maintainability, cost, competitiveness, 
time to market and the like. Many of these originate at the 
business level, and are better viewed as business goals. 
Achieving business goals is crucial for system success. As 
business goals change, the system architecture needs to 
evolve to ensure continued satisfaction of business goals. 
Therefore, a systematic modeling framework needs to 
support linking business goals to architectural design.  

Goal-oriented approaches, such as the NFR framework 
[3,4,5] that treats non-functional requirements as goals to 
be achieved during the design process, took a significant 
step in making explicit the relationships between quality 
requirements and design decisions. The NFR framework 
uses such goals to drive design [6], to support architectural 
design [7,8], and to deal with change [9]. While providing a 
systematic way to deal with the relationships between 
quality requirements and design, this approach has only 

limited support for dealing with the functional and 
structural aspects of the system under development. More 
recent approaches [8, 10] make a step to further incorporate 
functional and structural aspects into the design process 

This paper proposes a strategic agent-oriented and goal-
oriented approach that systematically relates business goals 
to architectural design decisions and architectural structures 
during software development and evolution.  

This approach emphasizes goal modeling based on the 
observations that business goals that represent or give rise 
to non-functional requirements predominate during the 
architectural design deliberation process, and that changes 
in business goals may create a need to reevaluate and 
evolve the architectures of software systems. Goals serve as 
a guide in the search for design alternatives, and serve as 
criteria for choosing among them. 

This approach uses the agent concept to model human 
organizations as well as technical components. The 
rationale for using agents for modeling social concepts is 
based on the observation that different stakeholders within 
the development and deployment organizations may have 
different business goals that they may wish to pursue. 
These differences may give rise to conflicting interests and 
rationales. By linking stakeholder goals to the design 
decision-making process, it becomes possible to express the 
positive and negative impacts of design decisions upon 
those goals during software development and evolution [8]. 
Agents enable the various interests within an organization 
to be expressed.  

The rationale for using agents for modeling technical 
concepts is based on the observation that the computational 
elements within coarse-grained software structures, not 
unlike those within organizational structures, represent 
focal points for intentional properties, such as design goals 
and capabilities. Agent concepts lend themselves well to 
modeling and reasoning about the distribution of 
capabilities and allocation of responsibilities within a 
software system, and to show how computational elements 
are intended to contribute to the overall goals and 
objectives of the system and the business organization.  

The approach uses the notion of strategic agents [15,16] 
based on the observation that designers of subsystems, 
concerned with achieving intended design goals, are at the 
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same time concerned with avoiding or at least mitigating 
vulnerabilities that might be imposed on them by design 
decisions taken within other subsystems. This approach 
models such vulnerabilities, which designers negotiate 
among themselves during the design process, and 
highlights how others are expected to contribute in 
achieving their respective subsystem design goals.  

The approach is process-oriented, as it focuses on 
supporting an iterative decision-making process during 
design. Design goals are iteratively "reduced" to runtime 
structures. This is based on the observation that designers 
establish and refine architectural structures in an iterative 
manner, where structures first introduced establish coarse-
grained partitioning of responsibilities, and iteratively 
refine to structures that are sufficiently fine-grained to 
guide implementation of the system.  

Finally, based on the observation that designers often 
reapply previously known design solutions to achieve 
business- and system-related goals, this approach 
emphasizes the need to support capturing, generalizing and 
reapplying design knowledge. Previous design solutions 
can be sought, based on goals they met, tradeoffs they 
made, or system structures they created. This supports a 
knowledge-based approach to design.  

The next section describes the modeling approach. Section 
three introduces the case study. Section four illustrates the 
modeling approach using the case study. Section five 
discusses the case study results, while section six concludes 
and points to future work.  

2. An agent & goal-oriented approach 

In order to relate business goals to the architectural 
decision-making process, and to the architectural structures 
during design, the modeling approach proposes the 
following main categories of features. Each category is 
represented as a separate view. All views are iteratively 
constructed during analysis and design.  

• The design process view expresses how business goals 
relate to architectural choices and how changes in 
business goals invalidate architectural choices, and 
provides the basis for removing them to choose among 
alternative design options. This includes support for 
expressing alternative design paths, and relates 
alternative choices to the business and system goals 
that are traded-off against each other. 

• The structural view provides an architectural 
description during design that expresses the principal 
roles played by architectural design elements within a 
system, and how roles are composed during the design 
process to arrive at the system design. Architectural 
elements are characterized by their capabilities, their 
expectations of other elements, and how they 
contribute in achieving system- and business-related 

goals. The notation of this view is taken from the 
strategic dependency model of the i* framework [15]. 

This view provides architectural descriptions of the 
system at several levels of abstraction, and how these 
are related to each other during the design process. 
This includes expressing architectural structures at 
different stages of completion, together with a 
description of where architectural structures need 
further refinement through design decision-making. 

• The organizational view identifies stakeholders and 
their goals, and expresses how they depend on each 
other and on the emerging system design to achieve 
their goals. This includes support for deducing during 
the design process how, and upon whom, design 
choices have an effect. Due to space limitations, this 
view is not diagrammed in this paper. 

This approach also provides knowledge-based support by 
enabling capturing, storage, retrieval and guidance in 
reapplying relationships between goals and design 
elements, when similar goals need to be met during future 
design efforts.  

The organizational view is used to capture the pertinent 
stakeholders and their business and system related goals. 
Goals related to functional abilities provide the basis for 
system requirements, while goals related to business and 
system qualities provide the basis for non-functional 
requirements. Goals from the organizational view can be 
used as a starting point when constructing the design 
process view.   

The design process view is used to construct a goal graph 
during the development process. The goal graph is used to 
search for and generate alternative design solutions. Goals 
denoting functional abilities are refined to alternative 
design options. Goals denoting non-functional requirements 
(called softgoals) are used to systematically drive the 
search for alternative solutions and to determine how each 
alternative solution relates to pertinent business- and 
system-related qualities, and to their respective 
stakeholders described in the organizational view.  

The structural view is constructed in accordance with 
refinements of the goal graph. Existing or new design 
elements introduced within the structural view are related 
to architectural decisions described in the goal graph. 
Alternative refinements provide the basis for searching and 
identifying refinements within the goal graph.  

3. The case study introduced 

The case study was performed during the fall of 1999 at a 
multi-national telecommunication company. We studied a 
project that intended to utilize WAP/WML1 technology to 

                                                 
1 WAP - Wireless Application Protocol, WML - Wireless Markup 
Language 
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provide Internet browsing and service provision capabilities 
to telephone sets 2 , which would require architectural 
changes within their "flagship" switching system.  

 

Figure 1: Telephone system architecture 
Figure 1 shows the principal architectural elements of the 
telephone system analyzed during this study. The call 
control subsystem is responsible for all aspects of a 
telephone session:  establishing calls; enabling features 
such as call forwarding, call waiting and the like; and 
terminating calls. All these are implemented by the "phone" 
process within the call control subsystem. Call control is 
also responsible for providing to users the set-up 
functionality for all desired services and features of the 
telephone set. The "setup" process within the call control 
subsystem implements this function. Call control is 
considered the main user application running within the 
switching system. Figure 1 also shows the peripheral 
component, which is a proprietary hardware device that 
connects proprietary telephone sets to the switching 
system; and the virtual peripheral components, which is 
software on standard PC-based hardware that emulates a 
peripheral device for "intelligent" telephone sets. These 
intelligent telephone sets are connected through a standard 
IP-based environment (such as an in-house LAN) to the 
virtual peripheral. The principal architectural question was 
to find where to place the WML browser component within 
the components or subsystems of the current telephone 
system architecture. 
 

1. Within call control  
2. Within the virtual peripheral3 
3. Within the "intelligent" telephone set 

 
It was assumed that the WML browser would be one of 
many future applications that would be made available on 
the telephone sets. The question discussed, therefore, was 
to find where future applications would reside within the 
telephone system, and what component or subsystem would 

                                                 
2 Although WAP is used for mobile devices, the project considered its use 
for their non-mobile telephone sets.  
3 The “regular" peripheral, and the "dumb" phone devices did not support 
the addition of browser software. 

control what application would interact at what time with 
the telephone set.  
 
Figure 2 shows how moving from old to new business 
goals relates to the systems’ architecture evolution path. In 
particular it shows: 
• How business goals impact the architecture of a 

software system. This is shown by the impact links 
(straight arrows). 

• How the current architecture may evolve to the 
different alternative architectures, each providing 
different support for adding and controlling new 
applications. This is shown through architectural 
evolution links (curved arrows).  

• How alternative architectures resemble specializations 
of a common architectural pattern. This is shown 
through inheritance links (dotted arrows).  

 
The "curved" links between the architectural alternatives in 
figure 2 show how "far" the proposed alternative 
architectures evolve away from the current set of business 
goals, toward the ideal appliance-based architecture that 
best achieves the new set of business goals.  

 

Figure 2: Architectural evolution paths 

4. Illustrating the modeling approach 
Figure 3 shows part of a goal graph produced during the 
case study. In the top half of the diagram are pertinent 
business goals that were voiced by stakeholders. The 
bottom half of the diagram shows design goals, and the 
architectural solution elements proposed.  
 
The design goal service_creation_infrastructure_be-
_WML_based, shown by the oval modeling element, 
denotes the overall functional goal to provide the current 
telephone system with a service creation infrastructure 
based on WAP/WML technology. This design goal is 
decomposed, through means-ends links, into the three 
alternative architectural design solutions. Means-ends links 
relate alternative design solutions (means) to design goals 
(ends). The design solutions proposed were master-
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_controlled_WML_based_infrastructure, shared_con-
troller_based_WML_infrastructure, and appliance-
_based_WML_infrastructure, each denoted by the 
hexagonal “design task” symbol.  
 
The first architectural solution, master_controlled-
_WML_based_infrastructure, is further decomposed, 
through task decomposition links, into design solution 
elements that describe how the WAP/WML architectural 
elements are added to the current switching system 
architecture. Since the switching system itself runs on 
Windows NT, this solution suggests adding the WML 
browser within the Windows NT environment outside of 
the switching system. It adds a Browser proxy component 
within call control as another user state process, and 
pertinent Browser state information within the user state 
manager subsystem of call control.  
 
Figure 3 shows how all of these design elements relate 
through contribution or correlation links to business- or 
system-related quality goals. A contribution link shows that 
the design solution was chosen to achieve a business or 
system goal, while a correlation link denotes a side effect a 
design solution has on a goal. Both links can be either 
sufficiently or insufficiently positive, or to some extent, or 
sufficiently negative, to reject a design option. These 
degrees of contribution are denoted by the plus and minus 
signs, and dots within figure 3. They are used to evaluate 
design solutions through qualitative reasoning, and to direct 
the exploration of further design alternatives. Placing the 
browser within Windows NT, for example, has a 
sufficiently positive effect on reusing commercial software 
code, which reduces time to market. Placing browser proxy 
code within the user state process subsystem of call control 
allows maintaining architectural integrity, which in turn 
reduces time to market. Maintaining architectural integrity 
also aids in reducing the complexity of software code, 
which in turn reduces the cost of software development. 
However, placing the browser proxy within call control has 
a sufficiently negative impact on the architectural evolution 
goals for the switching system, by further entrenching the 
current architectural principles — rather than moving away 
from them or at least creating “evolvable” components that 
are reusable within next generation telephone systems.  
 
In the middle of figure 3 we can see that for the 
shared_controller_based_WML_infrastructure design 
task two alternative design options were identified. This is 
shown by refining the design task into a corresponding 
design goal, WML_infrastructure_be_shared_con-
troller_based, to denote that this design task, when further 
explored, raises further design alternatives. This design 
goal is then refined into the two alternatives: 
stateless_shared_controller_WML_infrastructure and 
stateful_shared_controller_WML_infrastructure.  
Figure 3 shows how stateful_shared_controller_WML-

_infrastructure is further refined, through task 
decomposition links, into design elements that are proposed 
as additions to the current switching system architecture. 
Each one of these design elements contributes to business 
and system goals. Figure 3 does not show all contribution 
or correlation links identified during the case study, but 
only the most pertinent ones for our discussion. For 
example, it shows that placing the Browser within the 
virtual peripheral contributes positively to the architectural 
evolution goal (namely the ability to provide “evolvable” 
state manager components to future switching systems). 
Adding the stream interpreter component, which is another 
design element, both affects adversely the performance of 
telephone sets attached to the system, and increases the 
likelihood of processing errors due to the difficulty of 
interpreting data streams without all the knowledge of its 
meaning, which resides within call control. 
 
Let us now describe the structural view, and how it relates 
to the modeling elements in the goal graph. Figure 4 shows 
the structural view of the master_controlled_WML-
_based_infrastructure design alternative, and how it 
relates to the generic device sharing architecture.  The top 
part of figure 4 shows the structures defined for the device 
sharing architecture. These are the shared_device, the 
device_controller and the application agent.  An agent 
represents a computational component during design. It 
encapsulates the design goals it achieves, the capabilities it 
provides, the capabilities it offers to other parts of the 
system, and the quality constraints it depends on. Figure 4 
shows how the design of each agent depends on other 
agents through goals, tasks and resource dependencies. For 
example, the resource dependency data_stream between 
the application and the device_controller agent denotes 
the expectation of each agent to receive such a data stream 
from the other during runtime. The goal dependency 
exclusive_ownership_granted between the application 
and the device_controller agent denotes the expectation of 
the application agent that the device_controller agent will 
provide it with exclusive access to the data stream received 
from, and sent to the shared_device. This expectation 
expressed by the goal dependency is a design goal that is 
directed from the application agent toward the 
device_controller agent. The dependency does not 
prescribe how the device_controller agent will achieve 
this design goal, but only expects that it will be achieved 
during further design. Furthermore, the goal dependency 
denotes that it is up to the designer of the 
device_controller to decide how to achieve that design 
goal, and thus how to implement such exclusive ownership 
over data streams within the device controller component. 
The two softgoal dependencies, performance and 
minimize_processing_errors are quality attributes that 
the application agent depends on and wishes to have 
satisfied. These quality attributes serve as design 
constraints imposed by the application agent on the 
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device_controller agent in its exploration of design 
alternatives. Only those design alternatives that provide 

good performance and minimize processing errors are 
deemed acceptable to the application agent.

 

Figure 3: Goal graph denoting a design process with alternative architectural choices 
For completeness, let us mention the send_state-
_changed_commands task dependency between the 
device_controller and the shared_device. A task 
dependency denotes a design goal having constraints to a 
particular implementation. In our example, the 
device_controller agent expects the shared_device 
agent to send commands reflecting state change 
information, and expects that such commands will appear 
within the data stream. 
 
This example highlights the difference between a 
structural view expressed in an agent-oriented manner and 
the common blocks-and-arrows diagrams. It shows how 
agents in conjunction with strategic dependencies are 
used to represent computational elements where design 
goals still exist and a design process still needs to unfold. 
Goal dependencies direct further design deliberations, 
while softgoals provide a means to constrain the selection 
of future proposed design alternatives in terms of quality 

requirements that need to be achieved within the system 
or the organization. Task dependencies provide a means 
to constrain design to exhibit particular functional 
features. Blocks-and-arrows diagrams represent final 
design choices and do not guide where and how further 
design choices need to be made.  
 
The top part of figure 4 further shows that the 
device_controller agent is made out of three sub-agents, 
the command_interpreter, state_manager and 
data_stream_redirector agents, each performing part of 
the controller tasks. The command_interpreter scans the 
incoming data stream from the shared_device for 
commands to switch applications. The state_manager 
maintains a record of what application currently “owns” 
the shared device, and what application needs to be 
activated based on incoming commands. Finally, the 
data_stream_redirector agent directs the data stream 
between the shared device and the application that 
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currently has exclusive ownership. Any architecture that 
makes use of this generic device-sharing architecture 
needs to incorporate these three agents within its design. 
The bottom part of figure 4 shows how this device sharing 
architecture, and in particular how these three components 
within the device_controller agent, are allocated within 
the master_controlled_WML_based_infrastructure 
architectural alternative described in the goal graph in 
figure 3. It shows the call_control agent and its two sub-
agents, the I/O_handler and the user_services agent. 
User_services is part of the user state processes 
subsystems and denotes all services available within call 
control. The user_services agent depends on 
I/O_handler to provide it with exclusive_telephone-
_set_ownership and to receive a user_input_data. The 
I/O_handler in turn depends on the user_services to 
receive signal&response_data, which it directs to the 
telephone_set agent. The telephone_set depends on 
the I/O_handler to be shared, and to receive signal (i.e. 
commands in telephone set terminology) and response 
data streams. 

Figure 4: Abstract device sharing architecture 
and concrete master controlled WML 
infrastructure 
Figure 4 further shows that the master_controlled-
_WML_based_infrastructure architecture is a 
specialization of the generic device sharing architecture. 
The telephone_set agent is a shared_device, the 
I/O_handler is a device_controller, and user_services 
is an application. These relationships or "mappings" are 
denoted by "ISA" links. When mapping agents from the 
generic device sharing architecture to the more concrete 
master-controller architecture, the corresponding 
dependency links among agents may also be mapped. For 
example, the data_stream dependencies among the 
shared_device and the device_controller agents are 

created between their “counterparts”, the telephone_set 
and the I/O_handler agents, albeit often renamed to fit 
the domain meaning of those dependencies. Mapping 
dependencies, through ISA links, from abstract to more 
concrete architectures is a design activity that needs 
judgment of designers. Unlike “conventional” inheritance, 
ISA links denote possible mappings available. Designers, 
in conjunction with the design process view, decide 
whether and what dependencies to map onto what agents, 
and what domain meaning and possible further 
constraining specializations to provide.  
 
Sub-agents are also "inherited" from the abstract 
architectural view to the more concrete one. The 
state_manager, user_input_data_redirector and 
change_command_interpreter that are part of the 
I/O_handler are all inherited from the device-
_controller agent. All these agents are allocated as 
described by design elements within the goal graph in 
figure 3, to achieve good performance and to minimize 
processing errors. Both good performance and 
minimizing processing errors are achieved by maintaining 
the centralized way that incoming signals from the 
telephone sets are interpreted, and by not having external 
computational elements performing similar tasks 
elsewhere. The other alternatives described in the goal 
graph allocate the state_manager, data_stream-
_redirector and command_interpreter differently 
within the system to make different tradeoffs among these 
quality requirements, in particular to create an 
architecture that is more favorable to the architectural 
evolution goals. Finally, figure 4 shows that the 
WML_Browser_proxy agent is considered as a part of 
user services, since it is considered as an application, 
and in this architecture alternative, applications run within 
user services.  

Let us now illustrate how the stateless and the stateful 
shared controller-based architectures are derived, through 
design steps described in the goal graph, from the generic 
device sharing architecture.  We will see how goals and 
softgoal dependencies provide guidance in exploring 
alternatives during the design process. Each design task 
within the goal graph (denoted by the hexagonal symbol) 
refers to the structural view. Refining such tasks either 
through means-ends links or task-decomposition links 
into sub-tasks prompts the creation of additional 
components within the structural view. Goals and 
softgoals, both within the goal graph and within the 
structural views, guide the search for alternative design 
refinements.  

The “legacy system with new extensions” structural view 
in figure 5 denotes an abstract architecture for extending 
legacy systems with new functionality. It defines two 
principal agents, the legacy_system and the 
new_system_extension agent. The goal and softgoal 
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dependencies between these two agents describe the 
design expectations each agent has of the other, which 
should be fulfilled during the subsequent design efforts. 
In particular, the view shows that the legacy_system 
agent is concerned with performance and 
maintain_architectural_integrity. On the other hand, the 

new_system_extension agent is concerned with 
creating “evolvable components” within the legacy 
system. These are components that are designed both to 
be implemented within the legacy system and to be reused 
within new systems (“next generation systems”) that will 
comply with evolved system architectures.

 

Figure 5: Shared-controller architecture alternatives 
As discussed earlier, the goal graph in figure 3 shows that 
the WML_based_service_creation_infrastructure 
design solution can be achieved through three different 
architectures, each one based on a different specialization 
of the generic device-sharing architecture. Choosing this 
design task corresponds to consolidating the generic 
device-sharing architecture and the “legacy system with 
extension architecture” into the shared controller 
architecture structure described in figure 5. Note that 
choosing the shared controller architecture already 
achieves quality goals, such as creating evolvable 

controller components. This is shown in figure 3 through 
a contribution link from shared_controller_based-
_WML_infrastructure to the evolvable [controller] 
softgoal. Having achieved this softgoal, further goals and 
softgoals are now identified that need to be achieved 
within the shared controller design, namely evolvable 
[state_manager], evolvable [stream_interpreter] and 
evolvable [stream_redirector] components. These are 
identified through the structure of the controller agent as 
shown in the structural view. The need to now achieve 
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these softgoals is shown by these softgoals and their 
contribution links in figure 3. 

This shared-controller architecture introduces the 
shared_controller agent, which is composed of the 
new_controller agent and a legacy_controller agent. It 
further introduces two application agents, the 
new_application and legacy_application agents.  The 
dependencies among new_application and 
new_controller, and legacy_application and legacy-
_controller agents, correspond to the dependencies 
defined among the application and device_controller 
agents within the generic device-sharing architecture. 
These are inherited according to the inheritance links 
defined between the agents of both structural views. This 
shared-controller architecture provides architectural 
structure for any system that wishes to provide two focal 
points of control, for which legacy applications control is 
provided within the legacy system and for new 
applications control is provided within an additional 
component or subsystem.  

A key question during the following design task is how 
exactly control is shared between the new_controller and 
legacy_controller agents such that the right tradeoffs are 
found among 1) maintaining the architectural integrity of 
the legacy system 2) optimizing performance of the 
system 3) providing further evolvable components 4) 
reducing change to the legacy controller and, finally, 5) 
reuse of existing software within the system. All these 
quality requirements are described in figure 5. The first 
ones (1-2) are inherited from the dependencies between 
the new_system_extension and legacy_system 
agents. The others (3-5) are represented by the 
dependencies between the new_controller and 
legacy_controller agents.  

Figure 5 shows the structural view of the major 
components of the stateful shared controller and the 
stateless shared controller architectural alternatives. The 
goal graph in figure 3 shows how each alternative trades-
off differently the above-mentioned quality requirements. 
Figure 5 shows in what way each alternative differs, in 
terms of allocating the device_controller sub-agents 
inherited from the generic device-sharing architecture 
between the new_controller and the legacy_controller. 
The stateful architectural alternative inherits all sub-
agents to both the legacy and new controllers. The 
stateless architectural alternative inherits only the 
data_stream_redirector to the new controller (denoted 
by the stateless_new_controller), and makes it 
dependent on an enhanced version of the 
legacy_controller agent. This enhanced agent processes 
commands, manages the state of new applications and 
notifies the stateless controller of when to redirect and 
stop redirecting data streams. Figure 5, thus, demonstrates 
how dependencies among agents, in conjunction with the 

goal graph in figure 3, serve as criteria for searching and 
evaluating further alternative architectural designs. 

5. Discussion 

The requirements engineering research community has 
recognized the importance of goal modeling [11, 12, 13, 
15,16,17]. However, goals are typically used to guide the 
establishing of requirements or designing of business 
processes, and serve as criteria for requirements 
completeness. The approach expounded in this paper 
recognizes the need to utilize goals during analysis and 
during the design process. This aids in representing the 
"unfolding" of the design decision process over time. 
Goals during design provide a focal point for unmet 
design requirements without (over) committing to 
particular design solutions.  

This approach allows representing the many stages of 
completion through which design solutions move, and the 
stakeholder or system goals still to be addressed during 
further design. Goals denoting quality requirements 
provide an effective means for denoting constraints over 
further design efforts, and criteria for choosing among 
alternatives. Research in architectural design has given 
rise to notations that emphasize the compositional and 
behavioral aspect of coarse-grained system structures 
[14]. Quality attributes, or non-functional requirements, 
were identified as key driving forces, and rationales for 
different compositional system configurations. However, 
their treatment is often informal and not included in the 
architectural design notation. Both research communities 
recognize the importance of such links.  However, little 
research has been done so far in bridging the requirements 
and architectural design gap. 

The concepts of business goals and their relationships to 
functional and non-functional system requirements are not 
clear-cut. In this paper we took the stance that business 
goals are purposes that the business organization desires 
to achieve, both in the short and in the long term. Such 
goals are not necessarily tied to one product, but may 
relate to all product portfolios developed, maintained and 
evolved in the organization. Such goals originate from a 
variety of organizational and marketplace stakeholders. 
They are used to negotiate and determine functional and 
non-functional requirements, and, as we have seen, also 
architectural design decisions. For the purpose of 
modeling the architectural evolution process we did not 
feel the need to make a clear distinction between goals 
that originated from the business level and goals that 
represented system requirements. Both are seamlessly 
linked together through contribution (and correlation) 
links, and reside within the context of business and 
system development stakeholders. Precise boundaries 
might be needed for areas such as contracting and other 
legal purposes.  

Gilberto 
20



 

During the case study it was observed that the generic 
device-sharing architecture pattern, although being 
technical in nature, lent itself well to describing 
alternative business models pursued by the organization. 
System architectures that assigned the application and 
control components to one computational element in the 
target architecture pursued a centralized business model. 
Architectures that distribute these components, in 
particular among computational elements belonging to 
applications or devices under the jurisdiction of other 
organizations, pursue a decentralized and distributed 
business model. During the case study, the design 
decision to allow the organization's telephone sets to be 
operated by providers of competing switching systems 
would pursue both an open and decentralized business 
model. 

An important feature of the "mapping" mechanism 
proposed is its ability to determine conformance among 
architectures. When changing the design of the concrete 
architecture, it can be determined whether it still 
conforms or violates one or more of the abstract 
architectures from it took over components and 
dependencies from. For example, figure 5 does not show 
how the WML browser proxy appeared within the 
switching system architecture. Two architectural patterns 
were, in fact, applied. One is the abstract architecture 
describing the WAP/WML reference architecture, which 
defines the WML browser agent, and the other describes 
how proxy components are utilized when wishing to split 
components among two spatial locations, while 
maintaining both parts as a logical computational unit. 
The structural view, in conjunction with the goal graph, 
allows representing such relationships among various 
"reference architectures" and how and why each 
contributes to the establishing of solution architectures.  

6. Conclusion and future work 

The case study highlighted the need for a modeling 
approach that supports modeling and analyzing how 
business goals relate to the architectural decision-making 
process, and how changing business goals give rise to 
alternative architectural choices and solution structures. It 
illustrated the need to describe the organizational 
stakeholders, their goals, and how these are affected by 
alternative choices during the design process. The case 
study highlighted the utility of goal modeling for 
expressing alternative design choices, and to serve as 
criteria during design deliberation. It showed the utility of 
using agents and goal concepts for modeling architectural 
solution structures. Agents were used to describe 
architectural distribution of capabilities, while goals were 
used as a focal point for expressing where within 
architectural structures further design choices needed to 
be made. Future work needs to focus on refining the 
integrated modeling framework, further formalizing the 

relationships among its diagrams, and investigating how 
its abstraction and mapping facilities can support 
knowledge-based tools that provide systematic design 
guidance and analysis support.  
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Abstract 
To strengthen the connection between requirements 

and design during the early stages of architectural design, 
a designer would like to have notations to help visualize 
the incremental refinement of an architecture from 
initially abstract descriptions to increasingly concrete 
components and interactions, all the while maintaining a 
clear focus on the relevant requirements at each step. We 
propose the combined use of a goal-oriented language 
GRL and a scenarios-oriented architectural notation 
UCM.  Goals are used in the refinement of functional and 
non-functional requirements, the exploration of 
alternatives, and their operationalization into 
architectural constructs.  The scenario notation is used to 
depict the incremental elaboration and realization of 
requirements into architectural design.  The approach is 
illustrated with an example from the telecom domain. 
 
 
1. Introduction 
 

In the context of Requirement Engineering and system 
architectural design, goal-driven and scenario-based 
approaches have proven useful. In order to overcome some 
of the deficiencies and limitations of these approaches 
when used in isolation, proposals have been made to 
couple goals, scenarios and agents together to guide the 
RE to architectural design process. As there are both 
overlap and gaps between these approaches, their 
interactions are complicate and highly dynamic.  

In General, goals describe the objectives that the system 
should achieve through the cooperation of agents in the 
software-to-be and in the environment. It captures “why” 
the data and functions were there, and whether they are 
sufficient or not for achieving the high-level objectives 
that arise naturally in the requirement engineering process. 
The integration of explicit goal representations in 
requirement models provides a criterion for requirement 
completeness, i.e. the requirements can be judged as 
complete if they are sufficient to establish the goal they are 
refining.  

Scenarios present possible ways to use a system to 
accomplish some desired functions or implicit purpose(s). 
Typically, it is a temporal sequence of interaction events 
between the intended software and its environment 
(composed of other systems or humans). A scenario could 
be expressed in forms such as narrative text, structured 
text, images, animation or simulations, charts, maps, etc. 
The content of a scenario could describe either system-
environment interactions or events inside a system. 
Purpose and usage of scenarios also varies greatly. It could 
be used as means to elicit or validate system requirements, 
as concretization of use-oriented system descriptions, or as 
basis for test cases. Scenarios have also become popular in 
other fields, notably human-computer interaction and 
strategic planning.   

In this paper, we explore the combined use of goal-
oriented and scenario-based models during architectural 
design. The GRL language is used to support goal and 
agent oriented modelling and reasoning, and to guide the 
architectural design process. The UCM notation is used to 
express the architectural design at each stage of 
development. The scenario orientation of UCM allows the 
behavioral aspects of the architecture to be visualized at 
varying degrees of abstraction and levels of detail.  

In next section, basic concepts of GRL and UCM are 
introduced. In Section 3, we summarized our approach of 
using GRL and UCM together to incrementally modelling 
requirements and architectural design. In section 4, a case 
study in wireless telecommunication domain is used to 
illustrate the proposed approach. In section 5, related 
works are discussed. Conclusions and future works are in 
section 6. 

2. GRL and UCM 
 
2.1 GRL  
 
Goal-oriented Requirement Language (GRL) is a language 
for supporting goal and agent oriented modeling and 
reasoning of requirements, especially for dealing with 
Non-Functional Requirements (NFRs)[4][11]. It provides 
constructs for expressing various types of concepts that 
appear during the requirement and high-level architectural 
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design process. There are three main categories of 
concepts: intentional elements, links, and actors. The 
intentional elements in GRL are goal, task, softgoal and 
resource. They are intentional because they are used for 
models that allow answering questions such as why 
particular behaviors, informational and structural aspects 
were chosen to be included in the system requirement, 
what alternatives were considered, what criteria were used 
to deliberate among alternative options, and what the 
reasons were for choosing one alternative over the other.  

A GRL model can either be composed of a global goal 
model, or a series of goal models distributed in several 
actors. If a goal model includes more than one actor, then 
the intentional dependency relationships between actors 
could also be represented and reasoned about. In this 
paper, the distributed goal models will not be discussed, 
we may have another paper studying the roles of agent-
orientation in requirement and architectural design.  

A goal is a condition or state of affairs in the world that the 
stakeholders would like to achieve. In General, how the 
goal is to be achieved is not specified, allowing 
alternatives to be considered.  A goal can be either a 
business goal or a system goal. A business goal express 
goals regarding the business or state of the business affairs 
the individual or organization wishes to achieve. System 
goal expresses goals the target system should achieve, 
which, generally, describe the functional requirements of 
the target information system. In GRL graphical 
representation, goals are represented as a rounded 
rectangle with goal name inside. 

A task specifies a particular way of doing something. 
When a task is specified as a sub-component of a (higher-
level) task, this restricts the higher-level task to that 
particular course of action. Tasks can also be seen as the 
solutions in the target system, which will satisfice the 
softgoals (called operationalizations in NFR) or achieve 
goals. These solutions provide operations, processes, data 
representations, structuring, constraints and agents in the 
target system to meet the needs stated in the goals and 
softgoals. In GRL graphical representation, tasks are 
represented as a hexagon with task name inside. 

A softgoal is a condition or state of affairs in the world that 
the actor would like to achieve, but unlike in the concept 
of (hard) goal, there are no clear-cut criteria for whether 
the condition is achieved, and it is up to subjective 
judgement and interpretation of the developer to judge 
whether a particular state of affairs in fact achieves 
sufficiently the stated softgoal. Softgoal is used to 
represent NFRs in the future system. Non-functional 
requirements, such as performance, security, accuracy, 
reusability, interoperability, time-to market and cost are 
often crucial for the success of a software systems. They 
should be addressed as early as possible in a software 
lifecycle, and be properly reflected in software architecture 

before a commitment is made to a specific 
implementation.  In GRL graphical representation, A 
softgoal, which is “soft” in nature, is shown as an irregular 
curvilinear shape with softgoal name inside.  

A resource is an (physical or informational) entity, with 
which the main concern is whether it is available. 
Resources are shown as rectangles in GRL graphical 
representation. 

Intentional links in GRL includes means-ends, 
decomposition, contribution, correlation and dependency. 
Means-ends is used to describe how goals are in fact 
achieved. Each task connected to a goal by means-ends 
link is an alternative means for achieving the goal. 
Decomposition defines what other sub-elements needs to 
be achieved or available in order for a task to be 
performed. Contribution describes how softgoals, tasks, 
links contribute to others. A contribution is an effect that is 
a primary desire during modelling. Contributions can be 
either negative, or positive, can be either sufficient or 
partial. Following are the graphical representations for 
links. 

(a)                  (b)    

(c)   

(d)   

Figure 1 (a) Means-Ends; (b)Decomposition;      
(c) Contribution; (d) Correlation 

 
2.2 UCM 
 
Use Case Maps (UCM)[2][3] provides a visual notation for 
scenarios, which is proposed for describing and reasoning 
about large-grained behavior patterns in systems, as well 
as the coupling of these patterns. A new thing UCM offers 
in relation to architecture is that it provides a behavioral 
framework for making architectural decisions at a high-
level of design, and also characterizing behavior at the 
architectural level once the architecture is decided.  

Use Case Maps notation (UCMs) employ scenario paths to 
illustrate causal relationships among responsibilities. 
Furthermore, UCM provides an integrated view of 
behavior and structure by allowing the superimposition of 
scenario paths on a structure of abstract components. The 
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combination of behavior and structure in UCMs enables 
architectural reasoning. Scenarios in UCM can be 
structured and integrated incrementally. This enables 
reasoning about and detection of potential undesirable 
interactions of scenarios and components. Furthermore, the 
dynamic (run-time) refinement capabilities of the UCM 
language allow for the specification of (run-time) policies 
and for the specification of loosely coupled systems where 
functionality is decided at runtime through negotiation 
between components. 

The UCM notation is mainly composed of path elements, 
and also of components. The basic path notation address 
simple operators for causally linking responsibilities in 
sequences, as alternatives, and in parallel. More advanced 
operators can be used for structuring UCMs hierarchically 
and for representing exceptional scenarios and dynamic 
behavior. Components can be of different natures, 
allowing for a better and more appropriate description of 
some entities in a system.  

Basic elements of UCMs are start points, responsibilities, 
end points and components. Starting points are filled 
circles representing pre-conditions or triggering causes. 
End points are bars representing post-conditions or 
resulting effects. Responsibilities are crosses representing 
actions, tasks or functions to be performed. Components 
are boxes representing entities or objects composing the 
system. Paths are the wiggle lines that connect start points, 
responsibilities and end points. A responsibility is said to 
be bound to a component when the cross is inside the 
component. In this case, the component is responsible to 
perform the action, task, or function represented by the 
responsibility.  

Alternatives and shared segments of routes are represented 
as overlapping paths. An OR-join merges two (or more) 
overlapping paths while an OR-fork splits a path into two 
(or more) alternatives. Alternatives may be guarded by 
conditions represented as labels between square brackets. 
Concurrent and synchronized segments of routes are 
represented through the use of a vertical bar. An AND-join 
synchronizes two paths together while an AND-fork splits 
a path into two (or more) concurrent segments.  

When maps become too complex to be represented as one 
single UCM, a mechanism for defining and structuring 
sub-maps become necessary. A top level UCM, referred to 
as a root map, can include containers (called stubs) for 
sub-maps (called plug-ins).  Stubs are represented as 
diamonds. Stubs and plug-ins are used to solve the 
problems of layering and scaling or the dynamic selection 
and switching of implementation details. 

Other notational elements include: timer, abort, failure 
point, and shared responsibilities. Detailed introduction 
and example of these concepts can be found in [2] [3]. 

Although UCM could represent the alternatives of system 
architectural design precisely in a high-level way, the 
tradeoffs between these alternatives, and the intentional 
features of making a design decision could not be 
explicitly shown in UCM models. And inevitably, as other 
scenario-based approaches, UCM models are partial.  

GRL provides support  for reasoning about scenarios by 
establishing correspondences between intentional GRL 
elements and functional components and responsibilities in 
scenario models of UCM. Modelling both goals and 
scenarios is complementary and may aid in identifying 
further goals and additional scenarios (and scenario 
fragments) important to architectural design, thus 
contributing to the completeness and accuracy of 
requirement, as well as quality of architectural design.  

3. Modelling Methodology with GRL+UCM 
 
A complete requirement specification should clarify the 
objectives of a system to be achieved, the concrete 
behaviors and constraints of the system-to-be, and the 
entities being responsible for certain functions in that 
system. 

Goal-based approaches focuses on answering the “why” 
questions of requirements (such as “why the system needs 
to be redesigned?” “Why a new architecture for TSMA is 
necessary?”), the strength of these approaches is that they 
could cover not only functional requirements but also non-
functional requirements (in other words, the quality 
requirements). Although goal-orientation is highly 
appropriate for requirement engineering, goals are 
sometimes too abstract to capture at once. Operational 
scenarios of using the hypothetical system are sometimes 
easier to get in the first place than some goals that can be  

made explicit only after deeper understanding of the 
system has been gained.  

In our approach, GRL models are created, the original 
business goals and non-functional requirements are refined 
and operationalized, until some concrete design decisions 
are launched. These design decisions are then further 
elaborated into UCM scenarios. In the scenario authoring 
of this step, “how” questions are asked instead of “what”.  

At the same time, UCM scenarios are used to describe the 
behavioral features and architectures of the intended 
system in the restricted context of achieving some implicit 
purpose(s), which basically answers the “what” questions, 
such as  “what the system should do as providing a in-
coming call service?” “What is the process of wireless call 
transmitting?” Then, by issuing “why” questions referring 
to these scenarios (e.g. “why to reside a function entity in 
this network entity instead of the other?”) some implicit 
system goals are further dis closed. 
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Figure 2. Integration of Goal-Oriented and Scenario-based Modelling 
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The GRL-UCM combination aims to elicit, refine and 
operationalize requirements incrementally until a 
satisfying architectural design is launched. The general 
steps of the process are illustrated in Figure 2. 
 
4. Illustration with examples 
 
To illustrate the interleaved application of GRL and UCM, 
we use an example from the mobile telecommunication 
systems domain [9]. A mobile switching center (MSC) is 
required to support narrowband and wideband voice, data 

and imaging services and so on. We use GRL and UCM 
together to trace the process from capturing the original 
business objective, to refining and operationalizing this 
objective, and to trading off each architectural design 
options.  

Step 1: GRL Model- Original functional and non-
functional requirements are represented as three floating 
nodes in Figure 3. The goal node in the middle represents 
the functional requirement on the TDMA that it must 
support Narrowband and wideband voice, data and image 
services. There are two quality requirements identified at 
the very beginning, one is to maximize the call capacity in 
the new TDMA architecture, the other is to minimize the 
cost of the infrastructure. 

Step 2: UCM Model- The essential scenario that 
implements the functional goal in above GRL model is 
given in Figure 4. The scenario path (denoted by the 

wiggle line) represents a causal sequence of 
responsibilities (denoted by a cross) that is triggered by an 
initial event (denoted by a filled circle), resulting in a 
terminating event (denoted by a bar). The responsibilities 
are not bound to any components. 

Step 3: UCM Model – Binding Responsibilities to 
components of the future system. 

The following UCM diagram (Figure 5) shows the existing 
TDMA architecture. In this architecture, the Decoder of 

the Voice Coder is located in the base station. This implies 
that the 64-kb/s PCM of decoded voice will be transmitted 
out of the cell site to the switch for each call, requiring an 
entire Digital Signal level 0 channel (DS0) to support the 
64-kb/s signal.  
 

Step 4: GRL Model – Goal Refinement and 
Operationalization. In the goal model in Figure 6, the 
original functional goal is connected to the task node 
representing current solution for TDMA. It can be seen 
that current solution can cause some delay per call, which 
may negatively influence the voice quality of the call, and 
call capacity of the system. This solution does not use 
packet switching protocol enough, so cost could not be 
saved. Traffic performance between base station and 
switch is also low.  

 
With current infrastructure, the efficiency of TDMA is 
barely equivalent to that of analog system, which means 
the requirements on improving the capacity, quality, cost 
and performance are all weakly denied.   

Step 5: UCM Model – Change the Binding of 
Responsibilities. 

As the above design could not satisfy the non-functional 
requirements of the infrastructure, other options should be 
explored. The UCM model (in Figure 7) describes a new  

Figure 4: Unbound use case path with responsibilities  

Figure 7: UCM model of another way of binding 

 

Figure 3: Original Goal Model with one functional goal 
and two non-functional goals  

 

Figure 5: Bound use case path with functional objects 
and physical entities 
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Figure 8: GRL model evaluating the contribution of the new architecture to NFRs  

 

Figure 10: Goal model evaluating the viability of solution 3 

Figure 6: Refined GRL model with one design solution and more non-functional 
requirements 
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architecture to improve the capacity of the TDMA cellular 
telecommunications system. In this design, the Decoder of 
voice Coder is relocated into the switch instead of the base 
station, then for each call the base station would transmit 
an  8-kb/s signal – rather than a 64-kb/s signal to the 
switch. In such a system, a theoretical maximum of 8× 
capacity improvement is possible. 
 
Step 6: GRL Model – Contributions of the new 
architecture to the non-functional requirements. The GRL 
model (in Figure 8) shows that the new TDMA 
architecture with voice coder relocated in the switch 
weakly satisficed the requirements on improving the 
capacity, quality, performance, though at the same time the 
cost and complexity are negatively influenced. To 
minimize call delay somehow increased the complexity 
and cost of the architecture (represented in Figure 7 with 
correlation links). Compare the two architectures, if a cell 
site supported x calls, the previous architecture would need 
x DS0s to support those calls. But the Voice Coder 
relocation architecture would requirement only x/3 DS0s. 
Given the evaluation result, we judged that the new 
architecture to be an acceptable design.  

GRL supports the evaluation of the satisficing of softgoal 
with a qualitative labeling procedure. The label of high-
level model is propagated from the label of low level 
nodes, and the contribution from these nodes.  

However, before putting this relocating solution into 
practice, other possible solutions should also be. The 
following is one possible solution without relocating the 
Decoder of Voice Coder. 

Step 7: UCM Model – In Figure 9, by adding new 
functional units without changing the location of Decoder 
of Voice Coder, a simplest solution is described. For 
increasing call capacity, 32-kb/s adaptive differential pulse 
code modulation (ADPCM) equipment is used with voice 
decoder still in the base station.  
 
Step 8: GRL Model – Evaluation of new architecture 
according to the non-functional requirements, and compare 

to other options. The GRL model in Figure 10 shows that 
this simplest solution weakly satisficed the requirements 
on improving the capacity, performance, low cost and low 
complexity. However, voice quality is seriously eroded by 
the electrical echo, the delay for the extra cycle of speech 
coding, and the information lost produced in this kind of 
architecture. While user puts voice quality in a lower 
priority, this architecture could also be an acceptable 
choice. 

Having analyzed the benefits and tradeoffs of these 
architectures, we could see that UCM is a natural 
counterpart to GRL in the process from requirement to 
high-level design, because it provides the concrete model 
of each design alternative. Based on the architectural 
features in this model, new non-functional requirements of 
concern could be detected and added into the GRL model. 
At the same time, in the GRL model,  new means to 
achieve the functional requirement could always be 
explored and be embodied in UCM model.  

In the case study above, the UCM model are rather 
simplistic because we have only tackled the highest level 
of architectural design in the wireless telecommunication 
protocol. As we go down to the enough detailed design, a 
UCM model could be fairly complex, and more modelling 
constructs could be used. Figure 11 (From [1] ) is a root 
map of a mobile system, it illustrates the “big picture” of a 
simplified mobile wireless communication system. As 
shown in this graph, stubs are used to hide details of 
certain sections of a scenario, e.g., the mobility 
management functions (MM stub), the communication 
management functions (CM stub), the handoff procedures 
(HP stub) and handoff failure actions (HFA stub).  

A plug-in gives more detail for the stubs. For the limitation 
of space we won’t present all of the plug-ins as well as 
explain the details of each responsibility. However, one 
thing need to be notified is, for each stub (especially a 
static stub), there could be more than one ways to refine 
the plug-ins. This is a powerful construct to form new 
design alternatives by integrating possible designs of 
various parts of the system. 

Figure 9: UCM model of solution 3: new responsibilities 
and functional units added 

Figure 11: The Mobile system Root Map[1]; 
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Figure 12 depicts an integrated scenario of establishing a 
call between the originating and the terminating parties. 
There could be other possible designs, but we won’t 
investigate for the limitation of space. Components in 

Figure 12 include: Originating Mobile Station (MS-O), 
Originating Mobile switching Center (MSC-O), Home 
Location Register (HLR), Visitor Location Register 
(VLR), Terminating Mobile Station (MS-T), Terminating 
Mobile switching Center (MSC-T), Originating and 
Terminating Mobile Stations (MS-OT). 

Although we used a telecommunication system 
architecture example, the approach is applicable to 
allocation of responsibility in software systems in general, 
where there are usually conflicting goals and tradeoffs. 

 

5. Discussions and related works 
 
As existing scenario-based approaches are serving 
different purposes, using different representational 
features, and having different analysis capabilities, the 
concept of scenario needs to be differentiated according to 
these contexts.  

In Krutchen’s 4+1 model of software architecture [7], 
scenarios are used to show connections across other views 
such as logical view, process view, physical view and 
development view. The use of a multiple view model of 
architecture allows to address separately the concerns of 
the various stakeholders of the architecture. However, with 
an architecture model composed of several separate views 
it is not easy to keep a coherent track of the incremental 
design process. As UCM shows the behavioral and 
structural aspects together as one view, it is good for 
showing incremental elaboration of the design.  

The Software Architecture Analysis Method (SAAM) [5, 
6] is a scenario-based method for evaluating architectures. 
It provides a means to characterize how well a particular 

architectural design responds to the demands placed on it 
by a particular set of scenarios. Based on the notion of 
context -based evaluation of quality attributes, their method 
adopts scenarios as the descriptive means of specifying 
and evaluating quality attributes. For example, to evaluate 
the mo difiability of a user interface architecture Serpent, 
two scenarios are considered, one is "changing the 
windows system/toolkit", and the other is "adding a single 
option to a menu". The similarities between this paper and 
SAAM include: both works concerns the quality of 
architecture, and both use scenarios to describe 
architectures. However, there are obvious differences: 
SAAM scenarios are use-oriented scenarios, which are 
designed specifically to evaluate certain quaility attributes 
of architecture. In GRL vs. UCM, scenarios are more 
design-oriented, which is the refinements of system 
requirements. The quality of the architectures 
corresponding to these scenario are judged based on expert 
knowledge rather than simulations or tests as in SAAM. 

The combined use of goals and scenarios have been 
explored within RE, primarily for eliciting, validating and 
documenting software requirements. Van Lamsweerde and 
Willement studied the use of scenarios for requirement 
elicitation and explored the process of inferring formal 
specifications of goals and requirements from scenario 
descriptions in [8]. Though they thought goal elaboration 
and scenario elaboration are intertwined processes, their 
work regarding scenarios in [8] mainly focuses on the goal 
elicitation. Our emphasis happens to be on the other way 
around, i.e., how to use goal model (especially NFRs) to 
direct scenario –based architectural design. The 
fundamental point is that both the goal-oriented modeling 
in GRL and the scenario-based modeling in UCM run 
through requirement process to architectural design, so as 
their interactions.  

In the CREWS project, Collete Rolland et al. have looked 
into the coupling of goal and scenario in RE with CREWS-
L’Ecritoire approach [10]. In CREWS-L’Ecritoire, 
Scenarios are used as a means to elicit requirements/goals 
of the system-to-be. Their method is semi-formal. Both 
goals and scenarios are represented with structured textual 
prose. The coupling of goal and scenario could be 
considered as a “tight” coupling, as goals and scenarios are 
structured into <Goal, Scenario> pairs, which are called 
“requirement chunks”. Their work focuses mainly on the 
elicitation of functional requirements/goals.  

In UCM-GRL, both graphical representations and textual 
descriptions (in natural language and XML format) for 
goal model and scenario model are provided. The semi-
formal graphical notations are intended to be used during 
the early stages of architectural design, to help explore and 
prune the space of design more alternatives. They are to be 
supplied by for formal notations and analyses in 
subsequent stages. The current coupling of goal and 
scenario is loose, as goal models and scenario are all 

Figure 12: Integration of Scenario Fragments [1] 
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maintaining their local completeness, and one scenario 
may refer to more than one goal, and vice versa. There are 
no rigid constraints on the requirement process. That is, 
the goal model and scenario model could be developed in 
parallel simultaneously, they interact whenever there are 
design decisions need to be traded off, or new design 
alternatives need to be sought, or new business goals, non-
functional requirements are discovered…. Both functional 
and non-functional requirements are considered, and 
perhaps even more attentions are devoted to non-
functional requirements. The modelling process involves 
both requirements engineering activities and high-level 
architecture design.  

 

6. Conclusions and future works 
 
In summary, goal-orientation and scenario-orientation 
compensate to each other not only in requirement 
engineering but also during the incremental architectural 
design process.  The combined use of GRL and UCM 
enables the description of both functional and non-
functional requirements, both abstract requirements and 
concrete system architectural models, both intentional 
strategic design rationales, and non-intentional details of 
concurrent, temporal features of the future system.  

In the future, we hope to look into create visualized the 
connections between GRL and UCM to support a more 
formal combination of the two notations. Thus, the 
mapping and interacting between the two kinds of models 
would not rely so much on the human behaviors how they 
are used. 
Another direction would be the accumulation of domain 
knowledge as well as software design knowledge 
represented in GRL and UCM. We would say that GRL 
and UCM are actually the container of knowledge, and it is 
the knowledge that can be reused, and to guide the future 
design process. 
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ABSTRACT
This position paper argues for the concurrent, iterative
development of requirements and architectures during the
development of software systems. It presents the “Twin
Peaks” model – a partial and simplified version of the spiral
model – that illustrates the distinct, yet intertwined
activities of requirements engineering and architectural
design. The paper suggests that the use of various kinds of
patterns – of requirements, architectures, and designs – may
provide a way to increase software development
productivity and stakeholder satisfaction in this setting.

1 INTRODUCTION
There are compelling economic arguments why an early
understanding of stakeholders’ requirements leads to
systems that more closely meet these stakeholders’
expectations. There are equally compelling arguments why
an early understanding and construction of a software
system architecture provides a basis for discovering further
system requirements and constraints, for evaluating a
system’s technical feasibility, and for evaluating alternative
design solutions.

Many software development organisations often make a
choice between alternatives starting points – requirements
or architectures – and this invariably results in a subsequent
waterfall-like development process. Such a process
inevitably leads to artificially frozen requirements
documents – frozen in order to proceed with the next step
in the development life cycle; or leads to systems
artificially constrained by their architecture that, in turn,

constrain their users and handicap their developers by
resisting inevitable and desirable changes in requirements.

There is some consensus that a “spiral” (Boehm 1988) life
cycle model addresses many of the drawbacks of a
waterfall model, and consequently addresses the need for
an incremental development process in which project
requirements and funding may be unstable, and in which
project risks change and thus need to be evaluated
repeatedly. This article suggests that a finer-grain spiral
development life cycle is needed, to reflect both the
realities and necessities of modern software development –
a life cycle that acknowledges the need to develop software
architectures that are stable, yet adaptable, in the presence
of changing requirements. The cornerstone of such a
process is that a system’s requirements and its architecture
are developed concurrently, that they are “inevitably
intertwined” (Swartout & Balzer 1982), and that their
development is interleaved.

2 TWIN PEAKS: A CONCURRENT, SPIRAL
DEVELOPMENT PROCESS

Figure-1 suggests a partial development model that
highlights the concurrent, iterative process of producing
progressively more detailed requirements and design
specifications. We informally call this model Twin Peaks to
emphasize the equal status we give the specification of
requirements and architectures1. We could have also used
the more general term design rather than architecture, as
we consider our model to be as applicable to the
development of detailed design specifications as it is to
architectural design specifications. However, from a project
management perspective, the abstraction provided by
architectures is sufficient for our purposes.

1 The model is an adaptation of one first published in P. Ward
and S. Mellor’s Structured development for real-time systems
(Volume 1: Introduction and tools, Prentice Hall, 1985), and
subsequently adapted by Andrew Vickers in his student lecture
notes at the University of York (UK).

A shorter, heavily edited version of this paper entitled
“Weaving Together Requirements and Architectures”
appeared in IEEE Computer, 34(3):115-117, March 2001.
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Our experience on a number of industrial projects support
this development life cycle model. Except for very well
defined problem domains and strict contractual procedures,
most software development projects address issues of
requirements specification and design more or less
concurrently, and rightly so. At worst, initial requirements
gathering is quickly followed by the development or
selection of one or more candidate architectures of a
system. In many cases, candidate architectures are even
provided as part of the requirements. Indeed, candidate
architectures may constrain what requirements can be met,
and of course the choice of requirements impacts the
architecture selected or developed.

As the development process proceeds (and we focus here
on specification development in particular), the
requirements are elaborated as is the software system
architecture. However, although both requirements and
architecture are developed concurrently, their distinct
content is preserved; that is, the activities of problem
structuring and specification (requirements) are separated
from (but related to) solution structuring and specification
(architecture). This separation, while recognized as
important, is often difficult to achieve in alternative life-
cycles, since the artificial ordering of requirements and
design steps compels developers to focus on either of the
two at any one time.

The Twin Peaks model addresses the three management
concerns identified by Barry Boehm in an earlier article

(Boehm 2000), namely IKIWISI (I’ll Know It When I See
It), COTS (Commercial off-the-shelf) software, and rapid
change.

IKIWISI. Requirements often “emerge” only after
significant analysis of models or prototypes of a system has
taken place, and users have been given an opportunity to
view and provide feedback on the models or prototypes.
The Twin Peaks model explicitly allows early exploration
of the solution space, thereby allowing incremental
development and the consequent management of risk.

COTS. Increasingly, software development is actually a
process of identifying and selecting existing software
packages (Finkelstein et al. 1996, Maiden & Ncube 1998).
Package selection requires the identification of desirable
requirements (often expressed as features or services), and
a matching of these to what is commercially available.
Adopting the Twin Peaks model allows rapid and
incremental requirements identification and architectural
matching. This can be invaluable in quickly narrowing
down the choices available, or perhaps making key
architectural choices to accommodate existing COTS
solutions.

Rapid Change. Managing change continues to be a
fundamental problem in software development and project
management. Rapid change exacebates this problem. We
believe that the Twin Peaks model focuses on finer-grain
development and is therefore more receptive to changes as
they occur. However, analysing the impact of change is still

Requirements Architecture 

Specification

General

Detailed

Level 
of 

Detail 

Independent DependentImplementation 
Dependence

FIGURE-1: TWIN PEAKS – A MODEL OF THE CONCURRENT DEVELOPMENT OF PROGRESSIVELY MORE DETAILED REQUIREMENTS AND 
ARCHITECTURAL (DESIGN) SPECIFICATIONS. 
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a difficult task. Key to addressing this task is identifying
the core requirements of a software system. Such
requirements express those stakeholders’ goals that are
likely to persist for the longest period of time, and that are
likely to lead to a software architecture that is stable in the
face of changes in other requirements. Core requirements
may also be those whose impact on a software architecture
is so substantial that they have to be frozen in order to
avoid the excessive (unacceptable) cost of changing them.

3 BUILDING MODULAR SOFTWARE
INCREMENTALLY

Developing software systems in the context of IKIWISI,
COTS, and rapid change suggests that we need to consider
different processes of development. IKIWISI means that
we need to start design and implementation much earlier
than usual; COTS means that we need to consider reuse at
the much earlier stage of requirements specification; and
rapid change means that we have to be able to do all this
much more quickly in order to be competitive.

There is increasing recognition that building systems in
terms of components with well defined interfaces offers
opportunities for more effective reuse and maintenance. It
is not always clear, however, how component-based
development approaches fit into the development process.
One way is to consider, concurrently, “patterns” of

requirements, architectures and designs. The software
design community has already identified a number of
“design patterns” (Gamma et al. 1996) that can be used to
express a range of implementations. The software
architectures community has identified “architectural
styles” (Shaw & Garlan 1996) that are suited to meeting
various global requirements. And, the requirements
engineering community has promoted the use of “problem
frames” (Jackson 2001) or “analysis patterns” (Fowler
1996) to identify classes of problems for which there are
existing, known solutions. This begs the question: what are
the relationships between these different kinds of patterns?

Figure-2 suggests that such patterns of requirements,
designs, and architectures can be treated as a resource for
component-based development. Indeed, the figure suggests
that – in line with the Twin Peaks model – the “starting
point” of development may be requirements, design, or
architecture. If a given architecture is fixed, this impacts on
the kinds of problems that can be addressed by that
architecture, and the kinds of designs that may be possible.
If the requirements are more rigid, then the candidate
architectures and design choices are also limited. If a
certain design is chosen, then both the architectures in
which this design fits and the problems that are addressed
by this design are also limited.

Requirements

Design Architecture

Problem 
Frames

Design 
Patterns

Architectural 
Styles 

Components

FIGURE-2: PART OF THE SOFTWARE DEVELOPMENT TERRAIN, WITH REQUIREMENTS, ARCHITECTURE, AND DESIGN RECEIVING 
SIMILAR ATTENTION. PATTERNS OF EACH HAVE AN IMPACT ON THE KIND OF SYSTEM (COMPONENTS) DEVELOPED, AND THE 

RELATIONSHIP BETWEEN THEM IS A KEY DETERMINANT OF THE KIND OF THE DEVELOPMENT PROCESS ADOPTED. 
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From a requirements engineering perspective, it is essential
that a satisfactory problem structuring is achieved as early
as possible. A vehicle for achieving such a structuring is
Jackson’s problem frames2. However, given that existing
architectures may influence how problems are structured, it
may be necessary – as Jackson suggests – to “reverse
engineer” some problem frames from existing architectural
designs.

4 PROJECT MANAGEMENT: WEAVING THE
DEVELOPMENT PROCESS

The Twin Peaks model of software development shares
much in common with Extreme Programming (XP) (Beck
1999), such as the goal of exploring implementation
possibilities early and iteratively. The focus of Twin Peaks,
however, is very different from, but perhaps
complementary to, the XP model in that it focuses on the
front-end activities of the software development life cycle;
that is, on requirements and architectures. This potentially
addresses some of the issues of scale that are often claimed
as weaknesses of XP. Early understanding of requirements
and the choice of architecture are key to managing large
scale systems and projects. XP focuses on producing code –
sometimes at the expense of the “wider picture” of

2 Recall that a problem frame defines the shape of a
problem for which there is a known solution.

requirements and architecture. Of course, the focus on
requirements and architectures in itself is not sufficient to
achieve scalability. Modularity and iteration are also
crucial. Twin Peaks is inherently iterative, and combined
with the use of patterns can facilitate incremental
development of large scale systems more quickly, using
tried and tested components derived from well-understood
patterns.

The resultant overall software development process
inevitably takes a much more complex path from problem
to solution. Figure-3 is a hugely simplified illustration that
tries to convey the winding route in which development
proceeds as requirements, architectures, and designs are
elaborated iteratively and often concurrently.

5 CONCLUSIONS
With the many advances in software development in recent
years, it is perhaps appropriate to re-visit the relationships
between requirements and design. Although the conceptual
differences between requirements and design are now much
better understood and articulated (Jackson 1995), the
process of moving between the problem world and the
solution world is much less so (Goedicke & Nuseibeh
1996). Researchers and practitioners are struggling to
develop processes that allow rapid development in a
competitive market, combined with the improved analysis
and planning that is necessary to produce high quality
systems within tight time and budget constraints.

Problem 
World 

System

Requirements Architecture 

Design

FIGURE-3: WEAVING THE SOFTWARE DEVELOPMENT PROCESS FROM PROBLEM TO SOLUTION. THE TRIANGULAR ICONS 
INDICATE ARTEFACTS THAT GROW (FROM TOP TO BOTTOM) AS THE PROCESS PROCEEDS. THERE IS AN IMPLICIT GLOBAL 
FEEDBACK LOOP AS WELL, IN WHICH THE SYSTEM INSTALLED IN THE WORLD CHANGES THE WORLD, AND POTENTIALLY 

NECESSITATES ANOTHER WEAVING JOURNEY. 
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We have suggested that a more robust and realistic
development process is one that allows both requirements
engineers and system architects to work concurrently and
iteratively to describe the artefacts they wish to produce. In
this way, problems are better understood through
consideration of architectural constraints, and architectures
can be developed and adapted based on requirements.

We have exposed only the tip of the iceberg. Many difficult
questions remain unanswered:

�� What software architectures (or architectural
styles) are stable in the presence of changing
requirements, and how do we select them?

�� What classes of requirements are more stable than
others, and how do we identify them?

�� What kinds of changes are systems likely to
experience in their lifetime, and how do we
manage requirements and architectures (and their
development processes) in order to manage the
impact of these changes?

The answers to these questions will have significant impact
on the way software is developed and projects are
managed. Particular impact will be felt in some key
emerging development contexts:

�� Product lines and product families – where there
is a need for stable architectures that tolerate
changing requirements.

�� COTS systems – where there is a need to identify
and match existing units of architectures to
requirements (as opposed to developing system
requirements from scratch).

�� Legacy systems – where there is a need to
incorporate existing system constraints into
requirements specifications.

For software systems that need to be developed quickly,
with progressively shorter times-to-market as a key
requirement, development processes that facilitate fast,
incremental delivery are essential. The Twin Peaks model
that we have presented in this article represents much of the
existing current state-of-the-practice in software
development. It is also based on accepted research into
evolutionary development as embodied in Boehm’s spiral
model (Boehm 1988). What is missing, however, is a more
explicit recognition by the software development
community that such a model represents acceptable
practice.

Processes that embody some of the characteristics of the
Twin Peaks, are the first steps in tackling the need for
architectural stability in the face of inevitable requirements
volatility.
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Abstract

Context-aware services, especially when made available
to mobile devices, constitute an interesting but very chal-
lenging domain. It poses fundamental problems for both
requirements engineering, software architecture, and their
relationship. We propose a novel, reflection-based frame-
work for requirements engineering for this class of applica-
tions. The framework addresses the key difficulties in this
field, such as changing context and changing requirements.
We report preliminary work on this framework and suggest
future directions.

1. The Rationale

The purpose of this section is to highlight the key prob-
lems associated with requirements engineering in the area
of context-aware services. In order to properly classify con-
cepts, we will adopt Michael Jackson’s terminology, as in-
troduced in [10] and briefly reviewed in Sect. 2.1. Par-
ticularly the critical distinction he maintains between the
“world” and the “machine”. That terminology will be used
throughout the paper.

In this paper, by “context-awareness” we mean the abil-
ity of a particular service to adapt itself to a changing
context. One classical example is mobile commerce (m-
commerce) applications, which should run equally well on
full-fledged Web browsers running on desktop computers,
on graphic Personal Digital Assistants (PDAs), on Wire-
less Application Protocol (WAP)-enabled mobile phones,
and possibly even on low-end mobile phones, maybe using
Short Message System (SMS).

Requirements engineering in the area of context-aware
services, especially when these are targeted towards mobile
devices, poses new and very challenging problems, that can

be summarised aschanging contextandchanging require-
ments.

A changing context means essentially that one cannot,
while analysing requirements, rely on reassuring assump-
tions about the world. A changing world complicates the
machine by orders of magnitude. In the case of context-
aware mobile services, changing context may entail:

• changing location. This means not only that the ab-
solute location of a device can change, but also that
the relative locations of two devices must be taken into
consideration;

• changing bandwidth for networked devices, most often
in unpredictable ways;

• changing display characteristics e.g., graphics PDAs,
text-only mobile phones, colour vs. monochrome dis-
plays, etc.;

• changing usage paradigm. For example, from a user
perspective having a full-screen, button-centred PDA
is very different from using a scroll-centred mobile
phone;

• target platforms unknown in advance. Note that this
problem isnot implied by any of the preceding points.
Platforms may be unknown in advance, and the ser-
vice should anyway be able to dynamically adapt itself
to this aspect of the new context. This means of course
performing a very hard abstraction job in order to ex-
press the common set of characteristics in a general,
uniform way.

This very volatile context of course influences require-
ments. A key distinction, adapted from Axel van Lam-
sweerde’s work (see Sect. 2.2), is made here betweengoals
andrequirements. We define a goal as a fixed objective of
the service, whereas a requirement, in our view, is a more

Gilberto 
36



volatile concept that can be influenced by the context. For
example, in a m-commerce service, a goal can be “max-
imise usability of the system”, which is a very abstract ob-
jective that the system should tend to [6]. By contrast, a re-
quirement can be: “the display must show both the current
state of the shopping basket and a set of available options”.
This requirement of course makes sense only if the display
is large enough.

One more, fundamental issue related to such services
is that they usually belong to the “new economy”. This
means in general that these systems have an extremely short
time-to-market, which in turn means that traditional, heavy-
weight methodologies – such as the Rational Unified Pro-
cess (RUP) [5] – are not applicable.

For all these reasons, we argue that a new approach is
needed to tackle this kind of services. Such an approach is
the subject of this paper, and will be described as follows.
Section 2 will provide the reader with some background in-
formation. Section 3 outlines the reflective approach that
will be used throughout the work. Section 4 explains the
framework itself, while Sect. 5 sets out some of the key
challenges it poses. Finally, Sect. 6 sketches some possible
ways to move towards an implementation of the framework.

2. Background

The goal of this section is to give a very brief overview of
the two main influences behind this paper, namely Michael
Jacksons’s “world and machine” work [10], and Axel van
Lamsweerde’s “Kaos” [6].

2.1. The World and the Machine

[10] represents a cornerstone in understanding the rela-
tionships between a software artifact and the surrounding
world. Jackson identifies four facets of relationships be-
tween the world and the machine:

• the modelling facet, in which the machine simulates
the world;

• the interface facet, where the world touches the ma-
chine physically;

• the engineering facet, where the machine controls the
world;

• the problem facet, where the shape of the world and of
the problem influences the shape of the machine and
of the solution.

The discussion of the engineering facet turned out to be
particularly useful to us, and particularly the distinction be-
tween requirements, specifications, and programs. Require-
ments are concerned solely with the world, programs are

concerned solely with the machine, specifications are the
bridge between the two. Section 4 will use these concepts
in working out the boundaries between world and machine
within our framework.

2.2. Goal-oriented Requirements Engineering

The seminal works by Yue [17] and van Lamsweerde [6]
opened a new direction in requirements engineering: the
goal-orientedapproach. The key achievement of this new
approach is that it makes explicit thewhyof requirements.
Quoting van Lamsweerde, “[before goal-oriented require-
ments engineering] the requirements on data and operations
were just there; one could not capturewhy they were there
and whether they were sufficient” [16].

van Lamsweerde’s goal-oriented requirements engineer-
ing approach provides for three levels of modelling:

• the meta level, that refers todomain-independent ab-
stractions. This model contains concepts such as
goal , requirement , object , entity , and so
on;

• the base level, containing domain-dependent concepts,
such asservice , telephone , bandwidth , etc.
The structure of the meta-level model constitutes a
meta-level guide on how to conduct a requirements en-
gineering activity. For example, sincegoal andcon-
straint are linked by aoperationalisation
link, every concept in the base level that is an instance
of a meta-level conceptconstraint must be linked
to an instance of a meta-levelgoal by an instance of
a meta-leveloperationalisation link;

• the instance level, containing specific instances of the
domain-level concepts.

3. The Reflective Approach

“Computational reflection is the activity performed by
a computational system when doing computation about its
own computation” [11]. A reflective system maintains,at
run-time, data structures that materialise some aspects of
the system itself.

The problem of allowing a program to reason upon, and
possibly change, itself is not new, and has been studied ex-
tensively especially in the programming languages commu-
nity. For example, languages such as LISP and Prolog al-
low programs to be manipulated as data. More recently,
so-called “open languages” (such as OpenC++ [4] or Open-
Java [14]) allow programmers to influence the translation
process, thus actually providing for the definition of new
languages.
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For our purposes, reflection means that an explicit, run-
time representation of system behaviour is maintained,
which reifies the actual system behaviour in the sense that
changes in the latter are materialised in the meta-level de-
scription. Similarly, changes in the meta-level description
reflect back into the underlying system’s behaviour. This
“closed loop” approach is calledcausal connection. A re-
flective system is structured into a (potentially unbound)
number of logical levels: thereflective tower[13]. In prac-
tice, there are seldom more than two of them.

Reflective systems are based on two concepts: consis-
tency between internal and external representations of the
system, and separation between meta computation and com-
putation. The consistency is guaranteed by causal connec-
tion: computations performed in the base level are reified
by the meta level, whereas changes in the meta level reflect
back into the base-level. The separation between meta com-
putation (i.e., computation whose domain [11] is the base-
level) and computation (whose domain is the world) is es-
sential in order to achievetransparency: new functionality
can be added to an existing system in a transparent way i.e.,
without the existing system noticing. This is especially true
of functionality implementing non-functional requirements,
such as fault-tolerance and security.

Why do we regard a reflective approach as such a fun-
damental issue? First of all, let us make one point clear:
reflection, at least in our view, is amechanism, not a goal.
More precisely, it is a mechanism for manipulating meta
data in a clean and consistent way. Now, reflection is key
in this field because manipulating meta data is essential in
this context of highly-dynamic services, as these must be
able to dynamically adapt themselves to changing context
and changing requirements.

4. The Framework

Figure 1 shows the key concepts of the proposed frame-
work.

Context

Environment Service

Service Description

Requirements

Reification (monitoring)

Goals

Determine

OperationaliseInfluence

ReificationReflection

Constrains

Figure 1. The overall framework.

The rest of this section is devoted to a detailed explana-
tion of the framework constituents. This explanation will

follow a precise path that moves from the outside inward
i.e., from the outer world towards the boundaries with the
machine, and finally inside the machine itself. Therefore,
we will start from what is available in the world: goals
and environment. We will operationalise goals into require-
ments, and represent environment information into a con-
text; all of this still belongs in the world. Later we will
move from requirements and context towards a service de-
scription, which is the bridge between the world and the ma-
chine (what Michael Jackson calls “specification”). Even-
tually we move inside the machine with the notion of a ser-
vice. Note that throughout the paper we will stick to the
notion of the machine as pure software; in other words, we
will consider devices (PDAs, mobile phones, etc.) as part
of the world.

4.1. Goal

A goal is an objective the system should achieve through
cooperation of agents in the software-to-be and in the envi-
ronment [6]. In our view goals areimmutablei.e., they do
not change with the changing context. They represent the
ultimate objective the service is meant to achieve. Changing
the goals would mean changing the service itself. Along the
lines of [6], a goal is not immediately achievable through
actions performed by one or more agents; in other words, a
goal is a somewhat abstract and long-term objective.

4.2. Environment

By “environment” we mean whatever in the world pro-
vides a surrounding in which the machine is supposed to
operate. Taking the environment into account is crucial be-
cause it strongly influences the behaviour of the machine.
Recall the example of the m-commerce service. In this case
the environment comprises such things as bandwidth, loca-
tion (absolute and relative), service availability, characteris-
tics of the device, and many more issues.

An alternative definition of environment might be:
“whatever over which we have no control”. If the band-
width is low, the connection is erratic, the PDA’s display is
small, the person carrying the mobile phone is driving on
a mountain road with many tunnels, this is something that
cannot be solved by software. The job of a software engi-
neer can be summarised as a struggletowardsthe goalde-
spitethe environment; all we can do with the environment
is know it and describe it in the best possible way, but we
cannot change it.

4.3. Context

Context is defined as the reification of the environment.
Note that in this case there is no reflection whatsoever (i.e.,
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no downwards arrow) because, as explained in the previous
section, the environment is not modifiable. A context thus
provides a manageable, easily manipulatable description of
the environment. Most important, such description is con-
tinuously, dynamically updated to take into account the fact
that the environment also continuously changes.

4.4. Requirement

A requirement represents one of the possible ways of
achieving a goal. A requirement operationalises a goal, in
that it represents a more concrete, short-term objective that
is directly achievable through actions performed by one or
more agents. One key assumption that we make is thatre-
quirements can change during system execution, which dif-
ferentiates them from goals. In fact, due to a changing envi-
ronment, the context may change in such a way that the op-
erationalisation of the goals is no longer valid. This calls for
monitoring of the context with respect to the goals: changes
in the context may yield the necessity for changes in the
requirements.

In very informal terms, one may say that requirements
are a trade-off between the noble goals and the actual real-
ity. For example, the goal of an m-commerce service might
be to provide for a highly interactive user experience. Given
this goal, if the context is favorable (e.g., high bandwidth,
large colour display, Java Virtual Machine implementation
available on the PDA) a requirement might be “use a col-
orful Java applet to represent the state of the shopping bas-
ket”, whereas if the connection is slow or there is no JVM
available, the requirement may be mitigated into “use a 16-
colour animated gif”.

4.5. Service Description

A service description is the meta-level representation of
the actual, real-world service. As such, it is obviously influ-
enced by the requirements, hence theDetermine box in
Fig. 1. A service description might seem redundant, as one
may think of going directly from requirements to service.
Why is an intermediate component needed? The answer
lies in the reflective approach and in the need for contin-
uously monitoring the service. In fact, the service can be
influenced by the environment, and can therefore change in
unpredictable ways. These changes can lead to inconsisten-
cies between the service and the requirements. This calls for
monitoring of the former with respect to the latter. A ser-
vice description is a meta-level description of a service. If a
suitable formalism is devised for this description, the latter
can easily be compared against the requirements in order to
establish whether a runtime violation [8] has occurred.

Now, suppose such a violation is detected. We argue that
the “reflective way” is a clean and consistent manner of per-

forming run-time changes to the underlying level (which is,
at last, the actual system as perceived by the user). This
approach consists in manipulating the service description in
order to reconcile the service with the requirements. The
causal connection, in particular the downwards link (reflec-
tion) provides for the consistency between the service de-
scription and the service itself. Architectural reflective tech-
niques can be employed to that aim [2, 3, 15].

Since the service description describes the behaviour of
the service, it can be regarded as a system specification in
the sense used in [10]. Thus, it serves as the bridge between
the world and the machine.

4.6. Service

Finally, the service is the heart of the machine. It pro-
vides the actual behaviour as perceived by the user. It is
worth pointing out that, even though it is only this service
that actually interacts with the user, it is the last link in the
chain described above; in other words, the actual value de-
livered to the user is not the service alone, but also the whole
hidden reflective infrastructure.

It is also worth pointing out that, apart from goals that
are specified off-line and never changed (recall, changing
goals means changing what the service provides, and this
means at the very least pulling the service down), all the
remaining items appearing in Fig. 1 have a run-time image,
as emphasised in Fig. 2, where the run-time components are
greyed. Finally, Fig. 3 emphasises (in grey) the meta-level

Context

Environment Service

Service Description

Requirements

Reification (monitoring)

Goals

Determine

OperationaliseInfluence

ReificationReflection

Constrains

Figure 2. The run-time components.

components i.e., all those components that, even having a
run-time image, are not directly visible to the end user.

5. The Challenges

The problems examined in the previous section represent
a formidable challenge for any software engineer. More
precisely, the following points must be addressed.
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Figure 3. The meta-level components.

5.1. Representing context information at run-time

One of the key issues in these systems is that context
is continuously changing. Therefore, requirements, in the
first place, and system behaviour must adapt themselves to
the changing context. In order for this to be feasible, the
context (and its changes) must be represented at run-time.
This representation must take place in a way that is both
readily understandable by humans and easily manipulatable
by machines.

5.2. Bringing requirements information to run-time

In order to be able to perform run-time service descrip-
tion monitoring against requirements, these must be readily
accessible at run-time (see Sect. 4.5) [9].

In addition, as explained in Sect. 4.4, requirements typi-
cally change over time, so this representation must not sim-
ply be a read-only view, but must rather be an evolvable
one.

5.3. Bringing architecture information to run-time

This is admittedly one of the most controversial points. It
is widely accepted in the software engineering community
that a suitable software architecture design phase should al-
ways precede the actual implementation. However, in most
cases all information about system architecture is lost in the
running system [15]. In other words, a running systemim-
plementsa specification; however, this specification is scat-
tered throughout the code, and no explicit representation of
it exists at run-time.

6. Implementation Issues

6.1. Describing the Meta Levels

One key question to be answered is: “How to describe
the meta levels in an easy and powerful way?” One particu-
larly promising way is the use of XML for such description.

The main reasons behind such a choice are sketched in the
sequel:

• XML is a world standard. A description implies a for-
malism, so why not choose a standard one?

• no need to build custom parsers. A number of products
implementing the standard DOM and SAX APIs are
widely available, often at no cost;

• a number of standards, APIs, and products are avail-
able to easily and efficiently manipulate XML files,
first of all XSLT;

• a lot of work has been (and is being) done at
UCL in this field; in particular, the work on consis-
tency checking of distributed documents (that yielded
xlinkit [12]) could prove a very useful starting
point in determining whether the runtime system be-
haviour is still aligned with the requirements.

6.2. Where Does All This Belong?

An interesting question to ask is: Where does all the
framework belong? Or, in other words, should every sin-
gle service take care of this on its own? Can all, or at least
some, of the framework be collected in a separate product
which can be implemented once and for all and customised
at will? If so, which parts are strictly service-dependent and
which can be made common?

We do not yet have a definitive answer to these questions.
However, our current thought is that it should be possible to
provide a service-independent set of mechanisms for repre-
senting context in a significant class of context-aware ser-
vices. The mechanisms by which such a context is popu-
lated in any particular case is clearly a matter for the device
vendor.

On the service description side, the situation is more
complex, and service description schemes drawn from ex-
isting middleware frameworks [1, 7] may be the right direc-
tion.
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ABSTRACT
Though acknowledged as being very closely related,
requirements engineering and architecture modeling have
been pursued largely independently of one another in the
past years. The inter-dependencies and constraints between
architectural elements and requirements elements are thus
not well-understood and subsequently only little guidance
is available in bridging requirements and architectures. This
paper identifies a number of relevant relationships we have
identified in the process of trying to relate a requirements
engineering approach with an architecture-centered
approach. Our approach, called CBSP (Component-Bus-
System, and Properties) provides an intermediate language
for representing requirements in an architectural fashion. In
this paper, we will present the basics of our CBSP approach
but also emphasize the challenges that still need to be
resolved.

Keywords
Requirements engineering, software architecture,
traceability, evolution, model integration, CBSP

1 INTRODUCTION
Requirements largely describe aspects of the problem to be
solved and constraints on the solution. Requirements are
derived from the problem domain (e.g., medical
informatics, E-commerce, avionics, mobile robotics) and
reflect the, sometimes conflicting, interests of a given set of
system’s stakeholders (customers, users, managers,
developers). Requirements deal with concepts such as
goals, conflicts (issues), alternatives (options), agreements,
[3], and, above all, desired system features and properties
(both functional and non-functional).

Architectures, on the other hand, model a solution to the
problem described in the requirements. Software
architectures provide high-level abstractions for
representing the structure, behavior, and key properties of a
software system. The terminology and concepts used to
describe architectures differ from those used for the
requirements. An architecture deals with components,
which are the computational and data elements in a
software system [10]. The interactions among components
are captured within explicit software connectors (or buses)
[11]. Components and connectors are composed into
specific software system topologies. And, architectures
capture and reflect the key desired properties of the system
under construction (e.g., reliability, performance, cost)
[11].

The relationship between a set of requirements and an
effective architecture for a desired system, however, is not
readily obvious. This conflicts our need of having
requirements engineering and architectural modeling being
intertwined and mutually-dependent development activities
in order to ensure their complete and consistent treatment
(i.e., refinement). In context of requirements, architectural
modeling has to satisfy the roles of (1) supporting fast
trade-off analyses about requirements’ feasibility via the
modeling of architectural options, and (2) supporting the
modeling of architectural solutions in a manner that reflects
functional and non-functional properties of requirements in
a form that is more readily refineable to code. In context of
architectural modeling, requirements engineering has to
define (1) functional and non-functional constraints that
affect architectural decisions, and, (2) rationale that defines
purpose and goal of architectural solutions.

The existence of conceptual differences between what to do
(requirements) versus how to do it (architecture, design,
and code) constitutes a gap. This gap has been often
observed and frequently documented [9], however, despite
massive attention it remains unsolved. It is still a difficult
problem on how to transition from requirements to an
architecture and vice versa. Some of those many issues
involve: How to interpret informal requirements in context
of more formal architectures? How to elicit functional and
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non-functional aspects out of requirements? How to infer
architectural topologies and styles out of constraints
imposed by given requirements? How to reason about
mismatches among requirements or between requirements
and given architectural solutions? How to maintain
requirements and architectures interpedently and yet
consistently while both are being evolved? And how to do
all of the above if hundreds if not thousands of
requirements need to be considered?

To address these challenges and others we have developed
a light-weight method for identifying key architectural
elements and their dependencies based on given
requirements. Our method, called the CBSP approach
(Component-Bus-System-Property), helps in refining a set
of given requirements into potential architectures by
applying a taxonomy of architectural dimensions. Input to
our method can be a set of (incomplete) requirements
captured in textual or formal descriptions and containing
rationale. The result of CBSP is an intermediate model that
captures “architectural decisions” of requirements in form
of an incomplete architecture.

At the current state we applied CBSP in context of
EasyWinWin [2,6], a requirements elicitation technique,
and C2 [12], an architectural style for highly-distributed
systems. However, we believe that it can be applied to
other requirements elicitation and architecture-capture
approaches. The following discusses the basics of our
CBSP approach in context of an example followed by an
update of the current state of the approach and needed
future work to make our technique more comprehensive.

2 CARGO ROUTER CASE STUDY
We have performed a thorough requirements, architecture,
and design modeling exercise to evaluate CBSP in the
context of a cargo router application. The Cargo Router
system was built to handle the delivery of cargo from
delivery ports (e.g., shipping docks or airports) to
warehouses. Cargo is moved via vehicles (e.g., trucks and
trains) which are selected based on terrain, weather,
accessibility and other factors. The primarily responsibility
of the system’s user is to initiate and monitor the routing of
cargo through a GUI. The user can also request reports and
estimations on cargo arrival times and vehicle status (e.g.,
idle, in use, under repair).

We used the EasyWinWin tool to gather and negotiate
requirements for the cargo router system. The WinWin
negotiation model [4] and its supporting tool (EasyWinWin
[2]) are based on four artifact types: Win Conditions,
Issues, Options and Agreements. Win conditions capture
the stakeholder goals and concerns with respect to the new
system. If a Win condition is non-controversial, it is
adopted by an Agreement. Otherwise, an Issue artifact is
created to record the resulting conflict among Win
Conditions. Options allow stakeholders to suggest
alternative solutions, which address Issues. Finally

Agreements may be used to adopt an Option, which
resolves the Issue.

Three stakeholders participated in a 1-hour brainstorming
session and gathered 81 statements (stakeholder win
conditions) about its goals.

3 CBSP STEPS
To create a “CBSP view” of a given set of requirements,
we identified a five-step process [7], four of which are tool
supported by EasyWinWin. In this section we will discuss
all five steps in context of the Cargo router example.

Identify Core Requirements

Our approach is meant to be used in an iterative manner,
where requirements get continuously added or changed.
Thus, initially, we found it useful and necessary to reduce
the complexity of a given problem by identifying core
requirements. In this step, stakeholders vote about
importance and relevance of a requirement. Naturally,
requirements that did not get included in this step can be
included in a future iteration of our process.

Architectural Classification of Requirements

To identify architecture-relevant information out of the
pool of requirements, we used a voting process to
categorize requirements into six CBSP dimensions
(C,B,S,CP,BP,SP). We thus asked all stakeholders to
individually decide whether they believe the given
requirements could contain component-relevant
information (C), bus (connector)-relevant information (B),
or is a more general system requirement (S) that affects a
larger part of the architecture. Since we were also interested
in non-functional requirements, we also gave the
stakeholders the option to vote for C-B-S properties (CP,
BP, and SP). For instance, the requirement “R09: Support
cargo arrival and vehicle availability estimation” was voted
to be strongly component-relevant by all stakeholders
whereas the requirement “R25: the system must be
operational within 18 months” was not voted to be
architecturally relevant. Some requirements also received
contradictory votes: The requirement “R10: Automatic
routing of vehicles” was voted component1 relevant (C) by
all stakeholders but only system property (SP) relevant by
one stakeholder.

Identification and resolution of mismatches

As the last example showed, stakeholders may have distinct
interpretations of requirements. Naturally, those
discrepancies may lead to distinct interpretations of the
architectural relevance of those requirements. Indeed, these
are the kinds of conflicts we are seeking since the mapping
from requirements to architecture often is a matter of

1 Components can be either data components or processing
components but that discussion is out of the scope here.
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understanding the meaning of requirements in context of
architectures. The conflict above indicates a case where
two stakeholders have different opinions. A subsequent
discussion step thus has to be initiated to identify and
resolve that difference. In above example, one stakeholder
thought this requirement implied that (1) the system needs
to suggest paths that vehicles travel (e.g., via navigation
points) but not their sources and targets whereas another
stakeholder thought this requirement implied that (2) the
system also needs to identify the sources and destinations
for vehicles. The discussion thus clarified this conflict and
an instant re-vote identified this requirement as component
relevant and system property relevant (SP).

Table 1: Concordance Matrix.

Consensus

ACCEPT
requirement as
architecturally
relevant if at

least one largely
or fully vote

REJECT
requirement as not

architecturally
relevant if no vote

higher than partially

Conflict

DISCUSS
and resolve reason of conflict before

proceeding (e.g., properties are implicitly
captured and often ambiguous)

Table 1 shows rules that describe conflict handling during
CBSP voting. In case of consensus among the stakeholders,
the requirements are either accepted or rejected based on
the voted degree of architectural relevance (note that
stakeholders are given the option of four votes: no, partial,
strong, or full architectural relevance; our tool provides
statistical reasoning on how to infer consensus). If the
stakeholders cannot agree on the relevance of a requirement
to the architecture, they further discuss it to reveal the
reasons for the different opinions until a point of consensus
is reached. This typically leads to a clarification of the
particular requirements as above example has shown.
Figure 1 (left) depicts a few requirements that were voted
to be architecturally relevant.

Architectural refinement of requirements

Architecturally relevant requirements explicate at least one
CBSP dimension that all stakeholders agreed on to be
relevant. Obviously, some requirements address multiple
dimensions. For instance, the requirement “R09: Support
cargo arrival and vehicle availability estimation” was voted
to be fully component relevant, fully system relevant, and
largely bus relevant. In order to understand requirements
better and to better relate them to other requirements it is
necessary to refine them into more atomic entities.

R09: Support Cargo Arrival and
Vehicle Availability Estimation

R09_Cp: Cargo Arrival Estimator

R09_Cp: Vehicle Availability
Estimator

R09_1d: Cargo (weight, shape)

R09_Cd: Vehicle

R09_Cd: Location

R10: Automatic or Manual
Routing of Vehicles

R10_Cp: User Interface for
Vehicle Route Selection

R10_Cp: Vehicle Route Selector

R10_CP: Level of Automation of
Vehicle Route Selector

R01: Support for Different Types
of Cargo

R10_Cd: Warehouse

R10_Cd: Route

R22: Match Cargo Needs with
Vehicle Capabilities

R22_Cp: Cargo/Vehicle Matcher R22_Cd: Vehicle Cargo Shape

R22_Cd: Vehicle Cargo Weight

R10_B: Comm-Link to Vehicle

Architecture-Relevant
Requirements

CBSP Artifacts and Dependencies as Created During Refinement

Figure 1: Sample Artifact Relationships in Cargo Router Example.
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CBSP dimensions also play an important role in the
refinement process of requirements. For instance, the
requirement “R09: support cargo arrival and vehicle
availability estimation” was determined C, B, and S
relevant. This implied that the refinement should reveal
component, bus, and system relevant aspects. Indeed, on a
high level, this requirement supports two processing
components: “R09_Cp Cargo arrival estimator” and
“R09_Cp Vehicle availability estimator.” Cargo arrival
estimator depends on data components like cargo (“R09_Cd

Cargo”), the vehicle (“R09_ Cd Vehicle”) it is on and the
location of the vehicle (“R09_ Cd Location”). Vehicle
availability estimator only depends on the knowledge of the
vehicle and its location (but not cargo). Above requirement
was also rated bus-relevant. This was the case because the
location of a vehicle (and its cargo) is variable as it moves.
A connector (bus) is therefore needed to allow the system
to track vehicles (see Figure 1 right). Note that we now do
not talk about requirements any more but instead of pieces
of architecturally-relevant information elicited from
requirements – we refer to those pieces as CBSP artifacts.

It must be noted at this point, that generally only
component, bus, and system artifacts are seen as candidates
for refinement. Properties (CP, BP, SP) are harder to refine
since they tend to span large parts of a system.

Derivation of Architectural Style and Architecture
CBSP artifacts and their dependencies are valuable for
architectural modeling. For instance, we can see that the
estimator components depend on vehicle information, thus,
indicating potential architectural implications. Naturally,
CBSP artifacts and their dependencies also make
dependencies between requirements more explicit. For
instance, we can assume some dependency between “R09:
support cargo arrival and vehicle availability” and “R10:
automatic or manual routing of vehicles” because they both
”share” the CBSP artifact “R09_Cd: Vehicle.”

In context of the Cargo Router we found that CBSP
artifacts mapped straightforwardly to architectural elements
defined in C2. For instance, the C2 architecture has
components called Vehicle and Estimator and the
architecture makes use of explicit data connectors (buses)
to realize component interactions. However, we are not yet
in a position where we could actually derive architectures
or styles out of CBSP properties. We discuss this and other
issues in future work.

4 FUTURE WORK
We found CBSP very useful in organizing requirements
and systematically refining them but at the current state
some of the activities are still rather labor intensive.
Naturally, requirements engineering is people centric,
however, this section will discuss how automation can aid
stakeholders in coming up with requirements and
architectures in a faster more reproducible way. We
currently provide tool support for capturing requirements,

voting on them, identifying conflicts, refining them, and
maintaining trace dependencies. There are, however, a few
areas that have not been explored in depth.

Architectural Trade-off Analyses
Thus far we treated requirements and architectures very
static and defined how a CBSP approach can bridge the
two. However, requirements engineering is much more
iterative where stakeholders uncover not just goals but also
issues (conflicts) and potential options (solutions). Issues
may arise because of architectural conflicts (i.e., no suitable
architectural option can be found that satisfies given
requirements). We believe that CBSP artifacts are not only
useful for refinement but they also provide “feedback
loops” in cases where architectural decisions impact
requirements. The approach thereby helps to capture
findings from architectural modeling and simulation and
supports analysis of an architecture for adherence to
requirements.

For example, some issues can only be identified after a
draft architecture has been modeled and described. These
issues and corresponding architectural options can be
captured by architects as CBSP elements to capture the
rationale of architectural decisions and to relate this
rationale with the relevant requirements. (A Bus Property
issue (e.g., bottleneck) could be identified through
simulation experiments, a component option could be
suggested by the architect, etc.) This capturing of tradeoff
decisions is similar to the ATAM technique described in
[8]

Problems identified through architectural models and
simulation can be captured as CBSP elements, such as
“I12_S Three seconds system response time not possible.”
Architectural options and alternative solutions can be also
described as CBSP elements. For example “O24_C
Consider use of OTS staff management component.” CBSP
provides as an intermediate model between a requirements
and an architecture definition approach that allows “bi-
directional” traces; the resulting intermediate model
facilitates synthesis of negotiation artifacts into
architectural elements and enables feedback from
architecture modeling and analysis.

CBSP can also be interpreted as a way to negotiate about
architectural concerns (win conditions, issues, options, and
agreements) with clearly established links to both the
related requirements and the architectural elements.

CBSP Refinement of Issues, Options, and Agreements

If CBSP can be used to diversify requirements engineering
via architectural trade-off analyses then naturally the
subsequent negotiation results may also be in need of
refinement. For instance, if a potential option were
suggested to resolve a given issue then it would be
desirable if CBSP could support the “explorative”
refinement of that option in context of the rest of the
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system to evaluate its
feasibility.

To this end, Figure 2
shows one possible
situations where
requirements issues and
options can be used to
guide the refinement
process. The left part of
the figure shows three
win condition (W1, W2,
and W3) which could be
requirements of an earlier
negotiation process or
simply new stakeholder
goals. The middle part of
the figure shows the
corresponding CBSP artifacts (note that we did not define
their interdependencies in the same detail as we did in
Figure 1).

After some time (potentially with the help of architectural
modeling) a problem (issue) is encountered between win
conditions W1 and W2. It is found that in order to optimize
concurrent routings (W1), we need to support bi-directional
real-time communication. This contradicts W2 which only
requires unidirectional communication from system to
vehicle (e.g., to forward routing requests). This conflict
could naturally be resolved via an option (O1) that states
that we need a two-way bus; an option which would
“replace” the win condition W2. In the CBSP view this
causes a dilemma in that one requirement “artifact”
requires a uni-directional bus whereas the other requires a
bi-directional bus. Thus, CBSP refinement would also have
to be complemented by a minimization step that would
interpret requirements interdependencies (i.e., like the
replace link between O1 and W2) to infer needed CBSP
artifacts and their interdependencies. We believe that such
a minimization step could be largely or even fully
automated.

Inconsistency and Incompleteness Issues
Simplifying the refinement of requirements to architecture
and reasoning about requirements feasibility in context of
architectural modeling are two aspects we believe CBSP
could support. However, the relationships between
architecture, CBSP, and the negotiation rationale may
become very complex when both architecture and
requirements evolve independently. To this end, we found
that CBSP could also provide powerful support for
simplifying inconsistency detection between requirements
and architecture. For instance, we observed the following
cases:

• Inconsistencies between CBSP artifacts/dependencies
and their actual realization: For instance, if a CBSP
artifacts is categorized as a component but is

implemented as a connector in the architecture then
this could indicate a potential lack of understanding of
either the requirement or architecture. Similar
conclusions can be drawn when CBSP dependencies
do not match architectural ones.

• Inconsistencies between architecture/CBSP and
negotiation agreements: Take, for instance, the
example of the Optimizer component in Figure 2
which depends on the Two-Way-Bus. If during the
WinWin negotiation it is decided to implement the
Optimizer but at the same it is decided to implement
the One-Way-Bus instead of the Two-Way-Bus (i.e., O1
would not get adopted) then this indicates a potential
mismatch (Optimizer needs the Two-Way-Bus).

• Completeness mismatch between architecture and
requirements: For instance, CBSP can help in
identifying whether all agreed-upon architecturally-
relevant artifacts have actually been realized in the
architecture. Similarly, CBSP can help in pointing out
if there are any architectural elements for which there
are no corresponding negotiation artifacts.
Completeness issues such as the ones above could
suggest lack of awareness by stakeholders of some
architectural aspects that could have influenced the
negotiation process and vice versa.

Deriving/Validating Architectural Styles out of CBSP
In our work to date, we have chosen to use architectural
styles as guides in transforming the initial architectural
decisions produced by CBSP into an actual architecture.
Specifically, we have employed the C2 style [12] as
discussed above. However, each style is particularly well
suited for a certain type of problem; therefore, our intent is
to extend CBSP to leverage other styles as well.

We have begun exploring the feasibility of composing
CBSP artifacts into an architecture according to the Pipe-
and-Filter [11], GenVoca [1], and Weaves [5] styles, in

W1

Optimize
concurrent routing
to increase speed

of high-priority
cargo delivery

W2

Support real-time
communication
from system to

vehicle

I1
Problem: In order to
optimize concurrent
routings, we need to

support bi-directional real-
time communication

Support bi-directional real-
time communication between

system and vehicle

<<replaces>>

O1

Optimizer Vehicle

Warehouse

One-Way
Bus

Two-Way
Bus

<<depends>>

Negotation Rationale View CBSP View

Cargo Cargo
types

support for different
types of cargoW3

real-time
bi-direct.

Cargo

Optimizer Vehicle

Warehouse

Two-Way
Bus

<<depends>>

Minimized CBSP View

Cargo Cargo
types

real-time
bi-direct.

Cargo

Figure 2. From Negotiation rationale to an CBSP view using Minimization
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addition to C2. Each style imposes different constraints
that guide the composition of CBSP artifacts into an
architecture. For example, in the cargo router example, the
Optimizer CBSP artifact depends on the Vehicle and
Warehouse artifacts. C2’s substrate independence principle
mandates that Optimizer be placed below them in the
architecture. Since there are no direct dependencies
between Vehicle and Warehouse, they may be adjacent.
The same dependency relationship would have different
topological implications in a different style. For example,
GenVoca would require Optimizer to be above the Vehicle
and Warehouse components (while still allowing Vehicle
and Warehouse to be at the same level). Furthermore,
unlike C2, GenVoca would allow direct interactions among
its components, without the intervening connectors.

Similarly, if a component in a system, e.g., Weather
Module, communicates by producing streams of data, while
other components, e.g., Vehicle, assume discrete event-
based communication, then the style selected to represent
the architecture must supply explicit software connectors to
mediate between the two types of interaction. In this case,
GenVoca would not be an adequate candidate, while
Weaves, Pipe-and-Filter, and C2 may be, as all three of
them provide explicit connectors. However, if we further
consider the types of component interaction supported by
the three styles, we see that neither C2 nor Pipe-and-Filter
provide adequate solutions in this case: C2 assumes purely
discrete event-based communication, while Pipe-and-Filter
assumes purely data stream-based communication. This
would leave Weaves as the obvious choice.

Our future work will center around expanding the number
of architectural style we are considering. We will also
leverage existing studies on styles to codify the style
elimination and selection criteria such as the ones outlined
above. Finally, we intend to determine whether there are
architectural styles that are inherently incompatible with
CBSP, and the reasons for that incompatibility

5 CONCLUSION
This paper introduced the CBSP approach for refining
requirements to architectures. The process is partially tool
supported and is currently integrated with our EasyWinWin
negotiation process. Besides requirements refinement, the
CBSP process also has great potential for improving a
variety of related issues like consistency and conformance
and architectural trade-off analyses. Future work involves
the exploration of those issues as well as a more tight
integration of our models and tools.
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Abstract

Uncertainty of system properties (e.g., performance,
reliability, security, interoperability, usability, etc.) often
hinders the progress of requirements negotiation. Software
architecture evaluation techniques enable stakeholders to
clarify the uncertainty of system properties. In another
hand, software architecture alternatives cannot be
evaluated in a thorough way without consideration of
different stakeholders’ negotiated requirements. Effective
requirements negotiation is therefore needed to evaluate
architecture alternatives.

This paper proposes an integrated decision-making
framework from software requirements negotiation to
architecture evaluation based on WinWin and CBAM (Cost
Benefit Analysis Method). The integrated framework helps
stakeholders elicit, explore, evaluate, negotiate, and agree
upon software architecture alternatives based negotiated
requirements.

Keywords: ABASs, ATAM, CBAM, conflict resolution,
requirements negotiation, WinWin.

1. Motivation

Many software projects have failed because their
requirements were poorly negotiated among stakeholders
[4]. Several keynote speakers in the International
Conference on Software Engineering (ICSE) emphasized
the importance of requirements negotiation as follows:

• “How the requirements were negotiated is far more
important than how the requirements were specified”
(Tom De Marco, ICSE 96)

• “Negotiation is the best way to avoid “Death March”
projects” (Ed Yourdon, ICSE 97)

• “Problems with reaching agreement were more critical to
my projects’ success than such factors as tools, process
maturity, and design methods” (Mark Weiser, ICSE 97)

The WinWin negotiation model, developed by the USC
Center for Software Engineering, provides a general
framework for successful requirements negotiation. In
WinWin, stakeholders elicit their win conditions, identify
issues/conflicts, generate options to resolve the issues,
negotiate the options and reach agreement [1,2,3].
However, it is not clear which architecture alternatives
should be considered as the options and/or how they should
be explored, evaluated, and negotiated in order to reach
agreement among stakeholders.

As an architecture evaluation technique, the CMU
Software Engineering Institute has developed the Cost
Benefit Analysis Method (CBAM) that explores, analyzes,
and makes decisions regarding software architecture
alternatives (called "architecture strategies") [14]. Still, it is
not clear how the explored architecture strategies satisfy the
initial requirements (goals/constraints) of stakeholders who
have different roles, responsibilities, and priorities. A
general negotiation framework to aid in progressing from
requirements to architectural decisions is needed.

In this paper, we propose an integrated decision-
making framework, based on WinWin and CBAM, that aids
in systematically determining architecture alternatives from
negotiated requirements among stakeholders. WinWin
provides a general negotiation framework to elicit
requirements, explore architecture alternatives, and reach
agreement. CBAM helps stakeholders negotiate architecture
alternatives in a systematic way.

This paper is organized as following: Section 2
describes the context of the work. Section 3 presents and
describes the proposed framework. In Section 4 and 5,
future research challenges and conclusions are presented.

2. Context For the Work
2.1 WinWin Negotiation Model
The WinWin model provides a general framework for
identifying and resolving requirements conflicts by eliciting
and negotiating artifacts such as win conditions, issues,
options, and agreements. The WinWin model uses Theory
W [5], "Make everyone a winner", to generate the
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stakeholder win-win situation incrementally through the
Spiral Model. WinWin assists stakeholders to identify and
negotiate issues (i.e., conflicts among their win conditions),
since the goal of Theory W involves stakeholders
identifying their win conditions, and reconciling conflicts
among win conditions.

The dotted-lined box (steps 1,2,3, and 8) shown in
Figure 1 presents the WinWin Negotiation Model.
Stakeholders begin by entering their win conditions (step
1). If a conflict among stakeholders’ win conditions is
identified, an issue schema is composed, summarizing the
conflict and the win conditions it involves (step 2). For each
issue, stakeholders prepare candidate option schemas
addressing the issue (step 3). Stakeholders then evaluate the
options, delay decision on some, agree to reject others, and
ultimately converge on a mutually satisfactory option. The
adoption of this option is formally proposed and ratified by
an agreement schema, including a check to ensure that the
stakeholders’ iterated win conditions are indeed covered by
the agreement (step 8). Experience also indicates that
WinWin is not a panacea for all conflict situations, but
generally increases stakeholders’ levels of cooperation and
trust [4, 11].

Agreement is not always guaranteed. There are
often tradeoffs among win conditions that need to be
balanced. CBAM provides a means to balance these
tradeoffs, and a framework for discussion that can lead to
resolution.

2.2 CBAM (Cost-Benefit Analysis Method)
The ATAM [13] uncovers the architectural

decisions made in a software project and links them to
business goals and QA (quality attribute) response
measures. The CBAM [14] builds on this foundation by
additionally determining the costs, benefits, and
uncertainties associated with these decisions.

Given this information, the stakeholders can then
decide how to address their important QA response
measures. For example, if they felt that the system’s
reliability was not sufficiently high they could use the
ATAM/CBAM methods to decide whether to use redundant
hardware, checkpointing, or some other architectural
decision addressed at increasing the system’s reliability. Or
the stakeholders can choose to invest their finite resources
in some other QA—perhaps believing that higher
performance will have a better benefit/cost ratio. A system
always has a limited budget for creation or upgrade and so
every architectural choice is, in some sense, competing with
every other one for inclusion.

The CBAM is a framework and it does not make
decisions for the stakeholders; it simply aids them in the
elicitation and documentation of costs, benefits, and
uncertainty and gives them a rational decision-making
process.

When an ATAM is completed, we expect to have a set
of artifacts documented as follows:

• a description of thebusiness goalsthat are crucial
to the success of the system

• a set of architectural viewsthat document that
existing or proposed architecture

• a utility tree which represents a decomposition of
the stakeholders’ goals, for the architecture. The
utility tree starts with high-level statements of QAs
and decomposes these into specific instances of
performance, availability, etc. requirements and
realizes these as scenarios

• a set ofrisks that have been identified

• a set ofsensitivity points(architectural decisions
that affect some QA measure of concern)

• a set oftradeoff points(architectural decisions that
affect more than one QA measure, some positively
and some negatively)

The CBAM builds upon this foundation of information by
probing the architectural strategies (ASs) that are proposed
in response to the scenarios, risks, sensitivity points, and
tradeoffs. The steps of the CBAM are as follows. Each of
these steps can be executed in the first (triage) and second
(detailed examination) phases:

1. Choose Scenarios and Architectural Strategies
2. Assess QA Benefits
3. Quantify the Architectural Strategies’ Benefits
4. Quantify the Architectural Strategies’ Costs and

Schedule Implications
5. Calculate Desirability
6. Make Decisions

3. The Steps of the Integrated Framework

The integrated framework shown Figure 1 begins with the
WinWin process, which elicits what stakeholders need,
identifies conflicts in these needs among the stakeholders,
and explores the conflict-resolution options. CBAM is
proposed here as a means to supplement the WinWin
process of systematically evaluating and negotiating
software architecture alternatives (as conflict-resolution
options) by eliciting stakeholders’ benefits and costs. The
process may lead to agreement by itself (although this is not
guaranteed). Reviewing each stakeholder' win conditions at
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this final stage may further aid the next cycle of
reconciliation or compromise in the WinWin Spiral Process
model.

Figure 1: The Integrated Framework

The steps shown in Figure 1 are elaborated in the
following subsections.

Step 1: Elicit Win Conditions
Each stakeholder identifies their win conditions. This step
provides the basis for identification of ideal project features
by stakeholders.

Step 2: Identify Quality Attribute Conflicts/Issues
The lists of win conditions are then reviewed to identify
quality attribute conflicts. The identified conflicts are then
categorized as being either a direct conflict or a potential
conflict. This step may be accomplished manually, but
future work may be able to incorporate software agents.

Step 3: Explore Architecture Strategies as Conflict-
Resolution Options
Based upon the conflicts/issues generated in step 2, the
stakeholders can now generate conflict-resolution options.
It is best to generate a list of options which may emphasize
those characteristics preferred by each stakeholder, but that
include some balance representing needed conditions of all
stakeholders. These options are called Architectural
Strategies (ASs) in the CBAM. Where do such ASs come
from? They can come from any number of areas: from the
architects’ experience, by borrowing from systems that
have experienced similar problems in the past, or from
repositories of design solutions, such as Design Patterns
[10] or ABASs [15].

Step 4. Assess Quality Attribute (QA) Benefits
To aid in decision making, the stakeholders now need to
determine both the costs and benefits that accrue to the
various ASs. Determining costs is a well-established
component of software engineering. This is not addressed
directly by the CBAM—we assume that some methods of
doing this exists in the organization. Determining benefits
is less well-established and this is the province of the
CBAM. As a means of determining the benefit of an
individual AS, a benefit evaluation function is created.
Benefit must be correlated with the degree to which an
Architectural Strategy supports QA goals, which in turn
relates back to the business goals for the system. These
goals are both outputs of the ATAM.

To do this we have each of the stakeholders assign
a Quality Attribute Score(QAScore) to each QA system
goal. We let the customer determine which stakeholders
should be in a decision-making capacity. The stakeholders
are instructed to choose these scores such that they total
100. For example:

Performance: 15
Security: 15
Modifiability: 30
Reliability: 25
Interoperability: 15

We also ask each stakeholder to describe the particular
aspect of the quality attribute that caused them to make this
score. For example, modifiability has a score of 30 and
above, but it isGUI modifiability that is the primary
determinant of this score.

Step 5: Quantify the Architecture Strategies’ Benefits
We then use these scores to evaluate each of the ASs. Very
rarely does an AS only affect a single QA. ASs will have
effects on multiple QAs, some positive and some negative,
and to varying degrees. To capture this, we ask the
stakeholders to rank each AS in terms of itscontribution
(Cont) to each QA on a scale of –1 to +1. A +1 means that
this AS has a substantial positive effect on the QA (for
example, an AS under consideration might have a
substantial positive effect on performance) and a -1 means
the opposite. Based upon this information each ASi can
now be assigned a computed benefit score from –100 to
+100 “Benys” using the following formula:

Benefit(ASi) = Sum (Contij * QAScorej)

For example, given the QAscores listed above, we can
calculate benefit scores for two hypothetical ASs as follows

Elicit Win
Conditions

Identify
Conflict Issues

Explore Options/
Architecture

Strategies (ASs)

Reach
Agreement

CBAM Steps
4. Assess QA Benefits
5. Quantify the ASs’ Benefits
6. Quantify the ASs’ Cost and Schedule Implications
7. Calculate Desirability

Step 1 Step 2

Step 3
Step 8

WinWin Spiral Model
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(note that we only consider the QAs for which there is a
non-zero contribution):

AS5: Performance (-0.2), Modifiability (0.6),
Interoperability (0.3)

Benefit(AS5) = -0.2 * 15 + 0.6 * 30 + 0.3 * 15
= 20.5

AS6: Performance (0.8), Reliability(-0.2),
Security(-0.4)

Benefit (AS6) = 0.8 * 15 + -0.2 * 25 + -0.4 * 15
= 1

This score allows us to rank the benefit of every archi-
tectural change that has been contemplated. But clearly this
evaluation is fraught with uncertainty. We can capture this
uncertainty by recording the variations in stakeholder
judgements.

In the CBAM we use Kendall’s concordance
coefficient for the group as a whole as a measure of the
uncertainty of the group, as described in [14]. The more
highly correlated the group, the higher the concordance
coefficient and hence the lower the uncertainty.

Step 6: Quantify the Architecture Strategies’ Cost and
Schedule Implications

Now that the benefits have been estimated by the
stakeholders, we must capture two other crucial pieces of
information about the various ASs: their costs and their
schedule implications. We propose no special cost
estimation technique here (although we do think that cost
estimation methods that take architecture into account are a
desirable and inevitable improvement to existing methods).
We assume that an organization has some method (even if it
is ad hoc) of estimating the costs of implementing new
services and features. We simply need to capture these
estimates, as they are associated with each AS.

In addition we need to capture any schedule
implications of the ASs. For example, do several ASs
require the use of the same critical resource (personnel,
hardware, software)? If so then attempting to implement
them simultaneously might be impossible even if their
cost/benefit numbers indicate that this is the strategy that
brings the organization the greatest profit. Similarly, we
want to note cases where ASi depends upon ASj and so
implementing ASj first actually reduces the cost of
implementing ASi.

Step 7: Calculate Desirability
Given this information we are in a position to calculate a
“Desirability” metric, as follows:

Desirability(ASi) = Benefit(ASi) / Cost (ASi)

This metric indicates ASs that will bring high benefit to the
organization at relatively low cost. In addition to
calculating this metric, the absolute benefit and cost
numbers need to be considered as does the uncertainty
surrounding all of these numbers, as discussed in [14].

Step 8: Reach Agreement
At this point the negotiating among the stakeholders can
begin in earnest. This negotiation will be informed, rather
than simply a matter of opinion. The costs, benefits, and
uncertainty of each of the ASs will be plain for each
stakeholder to see, as well as the schedule implications and
dependencies (if any). These ASs can be tied back to the
business goals, and hence the win conditions of each of the
stakeholders.

What results is much less an argument than a
discussion about priorities, risk averseness, and the
assumptions underlying the model. Stakeholders may still
disagree about what direction to take the architecture and
the system, but they will do so based upon a large base of
facts and accumulated evidence and such disagreements can
be more easily moderated than those which are simply
based upon opinion and prejudice.

4. Further Research Challenges

The integrated decision-making framework offers useful
tools to aid the stakeholder negotiation process from
requirements to architecture evaluation. However, there are
a number of challenges involved in its process. These
challenges are given briefly here due to lack of space, but
provide a great deal of fruitful scope for future research.

Exploration of Architecture Strategies: An important
issue is how to sort these issues/conflicts (shown in Step 2)
in order to explore Architecture Strategies as conflict-
resolution options (shown in Step 3) reflecting the win
conditions of the different stakeholders. That is, should
several Architecture Strategies be explored for each
issue/conflict, or per a set of issues/conflicts, or for all
issues? Our feasible solution approach could be to classify
(cluster) conflicting issues and identify a small set of
Architecture Strategies for each set of the clustered
issues/conflicts. One possible solution would use a cross-
impact (or dependency) analysis technique, which would
identify clusters of stakeholder positions. An ideal solution
for each cluster could be used as the basis of an
Architecture Strategy. This would imply the need to
consider the entire set of criteria.
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Determining Detailed Benefit-Cost Criteria: Agreeing on
detailed criteria of benefits and costs among stakeholders is
a challenging problem [7, 8, 9, 12, 15, 20]. An initial,
complete list of criteria can be generated first. This long list
of micro-criteria can then be reviewed and grouped by
theme, yielding the macro-criteria. The identification of the
macro-criteria is usually a natural grouping of micro-
criteria representing a common theme.

Sensitivity to Uncertainty in Benefit, Cost Values:
Objectively quantifying the benefits and costs of
Architecture Strategies (shown in Step 5 and 6) is another
challenging problem. Even though we can quantify them
with popular cost and/or benefit models, the accuracy of the
estimates is limited. Thus, the inherent uncertainty in the
models must be taken into account [14].

Reaching Agreement from Desirability Results:
Reaching agreement is a difficult task. One way to
accomplish agreement is to let an arbitrator (e.g., the
responsible manager) make the decision. Use of a group
support system lets all stakeholders have the opportunity to
provide their inputs. That alleviates some of the apparent
arbitrariness usually perceived in dictatorial decisions. At
the opposite extreme, the decision could be made by voting.
As in political decision-making, this does not guarantee
complete acceptance. Quite the contrary, all of the
mechanisms that have been applied to reaching a decision
can be applied in the proposed system. Hopefully, the
opportunity to express win conditions, the use of group
support systems, and objective cost-benefit evaluation
modeling will create a decision-making environment that
gains broader support from participating stakeholders.

5. Conclusions

In this paper, we have introduced an integrated framework
for coordinating architectural decisions with requirements
negotiation framework. This integrated framework has the
following synergy compared to the requirements
negotiation models [16, 17, 18, 19, 21] or to software
architecture evaluation work (e.g., [13, 14, 15]):

• Enabling a more powerful multi-viewpoint analysis
of architecture evaluation. Architecture alternatives
(e.g., "Architecture Strategies") can be evaluated
based on requirements elicited, explored, and
negotiated from and by multiple stakeholders who
have different roles, responsibilities, and priorities.

• Facilitating requirements negotiation in a more
systematic way. Uncertainty in requirements
negotiation can be clarified through the exploration,

evaluation, and negotiation of architecture
alternatives.

As a logical step, we will examine a real-world case study
to obtain more insight of better way to overcome the future
research challenges presented in Section 4.

In conclusion, we expect that the integrated
framework provides a systematic, yet practical method for
stakeholders to negotiate from requirements to architecture
alternatives.
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Abstract 

 
In this paper we propose a new method to 

transform the requirements specification for a software 
system into an architectural specification for the system.  
In the introduction we illustrate the needs for this new 
method in the context of the software development process 
and we explain the concept of architecture prescription. 
Then, we give a brief overview of KAOS, the goal oriented 
requirements specification language we used as a starting 
point.  We characterize the APL (Architecture 
Prescription Language) and show how to use it to derive 
an architecture prescription from the KAOS 
requirements.  We then illustrate our technique with a 
practical example, namely the meeting-planning problem.  
Finally, we discuss related work and indicate future 
directions of our research. 

 
 

1. Introduction 
 

At present, there are many different software 
development processes used in industry.  These processes 
may be more or less suited for the particular application 
being developed.  A common characteristic of most of the 
development processes is that there is feedback from one 
phase to another one.  Let’s consider the earlier phases of 
a generic development process with feedback.   

The process starts with the “requirements 
analysis and specification” phase.  In this phase, the 
requirements engineer has to understand the user’s needs 
and to document them, either formally or informally.   

The second phase is the “architectural design” 
phase.  In this phase, the system architect selects the 
architectural elements, their interactions and the 
constraints on these elements and interactions to achieve a 
basic framework to satisfy the requirements specified in 
the previous phase. 

Then there is the design phase.  During this 
phase the designer decides how to decompose the 
elements described in the architectural design into low 
level modules, which already existing components might 
be reused to implement these modules, or which 
algorithms and data structures should be used to 
implement the modules.   

The later phases of the process include coding, 
testing, integration, delivery and maintenance. Each of the 
front-end phases can be viewed as the implementation of 
the previous one.   

The process is iterative because, typically, either 
to make the implementation of a phase feasible, or more 
efficient, we return to previous phases, one or more times, 
and modify the relevant software artifacts of those phases.  
Coming back from one phase to a previous one 
constitutes considerable work and time overhead because 
it’s generally very difficult to understand what has to be 
modified in the previous phase and these modifications 
may have side effects.  So, there is a need to minimize the 
number of iterations, or to make them easier to perform 
and easier to identify their side effects whenever they are 
necessary.  Iterations in the process happen also when it is 
discovered that the system doesn’t do what the user really 
wanted.  So, we feel we can improve the process by using 
better methods to specify the requirements and by using 
rigorous techniques to pass from each phase of the 
development process to the next one.   

There are further advantages of passing from a 
phase to the next one using formal techniques.  By doing 
this, we achieve reusability of part of the artifact of each 
phase.  The earlier the phase the artifact belongs to, the 
higher is the gain obtained.  Let’s suppose, for instance, 
that we have to develop a new system for which only a 
small part of the requirements differ from those of a 
system already developed.  With our approach that maps 
the requirements to the components derived from them, 
we know exactly what has to be changed in the 
architecture of the system already developed in order to 
obtain an architecture of the new system.  The same 
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applies when some of the requirements of a system are 
changed, for whatever reason, during or after the 
development of the system. 

As experience shows, in traditional approaches 
the modification of requirements might have very subtle 
effects on the architecture and a brand new architecture 
may be needed each time requirements are modified if we 
are to achieve a reliable system.  The method we 
introduce in this paper, by providing requirements to 
architecture traceability, enables us to reuse parts of the 
architecture, and hence to reuse all the derived artifacts 
that implement the architectural components.  It enables a 
development team to save both time and resources.   

Our work has been focused on finding a method 
for the first of the transitions from one phase to the next: 
the transition going from the requirements specification to 
the architectural design, i.e. the one that has the highest 
leverage.  Traditionally, this transition has been one of the 
most difficult aspects of software engineering.  The 
primary problem in software development is transforming 
what we want the system to do into a basic framework for 
how to do it.  Our method takes as input goal oriented 
requirement specifications and returns as output an 
architecture prescription.  An architecture prescription is 
an alternative way to specify an architecture.  We chose 
goal oriented specifications because we think they are, 
among all the kinds of requirements specifications, those 
more near to the way human thinks and are easy to 
understand by all the stakeholders.  Another reason is that 
they are particularly suitable to be transformed into an 
architecture prescription.  In the next section we’ll give a 
brief description of KAOS, the goal oriented specification 
language that we used in our example that has been first 
introduced by Axel van Lamsweerde et al. [1]. 

Let’s now explain what we mean by an 
architecture prescription, a concept introduced by 
Dewayne E. Perry and Alexander L. Wolf [3].  An 
architecture prescription lays out the space for the system 
structure by restricting the architectural elements 
(processes, data, connectors), their relationships 
(interactions) and constraints that can be use to implement 
the system.  The main advantages of an architecture 
prescription over a typical architecture description are that 
it can be expressed in the problem domain language and 
it’s often less complete, and hence less constraining with 
respect to the remaining design of the system.  An 
architectural prescription concentrates on the most 
important and critical aspects of the architecture and these 
constraints are most naturally expressed in terms of the 
problem space (or business domain, the domain of the 
problem).  An architecture description, on the other hand 
is a complete description of the elements and how they 
interface with each other and tends to be defined in terms 
of the solution space rather than the problem space (or in 
terms of components such as GUIs, Middleware, 

Databases, etc, that are used to implement the system). 
Since an architecture prescription is expressed in the 
domain language, it makes it easier to create a mean of 
transforming requirement specifications into architectural 
specifications.  The two kinds of specifications can make 
use of a common vocabulary to relate the requirements’ 
goals to the architectural constraints. 

The purpose of our work is twofold: to propose 
architecture prescriptions as a way to specify the 
architectures of software systems, and to design a 
technique to transform the requirements specifications 
into prescriptive specifications. 

The rest of the paper is structured as follows:  in 
section 2 we give an overview of KAOS, in section 3 we 
show how to derive from a KAOS specification the 
architecture prescription whose architectural elements, 
and the way these elements interact, are defined via 
application specific constraints.  In section 4 we’ll give a 
practical example of the method using the meeting-
planning problem and, finally, in section 5 we will 
summarize the contribution of our work and illustrate its 
future directions.  
 
2. Overview of the KAOS Specification 
Language 
 

KAOS is a goal oriented requirements specification 
language [1].  Its ontology is Composed of: 

 
• Objects - they can be: 

•   Agents: active objects 
•   Entities: passive objects  
•   Events: instantaneous objects 
•   Relationships: depend on other objects 

 
• Operations: they are performed by an agent and 

change the state of one or more objects. They are 
characterized by pre-, post- and trigger- 
conditions. 

 
• Goal: it’s an objective for the system.  In 

general, a goal can be AND/OR refined till we 
obtain a set of goals achievable by some agents 
by performing operations on some objects.  The 
refinement process generates a refinement tree. 

 
• Requisites, requirements and assumptions: the 

leaves obtained in the goal refinement tree are 
called requisites.  The requisites that are assigned 
to the software system are called requirements; 
those assigned to the interacting environment are 
called assumptions. 
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How are requirements specified?  The high-level 
goals are gathered from the users, domain experts and 
existing documentation.  These goals are then AND/OR 
refined till we derive goals achievable by some agents.  
For each goal the objects and operations associated with it 
have to be identified.  Of course more than one 
refinement for a goal may be possible, and there may be 
conflicts between refinements of different goals that can 
be resolved as proposed in [2]. It’s up to the requirements 
engineer to choose the best refinement tree.  A refinement 
tree could be modified afterwards in case there are 
problems implementing the artifacts of a latter phase of 
the development process. 

In exhibit 1. there is an example of a goal 
specified using KAOS. 
 
 
Goal Achieve[MeetingRequestSatisfied] 

InstanceOf SatisfactionGoal 
 Concerns Meeting, Initiator, Participant 
 ReducedTo SchedulerAvailable, 
fffffffffffffffffffffffffff ParticipantsConstraintsKnown, 
fffffffffffffffffffffffffff MeetingPlanned, 
fffffffffffffffffffffffffff ParticipantsNotified 

InformalDef Every meeting request should be 
satisfied within some deadline associated with the request.  
Satisfying a request means proposing some best meeting 
date/location to the intended participants that fit their 
constraints, or notifying them that no solution can be 
found with those constraints. 
 

Exhibit 1. example of a goal specification 
in KAOS 
 
The Goal keyword denotes the name of the goal; 
InstanceOf declares the type of the goal; Concerns 
indicates the objects involved in the achievement of the 
goal; ReducedTo traces into which sub-goals the goal is 
resolved.  Finally, there is informal definition of the goal 
followed by an optional formal definition. FormalDef is 
the optional attribute; it contains a formal definition of the 
goal that can be expressed in any formal notation. 
 
3. From Requirements to Architecture 

 
3.1 From KAOS entities to APL entities 

 
How is it possible to transform a KAOS 

requirements specification into an architecture 
prescription for the software system?  Exhibit 2. shows 
the correspondence we found between KAOS entities that 
refer to a subset of the system specification and the 
Architecture Prescription Language (APL) entities that 
describe the constraints on the software architecture.  The 

subset of the overall system specification considered is 
the subset concerning the software system specification. 
 
KAOS entities                        APL entities                                                                            
 
•Agent                                 •Process component / 
ddddddddddddddddddddddddConnector component 
 
•Event                                  •Event 
 
•Entity                                  •Data component 
 
•Relationship                        •Data component / 

ddfRelationship among 
ddddddddd fcomponents 

 
•Goal                                     •Constraint on the system                       
dddddddddddddddddddddddffor on a subset of the system                  
dddddddd fffffffffffffffffffffff •One or more additional 
ffffffffffffffffffffffffffffffffffdf processing, data or 
dddddddddddddddddddddddddconnector components 
 
  Exhibit 2. Mapping KAOS entities to APL 
entities 

 
 
Each object in the requirements generally 

corresponds to a component in the architecture.  More 
specifically, an agent object, an active object, corresponds 
to either a process or a connector.  By definition, a 
process (thread, task) is an active component.  What 
might not be immediately apparent is that also a 
connector can be an active component.  An example of 
this type of connector is a software firewall.  A software 
firewall is an active entity that checks whether the 
processes that want to interact satisfy some conditions or 
not, and allows or denies the interaction among them 
accordingly. 

The events relevant to the architecture of the 
system are those either internal to the software system or 
those in the environment that have to be taken into 
account by the software system.  The receiving of a 
message by a process is an example of internal event.  
The triggering of an interrupt by a sensor is an example of 
external event.  An event is generally associated to a 
connector. 

An entity, or passive object, corresponds to a 
data element, which has a state that can be modified by 
active objects.  For example, the speed of a train is a 
variable (entity) that can be modified by a controller 
(agent). 

A relation corresponds to another type of data 
element that links two or more other objects and that can 
have additional attributes.  An example of relation data is 
a data structure whose attributes are the type of train, its 
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current speed and its maximum speed (additional 
attribute). 

A goal is a constraint on one or more of the 
components of a software system.  Additional 
components may be derived to satisfy a non-functional 
goal.  An example of a constraint deriving from a goal is 
that a component of the software system of an ATM has 
to check if the password typed by the user matches the 
password associated in the system to the ATM card 
inserted. 
 
3.2 The Architecture Prescription Language 

 
Appendix A shows an abstract example of the 

refinement tree for the goals (on the left), and of the 
refinement tree for the corresponding architecture 
prescription components (on the right).  As the example 
shows, the trees don’t have the same shape.  It would be a 
pure coincidence if they did have it.   

The goal refinement tree is obtained as we 
explained in section 2.  All the refinements are pure “and” 
apart from the refinement of goal G1.  G1 is obtained by 
achieving requirement R1.1 and either requirement R1.2 
or goal G1.1 (the arch between R1.2 and G1.1 denotes an 
“or” refinement).  The sub-goals/requirements refining 
goal Gi are denoted as Gi.j, with j varying from 1 to the 
number of sub-goals/requirements.  We use an analogous 
notation for the subcomponents. 

In the component refinement tree, the root 
component C is the software system itself.  The software 
system is viewed as a component of the bigger system 
that may include hardware devices, mechanical devices 
and human operators.  We want to note here that also for 
these other kinds of systems we could design an 
architecture prescription language.  Ours, anyway, is 
tailored to the software sub-system.  The first refinement 
of C is obtained by considering the components directly 
derived by the KAOS specification by using the 
methodology we explained in section 3.1. Note that we 
may provide further refinements or even redo existing 
refinements due to non-functional requirements such as 
performance and reliability or from reusability 
considerations.   

  Exhibit 3. shows how the APL describes all the 
attributes of the components in the refinement tree.  
Please note that the Composed of relationship is the only 
one that can be deduced directly from the tree. 

 
Component C:  

KAOS spec.: S 
Type: Software System 
Constraints: R1.1, (R1.2 or (R1.3.1, R1.3.2)), 

dddddddddddddssssssR2.1, R3.1, R3.2 
Composed of: C1, C2, C3, C4 
Uses: / 

 
Component C1:  

KAOS spec.: S 
Type: Processing 
Constraints: R1.1, R3.1a 
Composed of: C1.1, C1.2, C1.3 
Uses: C2 to interact with {C3}  
  

Component C2:  
KAOS spec.: S 
Type: Connecting 
Constraints: R3.1b 
Composed of: C2.1, C2.2 
Events: E1, E2, E3 
Uses: /             
 

Component C3:  
KAOS spec.: S 
Type: Data 
Constraints: R1.2, R2.1 
Composed of:/ 
Uses: C2 to interact with {C1, C4} 
 

Component C4:  
KAOS spec.: S 
Type: Processing 
Constraints: R1.1, R3.2 
Composed of: C4.1, C4.2 
Uses: C2 to interact with {C3}  

 
Component C1.1:  

KAOS spec.: S 
Type: Processing 
Constraints: R1.1 
Composed of:/ 
Uses:/ 
 

Component C1.2:  
KAOS spec.: S 
Type: Connector 
Constraints: R3.1a 
Composed of:/ 
Uses: C2 to interact with {C3}  
 

Component C1.3:  
KAOS spec.: S 
Type: Processing 
Constraints: R1.1 
Composed of:/ 
Uses:/ 
 

Component C2.1:  
KAOS spec.: S 
Type: Data 
Constraints: R3.1b.1 
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Composed of:/ 
Events: E1, E2 
Uses:/ 
 

Component C2.2:  
KAOS spec.: S 
Type: Processing 
Constraints: R3.1b.2 
Composed of:/ 
Events: E2, E3 
Uses:/ 
 

Component C4.1:  
KAOS spec.: S 
Type: Processing 
Constraints: R1.1 
Composed of: / 
Uses: C2 to interact with {C3}  
 

Component C4.1:  
KAOS spec.: S 
Type: Data 
Constraints: R3.2 
Composed of: / 
Uses: C2 to interact with {C3}  
 
Exhibit 3. APL prescriptions 
 
The attribute KAOS spec. denotes the 

specification from which the component is derived.  In 
our example we called this specification S.   

Type specifies the type of the component.  The 
possible types for components are: Software System, 
Processing, Connecting and Data.   

Constraints is the most important attribute of a 
component.  It denotes which requirements the 
component satisfies.  For example, the root component C, 
i.e. the software system, must achieve all the goals.  The 
subcomponents in the first layer of the tree, instead, have 
to satisfy only a subset of the system requirements.  The 
union of the requirements achieved by the leaves 
components is the complete set of requirements. 

Also, a component may be only contributing in 
achieving a goal without being able to achieve it alone.  
This may happen in case of non-functional requirement 
such as security.  When a component cannot achieve a 
requirement only by itself, we represent it in our 
prescription language by appending a different lower case 
letter to the name of that requirement in each of the 
components involved in achieving it.  In our example, this 
happens with C1 and C2. In order to achieve goal R3.1, 
goals R3.1a and R3.1b have to be achieved by C1 and C2 
respectively. 

The same requirement can be achieved by more 
than one software component. One reason for such a 

redundancy might be a reliability goal; another reason 
might be that the achievement of a goal may best be done 
cooperatively.  In refinements successive to the first one 
(in which all the components are directly derived from the 
requirements specification) the constraints themselves can 
be further refined in order to better allocate them to 
different subcomponents.  In the next paragraph we’ll 
explain the reasons for such subcomponents.  So, it may 
happen what we show in our abstract example.  In our 
example C2.1, a subcomponent of C2, whose constraints 
are requirements R1 and R3.1.b, has as constraint 
requirement R3.1b.1 (R3.1b.1 is one of the two sub-
requirements that and-refine R3.1b).  The other 
subcomponent of C2, C2.2 has R3b.2 as constraint.   

Composed of identifies the subcomponents that 
implement the component.  The subcomponents of the 
root component are obtained directly from the KAOS 
specification.  The subcomponents in the next layers of 
the components refinement tree are designed by the 
software architect in order to make the software system 
achieve other desirable characteristics, such as better 
performance or greater reusability of the components 
(even across different domain).  For example, a 
component directly derived from the KAOS specification 
might be too big; it could have too many requirements as 
constraints.  If the component implements many 
requirements many users/software components might use 
it.  This would lower the system performance.  Also, 
reducing the constraints on a component will make it 
easier to modify the component in case one of the 
requirements is removed or changes during the software 
development process.  To achieve this purpose the 
component could be split into many subcomponents that 
have fewer requirements or even only a part of a 
requirement.  As we said in the previous paragraph, some 
requirements might be further refined after the 
specification phase, even though they are already directly 
achievable by some agents.  Having to satisfy only a sub-
requirement may make the subcomponent more reusable.  
For example, a requirement on a component for an 
intelligent house software system might have to take into 
account both inputs from a smoke detector and a heat 
sensor to detect a fire.  Even though the requirement can 
be directly achieved by a single component, to make the 
fire manager components more portable (to a system that 
has a smoke sensor only, for example) as well as better 
maintainable, we can split the requirement into smoke 
detection and heat detection sub-requirements and assign 
them to different components. 

The attribute Events, generally assigned to 
connector components, indicates the events the 
component has to handle. 

The last attribute, Uses, indicates what are the 
components used by the component.  Since interactions 
always happen through a connector, the Uses attribute has 
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the optional keyword to interact with that indicates which 
components the component interacts with using that 
connector. 
 
4. An Architecture Prescription for the 
Meeting-Planning Problem 

 
Now, we will know show how to obtain an 

architecture prescription in practice.  For this purpose we 
will consider the meeting-planning problem.  At the 
highest abstraction level there are two goals that every 
meeting planner has to achieve.  They are (in KAOS 
notation): 

 
Achieve[MeetingRequestSatisfied] 
Maximize[NumberOfParticipants] 
 
We already showed the specification of the first 

goal (exhibit 1.).  From this goal specification we obtain 
three agents one of which is software: Scheduler.  From 
the sub-goal Achieve[SchedulerAvailable] we deduce that 
the root component of the architecture prescription must 
be parent also of other two components: 
SchedulerManager and MConnector.  Scheduler Manager 
finds an available scheduler, communicating to the 
existing schedulers by MConnector, and in case no 
Scheduler is available it builds a new one.  We call the 
root component MeetingWizard.   

The second goal translates in an additional 
constraint on Scheduler.   

Without going into the details of the KAOS 
specification for the meeting planner, some of which are 
in [1] and [2], in exhibit 6 we show some of the 
components of the meeting planner architecture 
prescription that illustrate many of the characteristics we 
discussed before. 

 
Component MeetingWizard: 

KAOS spec.: MeetingPlanner 
 Type: Software System 
 Constraints: {the complete set of requirements} 

Composed of: Scheduler, SchedulerManager, 
ssssssssssssssssMConnector 
Uses:/ 

 
Component Scheduler: 

KAOS spec.: MeetingPlanner 
 Type: Processing 
 Constraints: {the complete set of requirements}               
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr \ Achieve[SchedulerAvailable] 

Composed of: PlanningEngine,  
                       ParticipantClient, 

fffffffffffffffffffffffffffff MeetingInitiatorClient,                                        
e                                  ffResourcesAvailableRepository, 

fffffffffffffffffffffffffffff SecureConnector1,  
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrSecureConnector2 

Uses:/ 
 

Component SchedulerManager: 
KAOS spec.: MeetingPlanner 

 Type: Processing 
 Constraints: Achieve[SchedulerAvailable] 
 Composed of:/ 

Uses: Scheduler,  
dddddMConnector to interact with {Scheduler} 
 

Component PlanningEngine: 
KAOS spec.: MeetingPlanner 
Type: Processing 
Constraints: {subset of the set of requirements} 
Composed of: Planner,  
                       Optimizer 
Uses: SecureConnector to interact with 

ffffffffffffffffffffff{ParticipantClient, MeetingInitiatorClient} 
 

Exhibit 6. APL sample prescription for the 
meeting planner 
 
 
 
5. Conclusion 

 
In this paper we have illustrated the advantages 

of formal techniques to go from a phase of the software 
development process to its next one.  We focused on what 
we consider the most important of these transitions: the 
one from requirements to architecture.  To make a formal 
transition between these two phases easier we have 
introduced an architecture prescription language (APL), 
that specifies the structure of the software system and its 
components in the language of the application domain.  
This higher-level architecture specification can be then 
easily translated, if necessary, in an architecture 
description, in the solution domain.  We took advantage 
of the characteristics of KAOS as a requirements 
specification language. 

Other researchers in the past have tried to find 
techniques to pass from requirements to architecture.  
Nenad Medvidovic et al., in [4], developed a technique to 
pass from requirements specified in WinWin to an 
architectural model for the system.  Their technique, 
while providing a framework to pass from requirements to 
architecture, is not formal and still leaves a lot of choices 
to the architects.  This due in part the big gap between the 
requirements specification, specified in the problem 
domain language, and architectural design, described in 
the solution domain language.  Other researchers have 
designed object-oriented techniques to pass from 
requirements to architecture.  These techniques, though, 
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are still very informal with little guidance for the architect 
on to decompose the architecture into classes and which 
attributes and methods to assign to those classes.  
Furthermore, this approach is tailored to an object 
oriented design. 

Our goal is to design a formal technique to pass 
from the requirements to an architecture prescription that 
can be refined afterwards.  The formality is necessary to 
make it sure that none of the requirements are neglected, 
and that we don’t introduce any useless component or 
constraint.  The generality of our approach allows the 
architects to choose their favorite ADL (architecture 
description language) to describe an architecture 
prescribed in APL. 

Future areas of our work will include: define and 
perform experiments that tests our method, further 
research or even redefine the components of the APL to 
achieve non functional properties such as better 
performance and reusability, and build supporting tools 
that take the requirements for a software system and some 
other parameters and transform them into an architecture 
prescription for the system. 
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Abstract

Requirements and Software Architectures are strictly re-
lated but only a little attention has been paid to their inte-
gration. What we propose in this paper is an approach to
i) trace coordination requirements from their definition to
the low level specification and ii) validate the architectural
dynamic model with respect to these coordination require-
ments.

1. Introduction

Analyzing current Software Engineering techniques we
can note that Requirements Engineering and Software Ar-
chitectures have been recognized, both by academia and
software industries, as a means to improve the dependability
of large complex software products, while reducing devel-
opment times and costs.

Requirement Engineering (RE) is the most developed
part of Software Engineering in last years to optimize the
study of first stages in the software life cycle. RE applies
different theories and methodologies, by means of specific
software systems, to formalize the identification, collection
and organization of the System requirements. On the other
side, new tools and architectural languages have been pro-
posed to specify the Software Architecture (SA) of large
scale systems. Software Architecture description represents
the first, in the development cycle, complete system descrip-
tion. They provide at the high level of components and
connectors both a description of the static structure of the
system and a model of its dynamic behavior.

Even if RE formalisms and Software architectural lan-
guages have assumed a great interest, it seems that only a
little attention has been paid to their integration, increasing
the risk of inconsistencies in system development and evo-
lution. Requirements captured in the first stage of system
evolution are not always traced to the architectural picture;
Software Architectural models, even more used to drive the

design step, are not proven to be correct with respect to the
expected behaviors.

In this paper we report our experiences on software ar-
chitecture models analysis and requirements understanding,
based on two previous works: in [9] we put in evidence how
coordination requirements can be captured at the architec-
tural level and we give an idea of how the SA model could
be proven to be consistent with respect to the requirements;
in [11] we present an approach to verify the consistency be-
tween statecharts and scenarios models representing the SA
dynamics and the coordination constrains respectively.

Putting together these works our aim is to provide an ap-
proach able to i) trace coordination requirements from their
definition to the low-level specification and ii) validate the
architectural dynamic model with respect to these coordina-
tion requirements.

In Section 2 we summarize the approach we used in [9]
to capture coordination requirements, in Section 3 we give
an overview on the approach we presented in [11] to val-
idate statecharts and scenario models. Section 4 presents
conclusions and ongoing works.

2. Coordination Requirements and Software
Architectures

Software Architectures (SAs) and Coordination models
play different roles in the software development life cycle:
SAs represent the first design step in which a complete sys-
tem model is provided, modeling components interactions
and encompassing both static and dynamics aspects; Co-
ordination models instead, come in at a later development
stage in order to manage the interaction among concurrent
programs or activities.

However they work in different domains, strong sim-
ilarities and analogies in concepts and finalities seem to
hold [5], since Coordination models and SA are special-
ized todescribe process interaction (in a concurrent envi-
ronment), abstracting away the details of computation and
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focusing on the interactions [2, 16]. As a matter of fact
at the SA description level, many important design choices
related to the way components interact, are already taken.
Thus (see Figure 1) SA level information can influence the
static and dynamic structure of the implemented system and
drive/constrain the coordination model specification. More-
over, the SA description can also be an useful tool to better
understand system requirements. Following these necessi-
ties, our aim is to be able to capture coordination policies at
the requirement level, model these policies at the SA level
and to use the SA description to drive the generation of a
coordination model. Moreover, we are interested in validat-
ing our architectural model with respect to the coordination
requirements to check the architectural correctness with re-
spect to the expected behaviors.

To gain these goals, an UML-based development pro-
cess [12] is used: coordination policies are captured at the
Requirement level, using Use Case and Interaction Dia-
grams (Step1), and they are used todrive the SA description
(Step2). The SA can bevalidated with respect to Coordina-
tion requirements (Step3) and can drive the generation of a
Coordination model (Step4). In the following we present a
summary of the approach, described in [9].

Step1: UML and Requirements
The UML [15] approach to identifying system require-

ments is mainly based on Use Case Diagrams;use cases
represent a possible way of using the system whileactors
are who or what (humans or a subsystems) carry out use
cases. Each user needs several different use cases, each rep-
resenting the different ways he or she uses the system.

To achieve a more precise understanding of the require-
ments and structure them for reuse and maintenance an
analysis model can be described [12] usinganalysis classes
and interacting analysis objects. Analysis classes describe
how a specific use case is realized in terms of “abstract”
cooperating classes and always fit one of three basic stereo-
types: boundary, control or entity;

� boundary classes represents abstractions of windows,
forms, communication interfaces;

� entity classes reflect logical data structure;

� control classes representcoordination, sequencing,
transactions and control of other objects and are of-
ten used to encapsulate control related to a specific use
case [12].

Each use case can be modeled by analysis classes. Each
class may participate and play roles in several use case real-
izations. A class diagram (of analysis classes) can be drawn
to indicate which use case realizations a class participate
and plays roles in. This diagram gives an high-levelstatic
description of the “modules” implementing the use cases

but it does not give information onhow the system evolves
in terms of use cases interactions.

The sequence of actions in a use case begins when an ac-
tor invokes the use case by sending some form of message
to the system; in the analysis class, the boundary class (i.e.,
the interface) receives the communication request, sends the
request to the control class that coordinates the various ac-
tivities and lets the involved objects interact to realize the
use case. Interaction Diagrams can model the chronological
sequences of interactions but only as a sort ofcoordination
specification constrains.

Step2: From UML Diagrams To SA Model
The idea is to define a mapping between Analysis model

and SA topology, considering that each analysis class rep-
resents an abstract view of the system and is involved in
conceptual relationships: actors in the Analysis class dia-
grams represent a suitable abstraction of active components
in the SA description; control classes can identify coordi-
nation components; control classes attributes can identify
communication channels; entity classes can be mapped into
databases. Other classes can be hidden at the SA level or
mapped to other components.

We can now start modeling the system dynamics: ana-
lyzing the Interaction diagrams built in the previous step,
we can try to understand how architectural components dy-
namically interact and we can express the system behavior
through an architectural language. We do not define a for-
mal mapping among UML scenarios and the architectural
description of the dynamics; what we say is that they drive
the architectural modelization and help the software archi-
tect to identify components interactions.

Step3: Validating interactions via SA dynamic model
We make the assumption that from an architectural de-

scription (in some architectural language) a Labeled Tran-
sition System (LTS) can be derived, whose node and arc
labels represent respectively states and transitions relevant
in the context of the SA dynamics.

Each LTS complete path describes a possible execution
scenario so that all LTS complete paths denote the set of
all possible system behaviors. The LTS model is intended
to be the coordination model, defined at the architectural
level, and representing theimplemented system behavior;
Interaction Diagrams, manually built over the SA compo-
nents and reflecting the Coordination Requirements previ-
ously captured represent the coordination specification (i.e.,
theexpected behavior). To guarantee the SA model correct-
ness with respect to the selected requirements, we need to
validate the SA LTS by model checking it on the Interac-
tion Diagrams, i.e., we need to validate if the implemented
behavior is correct with respect to the expected one.

Step4: From SA model To IWIM Coordination
Model

In the last step (as drawn in the right part of Figure 2) we
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Figure 1. Requirements, Software Architectures and Coordination models

use the SA description to drive the specification of coordi-
nation model in the IWIM formalism.

The IWIM [1] model for coordination is described by
processes, ports, channels and events. A process is a black
box operating unit. It can be regarded as a worker process or
a manager process. The first one can execute elaborations
but it is not responsible for communication while the latter
coordinates communications among worker and manager
processes. A port is used for information exchange; each
communicating process owns at least one port. A channel
represents the interconnection between a producer process
port to a consumer process port. There are five different
alternatives for a channel; one is for synchronous commu-
nication while the others are useful for asynchronous one.
Events are broadcast in the environment and could be picked
up by a process.

SA items are comparable with IWIM items: SA compo-
nents and IWIM processes are black box units; an SA com-
ponent is the high level description of an IWIM process; the
SA description is higher level since a single SA component
can be realized by several IWIM processes. Following these
considerations, it is amenable to realize a mapping between
the SA description level to the Coordination:

� the SA coordination component becomes a manager
process while others become worker process;

� the SA channel (and port) semantics is close to the
IWIM model: each SA channel can be mapped in one
of the five IWIM channels semantics;

� the IWIM events are comparable with transactions in
the LTS model of SA dynamics.

Figure 2 refines Figure 1 and graphically depicts the ap-
proach steps. In [10] a full description of the approach can
be found with its application to a case study.

3. Consistency Checking between models

Despite the high level of abstraction very often SA are
too complex to be managed. A way to tackle system com-
plexity consists of representing the system through several

view points [13, 8, 4]; as a direct consequence, different
models are used to represent the different views. In prac-
tical contexts, statecharts and scenarios are the most used
tools to model the system dynamics.

Although very expressive this approach has two draw-
backs with respect to analysis and validation. The first one
deals with system specification incompleteness: statecharts
and scenarios only partially model the system components
and interactions. The second is a problem of view consis-
tency: several views in fact, are not independent or orthogo-
nal and can erroneously describe different systems. In [11]
we proposed an approach to complete statecharts models of
the system architecture behavior using interaction scenar-
ios. On the other side we wanted to validate the obtained
model with respect to component-interaction requirements
expressed by the scenarios. To a certain extent this amounts
also at validating the two dynamic models.

In this section we will analyze only the validation pur-
pose, with the aim to verify that a model of the system
dynamics (statecharts) corresponds to the coordination re-
quirements (expressed by scenarios).

To implement this approach we make the assumption
that the SA we want to validate is expressed by an Architec-
tural Description Language who describes the components
behavior and the inter-component interactions using state-
charts and scenarios respectively. The components state-
charts are translated into a Promela specification in the first
step; in the second step, the system scenarios, are expressed
by Linear time Temporal Logic (LTL) formulae. Finally,
the SPIN [17] model checker runs on these specifications
to check if the system behavior expressed by the scenar-
ios are well implemented by the model generated by SPIN
and based on the Promela [17] specification. This provides
a first validation of the architectural model that can be used
to perform analysis with respect to safety and liveness prop-
erties on the SA dynamics. Moreover, the standard SPIN
model check may be run on the statechart model to identify
deadlocks, constrains violations, livelocks and some other
properties [17].

Figure 3 summarizes the approach.
We now summarize, in an informal way, the three steps

the approach is composed of. Technical descriptions can be
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found in [11].
First Step: statecharts expressed in Promela
The statecharts models, describing the components be-

havior, are translated into a Promela specification through
an incremental style which in five steps identifies Promela
constants, variables and proctypes. The mapping will
structure the Promela specification reflecting the separation
among components and connectors. It is important to notice
that the Promela specification we write follows the [14, 7]
mapping directions but contains variables and data struc-
tures needed for the subsequent analysis.

Second Step: scenarios expressed in LTL
Scenarios semantics is translated into LTL formulae; this

operation set the order in the events that builds the scenario.
Each scenario represents an expected system behavior; our
aim is to use SPIN to model-check if the architectural model
(expressed in Promela) conforms to the selected scenarios.
It is important to note that the LTL formulae are written
making reference to the variables introduced in the Promela
specification, that store information on the system execu-
tion.

Third Step: running SPIN
The last step consist on the check of the system using the

model-checker Spin. In the case that an LTL formula (rep-
resenting an expected system behavior) is not verified on the
Promela model (representing the architectural behavior), an
architectural inconsistency is found and the erroneous be-
havior is drawn.

In [11] a detailed description of the approach can be
found with its application to a case study.

4. Conclusions and Ongoing Works

To bridge the gap between Requirements and Software
Architectures we propose to integrate two different ap-
proaches: in the first one, defined in Section 2, the soft-
ware designer captures the Requirements using an UML
modelization and drives the high- and low-level specifica-
tion description in a way to trace coordination requirements
during the software life-cycle. It also recognizes the ne-
cessity to be able to validate the architectural model with
respect to some requirements. In the second approach, the
designer receives the tool to perform the validation: coor-
dination requirements are expressed using scenarios (trans-
lated in LTL formulae), the architectural model of dynam-
ics is represented using the Promela formalism and SPIN
is run to model-check the conformance of the implemented
behavior with respect to the expected one.

At the state of the art, we applied both the approaches to
a common case study, the Teleservice and Remote Medical
Care System (TRMCS) [3, 9]: this system provides moni-
toring and assistance to users with specific needs, like dis-
abled or elderly people and a typical service is to send rel-
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Figure 4. The TRMCS SA topology

evant information to a local phone-center so that the fam-
ily, medical or technical assistance can be timely notified of
critical circumstances.

The basic functional and non functional requirements
on the system were to allow enabled users to send help mes-
sages, guarantee the termination of the service (hw and sw
fault-freeness), to guarantee the continuity of the service (24
hours a day, for every day), to optimize the reply time and
to reduce the service cost and the coordination constrains
are the following:

1. An Alarm message sent from User has to be followed
by an acknowledgment message;

2. An User can send Alarms and Checks whenever he
wants;

3. Checks and Alarms messages, sent by different Users,
must be concurrently managed.

Following the approach described in Section 2, in [10]
we captured system requirements using Use Case diagrams,
we built an analysis model of these Use cases and identified
the SA components and connectors (Figure 4). We then de-
scribed the system behavior using the FSP [6] Process Al-
gebra generating the transition system of the architectural
behavior and finally identified some coordination scenarios
of interest (Figures 5.a, b, c represent possible dynamic sce-
narios conforming to the first, second and third described
coordination constrains respectively).

Following the approach described in Section 3, we trans-
lated the TRMCS SA components statecharts in Promela
and the coordination scenarios (like those in Figure 5) in
LTL formulae (as shown in [11]).

The work we are now developing is to model-check the
Promela model with respect to the selected scenarios: just to
report an initial result, model-checking the scenario in Fig-
ure 5.b we found an incoherence between the requirements
and the SA model. As we said before, the scenario in Figure
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Figure 5. Coordination Requirements at the SA level of abstraction

5.b is a possible modelization of the second coordination re-
quirement in which “An User can send Alarms and Checks
whenever he wants” ; running the SPIN verification process
and analyzing the output trails we was informed that (in the
TRMCS architectural model) a second Check msg can be
delivered if and only if the first Check has been previously
forwarded to the Router component. It contradicts the sce-
narios and the coordination requirement. This result only
represents an initial report but, anywhere, it identifies a cer-
tain sort of unexpected bottleneck in the SA model and let
us increase our expectations on this approach.

As an ongoing work, we are developing a tool to au-
tomatically translate scenarios in LTL formulae and state-
charts in Promela following the mapping defined in [11].
In this way, the software architect does not need to know
Promela or LTL: she draws statecharts and scenarios and the
tool automatically generate the inputs for the SPIN model
checker.

An idea for future works is to consider enriched state-
charts and scenarios to prove that the architectural model
correctly behaves with respect to the expected behavior and
that quantitative or temporal requirements are met by the
specification.
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