
Assessing the impact of components on future military
command systems

Andy Ben-Dyke Mark Lycett
Mark Cusack Ray Paul
Peter Hoare

Distributed Technology Group Department of Information Systems
DERA Malvern and Computing
Worcestershire Brunel University
WR14 3PS UK Uxbridge, London, UK

 +44 1684 894000 +44 1895 203397
{adb, cusack, peteh}@signal.dera.gov.uk {ray.paul, mark.lycett}@brunel.ac.uk

ABSTRACT
The future battlespace will consist of sensors, decision-
makers and weapons systems interoperating within a
framework of command systems. These command systems
should be adaptable to meet the requirements of a specific
operational environment and to take advantage of new
technology. The barriers to achieving flexibility and
interoperability within the military domain are analogous to
those that complicate business-system integration within
the commercial sector. Component software technology
could play an important role in achieving the required level
of flexibility and interoperability. We therefore describe a
generalized framework for assessing the impact of
component technology upon a system of systems.

Keywords
Software components, system of systems, assessment
framework, quality characteristics, service-based
architectures.

1 INTRODUCTION
Information Technology (IT) is having a dramatic effect on
the way the military works, by providing support at the
level of an individual combatant, right up to strategic
decision-makers in central government. As well as the
contribution that IT can make at any one level, the real
benefits for computerisation come from the integration of
IT between these levels, to support information flow up and
down the military hierarchy.

The IT systems used by the military to co-ordinate and
control operations are termed Command and Information
Systems (CIS). This term is broad in scope, encompassing
all aspects of computerisation, from off-the-shelf office
automation, to specialist bespoke applications.

Current CIS consist of multiple stove-piped systems, where
the connection between systems in the vertical chain of

command is specific to a series of IT applications. These
CIS are integrated together in isolation from any external
systems, with connections only existing between
applications within a single armed service. A system of
systems then evolves from the creation of ad-hoc links
between CISs. These links arise from the users’ need to
exchange information between different stove-pipes.
Because there is no commonality between the applications,
each link is unique and is therefore expensive to build and
maintain.

The UK Ministry of Defence (MOD) is promoting a
systematic approach to CIS interoperability, in which future
systems are composed from a common set of service
components. The principal focus for this initiative is the
Joint Battlespace Digitisation (JBD) programme [1]. The
aim of this programme is to achieve information superiority
over an adversary through the integration of information
from across the battlespace. Key to this is application-level
interoperability between systems.

JBD defines an aspirational future in which more dynamic
styles of application will form the basis of CIS. The phrase
used to describe the organisation of this aspirational future
is a golf-bag of services. This implies that services can be
selected and organised as appropriate for a specific
operational environment.

In reaching this aspirational future MOD faces a number of
problems, including:

• Extremely long time-scales of IT procurements
compared to the rate of technology change, resulting in
equipment obsolescence before coming into service;

• Requirements changing between specification and the
system in-service date;

• The lack of a coherent upgrade path as technology

2

evolves;

• The need for compatibility with commercial systems,
to lower costs and to take advantage of new
technological developments.

The challenges faced by the JBD programme are analogous
to those faced by businesses when they merge and/or
rationalise corporate IT systems. Such systems are often
business specific, with limited external connections to
ensure commercial security. However, the situation is
changing with, for example, the drive towards B2B, B2C
and Enterprise Application Integration (EAI). Hence there
is a move to integrate these stove-piped systems using an
open style of Internet applications and third-party
implementation libraries.

Defining the future requirements for CIS
By the nature of the military procurement process, it is
unrealistic to mandate a single approach for future CIS.
Instead, requirements are framed in abstract terms that
define the qualities of the CIS. These may include
subjective terms such as flexibility, security, reliability and
cost-effectiveness. It is generally agreed that the key
qualities of future CIS will be flexibility and cost-
effectiveness. Such qualities are often attributed to
component-based software. However, this is a new
technology, and it is important that the military understands
the ramifications before adopting a component-centric
approach.

In the following section we describe a framework for
assessing the impact of component technology within
systems of systems. JBD is used to develop and illustrate
our assessment framework. It should be noted that this
framework may be applicable to commercial IT systems of
systems.

2 THE ASSESSMENT FRAMEWORK
Motivation
The main aim of the framework is to provide a systematic
approach to determining the impact of components on a
proposed system of systems. The term system of systems is
used in this context to describe a set of individual systems,
which although potentially operating independently, can
also work as a whole.

The impact of adopting component-based software is
measured in terms of the strengths and weaknesses of
current component technology relative to traditional
monolithic designs. Any assessment should also clearly
identify areas for future component research, and include
estimates of the potential benefits to a system of systems.

Ideally, the assessment should work at an abstract level and
not require a detailed specification of the system of
systems. Typical abstractions could include cost,
efficiency, and flexibility. Furthermore, the framework
should also allow multiple assessments using different

prioritisation of the underlying properties of the system of
systems. For example, one assessment may use cost as the
overriding concern, whereas another may favour robustness
or reliability.

We are not aware of any alternative approaches to that
outlined in this section.

3 CHARACTERISING SYSTEMS OF SYSTEMS
This section describes the process of generating a set of
metrics with which to assess the impact of components on a
generic system of systems. Rather than starting in a vacuum
we decided that we needed to look at typical command
systems and identify their salient characteristics. Once
these characteristics had been identified they could be fed
into a requirements framework which would allow us to
assess the effect of components on the system.

The approach of identifying the characteristics can be
broken down into three phases:

• examine a typical command system as a case-study to
extract important characteristics and properties;

• generalise the outputs of the first phase to apply to
generic system of systems;

• re-assess the exemplar system against the generalised
metrics to determine suitability and completeness of
the metrics.

Phase 1: The case-study
By analysing the types of requirements described in JBD
[1] it was apparent that the assessment metrics could be
divided into two categories:

• Service Characteristics. System of systems can be
described in terms of a service-based architecture.
Within this framework, each service can be
characterised in terms of the functionality it provides.
Example services include communications and
information and service management;

• Quality Characteristics. The intrinsic properties that
are not embodied in any one service but are an
accumulation of "value" across the whole system of
systems. Typical characteristics include flexibility and
cost.

To structure an assessment, each service and quality
characteristic was partitioned into a number of sub-
characteristics. For example, communication services were
evaluated with regards to topology, bandwidth, etc., and
cost separated into initial and through-life costs.

The service characteristics represent a technological view
of a system of systems, and as such, assessment in these
terms is straightforward. This analysis then provides the
terms of reference within which to measure the quality
characteristics. Note that the quality characteristics are
sufficiently abstract to make direct comparisons against

3

technology both difficult and highly subjective.

Phase 2: Generalising the metrics
The second phase involved refining the quality
characteristics with respect to the ISO 9126 standard [2],
and generalising the service characteristics. The final
service characteristics are defined as follows:

• Application and Information services. The
producers, consumers, and manipulators of information
and data. Examples include planning tools, reporting
tools, command applications, GIS web browsers and
weather servers;

• Process support. The manipulation of the Application
and Information Services to aid the command/business
process. Examples include workflow support, portals,
decision desktops, consistent user interfaces,
collaborative working and visual programming;

• Data management. The provision of the specified
data to the requesting location efficiently and in the
correct format. Issues include data replication,
communication resource management, data
distribution and routing;

• Communication services. The point-to-point transfer
of data. Examples include email, wireless
communications, telephone and post;

• Service management. The mechanism of
implementing and enforcing the policies of the system
by controlling the underlying services. Issues include
user profiles and rights, system tuning, service
availability, service installation and maintenance.

The quality characteristics are defined as follows:

• Flexibility and supportability. Flexibility is the
user’s perception of the system’s ability to accept
change. Supportability is the system manager’s and
supplier’s perception of the system’s ability to accept
change. Issues include the introduction of new
functionality, reconfiguration of functionality to match
a new process, realising new functionality by
combining existing functions, technology insertion and
the removal of functionality;

• Security. The provision of unimpeded legitimate
access to information while impeding illegitimate
access. Examples include user identification and
authentication, access control lists, encryption and
decryption, security auditing and security labelling;

• Efficiency. The relationship between the level of
performance and the amount of resources used, under
stated conditions. Examples include time taken to start
applications, time taken to perform a predefined
processing task, HCI responsiveness and time taken to
switch between applications;

• Reliability. The capability of the system to maintain
its level of performance under stated conditions for a
stated period of time. Issues include resilience during
planned reconfiguration, fault tolerance through data
replication and hardware/software redundancy;

• Cost. Cost is a measure of the resource usage through
the system’s lifetime, including people and equipment.
Issues include the cost of procuring the system and
cost of maintaining the system.

Phase 3: Re-assess the exemplar CIS
Having obtained a general set of metrics, we re-assessed
the JBD exemplar. This provided an opportunity to refine
the assessment framework.

4 THE ASSESSMENT PROCESS
Having established the metrics on which to base the
analysis, the assessment process itself is broken down into
five steps:

1. Assign priorities to the quality characteristics;

2. Provide a working definition for components;

3. Assess the system of systems in terms of the service
characteristics;

4. Measure the quality characteristics of the system of
systems (using the outputs of step 3);

5. Aggregate the results.

Step 1: Prioritising the quality characteristics
The prioritisation has a major impact on all of the
remaining stages, but is necessary only when dealing with a
system of systems for which there is no detailed technical
specification. For example, when assessing the service
characteristics, tensions between the quality characteristics
will be revealed in the system-of-systems’ design. In such
cases, the prioritisation is used to resolve these conflicts
and ensure consistency throughout the evaluation. As
another example, the prioritisation will influence the
selection of a component’s attributes when generating the
component definition  run-time interrogation of a
component's interface may well be unimportant if cost or
efficiency are the overriding goals. The full impact of the
prioritisation on the final assessment will be inversely
related to the detail of the specification of the system of
systems.

Step 2: Defining components
At present, no standard definitions of components or
component-based software engineering exist. To illustrate
this, consider the following four definitions used during a
workshop at the 11th International Conference on Software
Engineering [3]:

1. A component is a non-trivial, nearly independent, and
replaceable part of a system that fulfils a clear function
in the context of a well-defined architecture. A

4

component conforms to and provides the physical
realisation of a set of interfaces;

2. A run-time software component is a dynamically
bindable package of one or more programs managed as
a unit and accessed through documented interfaces that
can be discovered at run-time;

3. A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition
by third party;

4. A Business Component represents the software
implementation of an 'autonomous' business concept or
business process. It consists of all the software
artefacts necessary to express, implement and deploy
the concept as a reusable element of a larger business
system.

Obviously, the definition used will have a major impact on
the outcome of the assessment. Furthermore, the definition
should include relevant extensions based upon future
software component research. For example, the definition
used in the JBD case-study (see section 5) admits the
possibility of component wrapping and dynamic re-
configuration. This allows the evaluation to include an
assessment of the future impact of components on the
system of systems.

Step 3: Service characteristics
The service characteristics provide a technical description
of the system of systems. Using the sub-characteristics to
provide structure, the potential roles of components in
realising the specified functionality should be enumerated.
For example, during the assessment of data management, it
was determined that components could be used within the
formats sub-characteristic as follows:

• For manipulating different data formats;

• Extending the range of formats by introducing new
components;

• Improving the number of format conversions by
replacing components;

• Transparently mapping complex data, e.g. compressed,
secure JPEG image, by component wrapping.

Note that this assessment is driven by the goal of achieving
the maximum overall flexibility, as determined by the
prioritisation of the quality characteristics. Schemes where
components offer no tangible advantage over traditional
approaches should be ignored.

This stage of the analysis requires a sound understanding of
component-based software engineering as well as a solid
grounding in traditional software engineering. However,
care should be taken to only make use of attributes from the

component definition developed in step 2. Moreover, it is
possible that potential research areas may be identified
during the assessment. In such cases, the component
definition should be extended to include this possibility,
assuming that the benefits are in-line with the priorities
established in step 1. If the component definition is
modified, then the assessment should be re-started to
ensure the full implications of the extension are captured.

Step 4: Quality characteristics
Measuring quality characteristics involves pair-wise
combinations of all of the service- and quality sub-
characteristics. For each pair, the assessment should be
based upon: the technical assessment of the service sub-
characteristics; the definition of the quality characteristics;
the component definition; and any supporting external
evidence. Due to the subjective nature of this assessment,
care should be taken to provide sufficient details as to how
components impact on the quality sub-characteristic. As an
example, the assessment of cost in terms of data
management was as follows:

• Increased start-up costs due to the design of the data-
manipulation components;

• Reduced through-life costs as it is easier to add new
formats and conversions.

Step 5: Summarising the results
The final step of the process involves the aggregation of the
quality sub-characteristics, to obtain a final assessment of
the impact of components on each quality characteristic. If
the component definition from step 2 includes potential
extensions due to future component research, the
aggregation will be in terms of both the current and future
impact of components.

For each pair, the impact of components is determined to
be positive, negative, or neutral. Then, an aggregation is
made across the services. For example, components may
lead to a positive benefit in terms of the functionality of the
application and information services. For each quality
characteristics, the services are then ordered in terms of
their relative impact. This is then used to obtain the final
measure for the quality characteristic.

5 APPLYING THE ASSESSMENT FRAMEWORK
Applying the process described in the previous section back
to JBD, we obtained the following outputs.

Step 1: Assign priorities to the quality characteristics
For the purpose of this assessment, the following
prioritisation of quality attributes was used (based on a
number of internal workshops):

1. Flexibility and supportability;

2. Security;

3. Reliability;

5

4. Efficiency;

5. Cost.

Step 2: Provide a working definition of components
Within the scope of the JBD assessment, components are
assumed to possess a number of properties. A component
should be non-trivial, in that it should have a minimum
granularity and a clear function. A component should be
nearly independent, only requiring a component framework
and an explicit set of environmental dependencies. Each
component should implement a well-defined set of
interfaces and allow run-time interrogation of these
interfaces. Finally, a component should be dynamically
bindable.

These properties mirror the capabilities of current
component technology. In addition to these, we wish to
consider the following properties of a future component
framework.

• Dynamic re-configuration. The safe updating of a
components parameters;

• Dynamic replaceability. The safe insertion and
removal of components at run-time;

• Component wrapping. The interception of
component interactions to modify the functional and
non-functional characteristics;

• Semantic reflection. The ability to reason about the
non-functional characteristics of a component.

Step 3: Assessment of service characteristics
In this step, the results of the assessment of the impact of
components on the system-of-system services are
presented. The sub-characteristics of the services are
described in terms of the definition of components given in
the previous section. For brevity, we only include the
service characteristic assessment for process support:

• Understandability

• Strong likelihood of a direct mapping between the
decomposition of a military process into task
fragments and a service into software components;

• Initially, services will be large-grained
compositions of components, however, with time,
services and components will become
synonymous.

• Accurateness

• Testing could be improved through component
wrapping;

• Potential for future improvements via semantic
reflection.

• Operability

• Interface reflection can help improve fragment
selection by identifying compatible types in the
functional definitions of two services;

• Semantic reflection will improve fragment
selection;

• Components lend themselves to visual
presentation and manipulation, and there is
widespread tool support.

• Adaptability

• Components are by definition composable and
will therefore support process fragment
composition. (In our scheme, a process fragment
represents part of a business/command process
represented by a software component.);

• Dynamic binding and interface reflection provide
a good platform for adding new process
fragments.

• Interoperability

• Components have no impact on the sharing and
distribution of process fragments. However, the
corresponding assessment for application and
information services indicates that components are
more portable.

Step 4: Quality Characteristics
For brevity, only the pair-wise combination of reliability
with application and information services is included here:

• Functionality

• Functionality is realised by the interaction of
components. Component-Based Software
Engineering (CBSE) is a relatively new
technology, therefore stability may suffer.
However, as experience with the technology
increases so too will stability;

• The use of interface reflection and dynamic
binding may increase the automation of testing;

• The use of wrapping may improve stability by
supporting the introduction of additional
safeguards;

• Semantic reflection may allow comparisons to be
made between the desired and actual behavioural
model of a component.

• Configurability

• Since all components make use of the same
configuration mechanism, stability may be greater
through increased programming experience and
extensive testing of this single mechanism;

6

• Operability

• Since all components make use of the same
mechanism for achieving operability, stability may
be greater through increased programming
experience and extensive testing of this single
mechanism.

• Portability

• Explicit component dependencies ensure that the
likelihood of an error occurring during the porting
process is smaller, thereby increasing the stability.

Step 5: Aggregation of results
For this particular analysis, the summary is presented in
table I. Each entry contains a rating of the impact of
current and future component technologies. Future trends in
component technology are indicated in brackets

From table I, it is evident that the aspects of JBD that most
benefit from the application of components are flexibility,
supportability and cost. Conversely, it can be seen that
components currently have a negative effect on security
and service management.

We believe it is likely that future research will address
those aspects where current component technology fails to
satisfy the JBD aspirations. In the main, this research will
be driven by the commercial sector. Possible exceptions are
security and service management, where the military’s
needs and priorities diverge from those of business.

6 SUMMARY
In this paper we have presented a framework for assessing
the impact of software component technology of a general-
purpose IT system of systems. To illustrate the framework,
a case-study based on the UK MOD’s JBD was presented.

This case-study indicated that components would have a
positive impact on flexibility, supportability and cost of
JBD. Conversely, the results show that current component
technology would have a negative effect on security and
service management within JBD.

One of the main problems that had to be addressed by the
assessment was the fact that our example system, JBD, is
so far only a concept, and its functionality and actual
implementation are not yet defined. When assessing the
role of components in such a situation it is difficult to make
progress without making some assumptions about detail.
However, by considering the impact of the technology on
the solution space rather than looking at specific example
systems, we have been able to make a systematic
assessment of how components will affect a system of
systems.

One issue raised by the assessment was that in making
assumptions about the solution it is possible to bias the
review unintentionally. In this assessment there has been a

deliberate attempt to assess the ability of components to
deliver flexibility. Starting with different input biases will
obviously affect the outcome of the assessment (e.g.
biasing towards cost may rule out certain technical
solutions).

The initial finding of this study is that a component-based
approach may offer significant advantages when realising a
JBD-like system of systems.

Future work
An important area of future research is to assess the impact
of the component definition on the assessment outcome.
For example, the definition of a component can be
considered at many different levels, from a low-level
software component e.g. a GUI widget, all the way up to a
process component embodying a business process or
procedure. Starting with a number of definitions would
produce a number of different results depending on the
input terms.

Another area of future work is to broaden the assessment to
other systems of systems, with the aim of validating the
framework and better understanding the ramifications of
component technology. If enough commonality was found
between systems, it might be possible to develop a common
approach to assessing any military system, or even
commercial IT systems.

REFERENCES
[1] Joint Battlespace Digitisation System Concept: An

Introduction Issue 1 28th Feb 2000

[2] Information Technology - Software product evaluation -
Quality characteristics and guidelines for their use,
International Standard ISO/IEC 9126: 1991 (E)

[3] An Examination of the current state of CBSE: A report
on the ICSE Workshop on Component based software
Engineering (CBSE), Alan Brown and Kurt Wallnau.
20th International Conference on Software Engineering
(ICSE) Kyoto, Japan April 1998

Flexibility and Supportable Security Reliability Efficiency Cost

Application and Info. Services +ve -ve

(to +ve)

-ve

(to +ve)

-ve

(to neutral)

+ve

Process Support +ve -ve

(to +ve)

-ve

(to neutral)

-ve

(to neutral)

+ve

Data Management +ve

(marginal)

 neutral +ve

(marginal)

-ve

(to neutral)

neutral

Communications neutral neutral neutral neutral neutral

Service Management -ve

(to +ve)

-ve

(to +ve)

-ve

(to +ve)

-ve

(to neutral)

-ve

(to +ve)

Table I : Results of the JBD assessment

8

