Efficient and Mechanised Analysis of Infinite CSPy,
Specifications: strategy and tool support

Adalberto Farias, Alexandre Mota, Augusto Sampaio

Centro de Informatica — Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7.851 — 50.740-540 — Recife — PE — Brazil

{acf, acm acas} @i n. uf pe. br

Abstract. Model checking is an automatic technique for verifying properties of
finite state systems. To deal with infinite state systems, which exhibit the state
explosion problem, compression techniques are used before model checking.
In this work we present a mechanised way of analysing infinite state CSPz
specifications based on data abstraction. We have also developed a tool which
mechanises the abstraction process.

2

Resumo. Verificacdo de modelos é uma técnica automdtica para verificar
propriedades de sistemas com finitos estados. Para tratar sistemas com
infinitos estados, que exibem o problema da explosdo de estados, técnicas de
compressdo sdo usadas antes da verificacdo de modelos. Neste trabalho
apresentamos uma maneira de analisar especificacées CSP; com infinitos
estados baseada em abstracdo de dados. Implementamos também uma
ferramenta de suporte que mecaniza o processo de abstracdo.

1. Introduction

Model checking [Clarke et al. 1999] is a powerful and automatic technique designed for
verifying properties of finite state space systems. For infinite state space systems,
compression techniques such as partial reduction [Roscoe 1998], data independence
[Lazic 1999], abstract interpretation [Cousot and Cousot 1992], model checking and
theorem proving integration [Kesten et al. 1999], etc. have to be first employed.

This work deals with a mechanised approach for model checking infinite state
space CSPy processes. CSP; [Fischer 2000] is a formal combination of the process
algebra CSP [Roscoe 1998] and the model-based language Z [Spivey 1992]. The
strategy consists of replacing infinite data types with finite ones, while still preserving
the original properties. Moreover, the approach combines theorem proving and model
checking, and also has tool support.

The ad hoc approach for model checking CSP; proposed in by Mota and
Sampaio [Mota and Sampaio 2001] consists of deriving an equivalent CSPy; (the
machine-readable version of CSP) specification in order to reuse the FDR tool [Roscoe
1998] (a CSP model checker). State explosion has naturally emerged, especially due to
the abstract data types allowed by Z. To avoid this problem, a mechanical data
abstraction technique has been proposed [Mota et al. 2002].

Our work extends previous ones [Mota 2001, Mota et al. 2002] in two
directions: theory and practice. Concerning the theoretical contribution, our approach

improves the previous one by considering both parts (CSP and Z) of a CSPz process;
the previous technique considers only the data (Z) one. The result is a faster algorithm
which captures specific situations of the behavioural (CSP) part. More importantly, our
algorithm deals with a wider class of specifications, because it analyses only the traces
allowed by the CSP part, whereas the original algorithm analyses all possible traces.
This can lead to divergence in situations where our algorithm terminates successfully.

Regarding the practical contribution, we have implemented a Java tool which
mechanises the proposed approach [Farias et al. 2003, Farias et al. 2004]; the tool has
evolved from a previous one [Farias et al. 2001] which only considers the conversion
from CSPz to CSPy. The data abstraction feature was introduced to increase the support
for analysing infinite CSP; specifications as well.

This presentation is organised as follows. Section 2 gives an overview of our
approach. Section 3 shows the tool support and Section 4 presents our conclusions.

2. CSP; Data Abstraction

A CSPy specification has two distinct parts: CSP and Z (see Example 2.1). The first part
describes the behaviour and the second one deals with data aspects (data structures,
state, initialisation and operations). When converting CSPz to CSPy;, the CSP part is
rewritten as a controller process (Pcsp) and the Z one is translated into a slave process
(PZS), which offers all enabled operations and synchronises with Pcgsp into a parallel

composition. These parts are analysed by our abstraction approach simultaneously.
However, to simplify the treatment, we consider that the CSP part does not handle data,
only events. Therefore, its behaviour does not depend on the data aspects and we say
that it is data independent [Lazic 1999]. For the Z part, which contains all data
manipulation, we use the abstract interpretation theory [Cousot and Cousot 1992],
which allows one to describe concrete structures (data types and operations) by using
abstract (simpler) ones. Thus, although we investigate the CSP and the Z parts, the
abstraction comes from the Z part only.

To show our data abstraction strategy we use an example of a clock, which
performs two events (tick and tack) forever, while increments an internal counter (see
Example 2.1). For each channel ev, there exists an operation com_ev. This is required to
synchronise both parts (CSP and Z); for example, the event tick is performed by the
CSP part if and only if its corresponding schema com_tick is enabled. Figure 1(a) shows
an LTS (Labelled Transition System) representation of the Clock process.

Example 2.1 (An Infinite Clock)

spec Clock
chan tick, tack (CSP part — channel declaration)
main = tick - tack — main (CSP part — main process)
State = [n : N] (Z part — state definition)
Init = [State’ | n’ = 0] (Z part — initialisation)
com_tick = [AState lnmod2=0An"=n+1] (Z part — operation)
com_tack = [AState lnmod 2 =1 An’=n+ 1] (Z part — operation)

end_spec Clock

O modes with property Fick ?f‘ mlrml'ngPr,J,Py} A ek € .ul.ll.l\m'.'\.]'J'-“..Sl"r |

IC) podes with property siek € il Fegp § o~ tiack ?’/bl.ij.im'm"{.w I
. s e TE tack

— -
() - =
F:u..iJ o fick com_tack oo _fick com_fack
) {a) LTS for the oniginal process (b} LTS fior the absiract process

Figure 1: Abstraction of the Clock process

After performing (tick,tack) the process accepts performing the same trace again. The

acceptances set of a CSP; process (the set of all events accepted by the CSP part, whose
corresponding schema is enabled) is formalised by Definition 2.1, whereas Definition
2.2 establishes the property of a CSPz process as a conjunction of its acceptances and
refusals (set of events a process refuses for each of its traces). The synchronisation
interface is the set of events on which both parts synchronise.

Definition 2.1 (Initials of a CSPz Process) Let Pg, be a CSPz process whose CSP part
is captured by Pcsp and its synchronisation interface is represented by I. Then,

initials(PCSPZ)=U.cr{ev|pre com_ev A ev e initials(Pcsp) }

Definition 2.2 (Property of a CSPz Process) Let Py, be a CSPz process defined with
channels evl, ... ev, If, in a specific context, the events evl, ... evj with j <n, are
accepted by the P, , then its property, at that context, is

(U2, ev; O initials (Pegp,)} T DZ:M evi U initials (Pegp,)}

The key idea of our approach is the notion of stability—the infinite repetition of a
property. When achieving a point whose property has already occurred (node n = 2 on
Figure 1(a)), one has to investigate the infiniteness of such a repetition. This means
checking whether the whole process accepts performing {tick tack) forever. For the CSP
part, we isolate the trace causing the repetition and build an auxiliary process that
reaches such a point and is infinite (P, = tick -» tack — Pg). Then we force main to
behave like P, and build a refinement check to determine the stability of main:

main | Pgy BT Pau
a(Py,)

aux

Above, a(P,,,) denotes the set of all events performed by P,,. For this refinement
checking, the traces model is sufficient. Nevertheless, the abstracted process is
equivalent in the failures-divergences model [Roscoe 1998] to the original process (at
least when dealing with optimal abstraction [Mota 2001]).

For the Z part we build a schema composition corresponding to (tick tack) (for

our example, comp = com_tick § com_tack) and check whether such a composition is

allowed to happen infinitely (using a theorem prover like Z-Eves [Saaltink 1997]); this
happen when pre comp is valid and the execution of comp enables it again ((pre comp)'
is valid). This is formalised by the theorem

VState, State’ | (pre comp = comp) - (pre comp)’.

Once both parts are stable, the infinite repetition of {tick tack) can be replaced with a

cycle (see Figure 1(b)) and an equivalent (abstract) process can be built, such that the
original domain (N) is replaced with the finite subset {0,1} where O represents the

equivalence class of even numbers and 1 that of odd numbers.

spec Clock"

chan tick, tack (CSP part — channel declaration)
main = tick —» tack — main (CSP part — main process)
State = [n: {0,1}] (Z part — state definition)
Init = [State’ | n’ = 0] (Z part — initialisation)
com_tick = [AState Inmod 2 =0 A n’ =1] (Z part — operation)
com_tack = [AState lnmod2 =1 An’=0] (Z part — operation)

end_spec Clock"

Finally, we have showed that the whole CSP; process causes less expansions than its Z
part (see Theorem 2.1), by proving that the traces performed by the whole process is a
subset of those performed by its Z part (see [Farias 2003] for details about the proof).

Theorem 2.1 (P, Il Pcsp refines P) Let Pcsp and Py be CSP processes representing
1

the CSP and the Z parts of a CSPz process, respectively. Then,
PZS ET PZS I Pcsp
1

Note that the above theorem also holds when the CSP part diverges, stops or terminates.
This happens because the parallel composition captures those situations. In [Farias
2003] we have presented several examples to illustrate the importance of Theorem 2.1
in capturing the influence of the behavioural part. Furthermore, we have presented an
algorithm, in an imperative style, which implements our strategy.

3. Tool Support

As our approach can be mechanised, we have also implemented a tool (available at
http://www.cin.ufpe.br/~acf) which applies all steps to derive an abstract CSPy
specification from a concrete one. Furthermore, as our approach involves theorem
proving, the tool is indeed semi-automatic; user assistance can be required. The current
version interacts with Z-Eves [Saaltink 1997] by using a file-based strategy. However,
the user can provide plugins to interact with other tools.

4. Conclusions

This work is related to CSP; data abstraction, a technique which permits to deal with
verification of infinite state space specifications. The strategy consists of deriving
specifications with a finite state space and with the same properties as the original ones.

We have extended the work reported in [Mota 2001], where a guided approach
for CSP; data abstraction was proposed. However, Mota’s work considers only the data
(Z) part when looking for stable behaviour; it explores only the expansions caused by
the Z part. Therefore, the first contribution is an extended strategy which also considers
the behavioural (CSP) part. The immediate result concerns the class of specifications

we can deal with. Situations specific of the behavioural part (such as deadlock,
termination and divergence) are captured by our approach. Because the whole process is
analysed, our algorithm can produce abstractions of specifications with a non-stable Z
part (the CSP part can be stable). Furthermore, our algorithm is faster than that
proposed in [Mota 2001]. This is a result of Theorem 2.1: exploring the whole CSP;
process generates less expansion (traces) than considering only its Z part. The limitation
of our approach concerns specifications whose both parts never stabilises.

Regarding tool support our contribution consists of providing a flexible and
robust tool which implements the technique of data abstraction for CSPz. The tool is a
pioneer work towards mechanisation of data abstraction.

References
Clarke, E., Grumberg, O. and Peled, D. (1999). Model Checking. The MIT Press.

Cousot, P. and Cousot, R. (1992). “Abstract interpretation frameworks”. J. Logic. and
Comp., 2(4): 511-547.

Farias, A. (2003). Efficient and Mechanised Analysis of Infinite CSP, Processes:
strategy and tool support. Master’s dissertation, Federal University of Pernambuco.

Farias, A., Mota, A. and Sampaio, A. (2001). “De CSP; para CSPy;: Uma ferramenta
transformacional Java". Workshop on Formal Methods (WMF01), p. 1-10.

Farias, A., Mota, A. and Sampaio, A. (2003). “A Support Tool for CSP; Data
Abstraction”. Tool Exhibition Notes of FME 2003, Pisa, Italy, 2003, p. 11-15.

Farias, A., Mota, A. and Sampaio, A. (2004). “Efficient CSPz Data Abstraction". IFM
2004, volume 2999 of LNCS, p. 108-127.

Fischer, C. (2000). Combination and Implementation of Processes and Data: from
CSPoy to Java. PhD thesis, Fachbereich Informatik Universitit Oldenburg.

Kesten, Y., Klein, A., Pnueli, A. and Raanan, G. (1999). “A Perfecto Verification:
Combining Model Checking with Deductive Analysis to Verify Real-Life Software”,
volume 1708 of LNCS, p. 173-194.

Lazic, R. (1999). A semantic study of data-independence with applications to the
mechanical verification of concurrent systems. PhD thesis, Oxford University.

Mota, A. (2001). Model Checking CSPz: Techniques to Overcome State Explosion.
PhD thesis, Federal University of Pernambuco.

Mota, A. and Sampaio, A. (2001). “Model-Checking CSP-Z: Strategy, Tool Support
and Industrial Application”. Science of Computer Programming, 40:59-96.

Mota, A., Borba, P. and Sampaio, A. (2002). “Mechanical Abstraction of CSPy
Processes”. FME 2002, volume 2391 of LNCS, p. 163-183.

Roscoe, A. (1998). The Theory and Practice of Concurrency. Prentice Hall.

Saaltink, M. (1997). “The Z-Eves System”. ZUM'97: The Z Formal Specification
Notation, volume 1212 of LNCS, Springer.

Spivey, M. (1992). The Z Notation: A Reference Manual. Prentice-Hall International.

