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ABSTRACT

Participatory Sensing (PS) systems rely on the willingness of mobile users to participate in the

collection and reporting of data using a variety of sensors either embedded or integrated in their

cellular phones. Users agree to use their cellular phone resources to sense and transmit the data

of interest because these data will be used to address a collective problem that otherwise would

be very difficult to assess and solve. However, this new data collection paradigm has not been

very successful yet mainly because of the lack of incentives for participation and privacy concerns.

Without adequate incentive and privacy guaranteeing mechanisms most users will not be willing to

participate. This thesis concentrates on incentive mechanisms for user participation in PS system.

Although several schemes have been proposed thus far, none has used location information and

imposed budget and coverage constraints, which will make the scheme more realistic and efficient.

A recurrent reverse auction incentive mechanism with a greedy algorithm that selects a representa-

tive subset of the users according to their location given a fixed budget is proposed. Compared to

existing mechanisms, GIA (i.e., Greedy Incentive Algorithm) improves the area covered by more

than 60 percent acquiring a more representative set of samples after every round, i.e., reduces the

collection of unnecessary (redundant) data, while maintaining the same number of active users in

the system and spending the same budget.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Studying large-scale variables in nature such as, temperature, humidity, noise or pollution re-

quires the collection of a vast amount of data across a variety of locations. Today, this data is

collected and processed by means of sophisticated, accurate, and expensive sensors located in me-

teorological stations. Since the high costs and the location constraint of this equipment, many cities

do not have the necessary number of stations to satisfy the coverage demands. To overcome the

limitations, these systems use complex statistical methods of interpolation in order to estimate the

value of the variable of interest (i.e., temperature, humidity, pollution) in places located outside of

the stations’ scope. However, factors, such as long distance among stations and sudden changes

in the environmental conditions, may compromise the accuracy and reliability of these estimates.

An appealing alternative to this way of gathering environmental measurements is the involvement

of citizens in the process of collecting data. Lately, this way of gathering has been made popular

by the recent introduction of schemes of citizen participation such as Participatory Sensing (PS).

PS leverages the sensors embedded in the citizens’ mobile phones, allowing them to sense their

surrounding environment. Given the number, mobility and pervasive characteristics of large popu-

lations, the resulting data collected by them turned out to be more representative and accurate than

those gathered by a few meteorological stations. Additionally, the cost reduction of both imple-

mentation and maintenance as well as the ease of implementation, make PS a real alternative to the

current way to sense the environment.

In spite of its multiple advantages, PS is heavily dependent on citizen participation; people are

the system’s core. One of the main challenges to be addressed for the successful deployment of PS
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systems in real scenarios is ensuring the citizens’ participation. Since citizens do not have a direct

benefit from reporting data, the inclusion of incentive mechanism to encourage their participation is

essential.

This thesis presents the Greedy Incentive Algorithm (GIA), a reverse auction-based incen-

tive mechanism based on the Reverse Auction Dynamic Price with Recruitment (RADP-VPC-RC)

mechanism proposed in [2], that not only includes provisions to retain the users but also algorithms

to obtain the lowest cost samples that are best distributed to cover the area of interest within a given

budget. This last part of GIA is achieved by the Greedy Budgeted Maximum Coverage (GBMC)

algorithm [3], allowing GIA to improve coverage by more than 60 percent, acquiring a more repre-

sentative set of samples after every round.

1.2 Problem Statement

This thesis addresses two fundamental challenges in the design of incentive mechanisms for PS:

make the system economically feasible from an economical point of view and guarantee the area

coverage. The former challenge is a necessary condition for the sustainability of any project. Here

a global budget is evenly divided by the number of rounds, the procedure is presented in detail in

Section 3.4. In the latter case, ensuring the area coverage of the target area is a necessary condition to

obtain a representative set of sensing samples of the area of interest. After reviewing the proposed

incentive mechanisms for PS up to the current time, this thesis did not find any mechanism that

took the user location and a finite budget constraints into account. In order to make the system

economically feasible, the incentive mechanism must consider how to maximize a finite budget in

order to reward the largest possible number of participants. On the other hand, in order to acquire a

set of representative sensing samples (e.g., pollution samples of the city) the samples must be taken

in different places of region of interest so that the entire area can be covered by these samples. For

that reason, the participants location must be considered as a criteria for data acquisition.

One approach normally used to reward participants and guarantee their participation is based

on reverse auctions [2]. This approach is also used here. One of the advantages of reverse auctions

is that they involve participants in a race to sell their sensing samples and the auctioneer generally
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purchases the cheapest m ones, reducing the cost of maintaining the system working. On the down

side, in reverse auctions users may drop out of the system, jeopardizing the system altogether, and

therefore special mechanisms must be included to avoid this situation.

Although it is economically advantageous to buy the m samples with the lowest cost in every

auction round (i.e., maximizing the budget), the users may all be physically located very close to

each other, rendering pretty much the same information. In contrast, an incentive mechanism with

location and coverage constraints will not only buy the least expensive samples but also the ones that

are better distributed along the area of interest. Also, it is not practical to assume that the auctioneer

will always have an unlimited budget to run the system, and therefore, including a limited budget

per round makes more sense.

1.3 Contribution of this Thesis

One of main contribution of this thesis is a mechanism of incentives for PS that take into ac-

count a finite budget and participants’ location. Besides, the second chapter presents a survey that

summarizes the different PS incentive proposals up to the present time. This work also presents a

set of design issues and a qualitative evaluation of the current incentive mechanism for PS. On the

other hand, the role of PS is proposed in an emerging landscape of similar concepts involving citizen

participation. Finally, a three-level taxonomy is proposed, based on the type of user motivation used

for the current PS incentive mechanisms.

1.4 Organization of this Document

The rest of the thesis is organized as follows: Chapter 2 explores the place of PS in a recent

landscape of frameworks that encompass it and similar tasks; presents the state of the art incentive

schemes for PS; and propose a set of design issues as well as a taxonomy of current schemes.

Chapter 3 discusses the algorithms’ design, elaborates on the parameters, provides a functional

specification, and describes the GIA algorithm components. Chapter 4 presents GIA’s performance

evaluation which include a set of three experiments. Finally, Chapter 5 concludes the thesis and

provides directions for future research.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter presents the state of the art incentive schemes for PS. A set of design issues are

proposed as well as a taxonomy of current schemes. The rest of the chapter is organized as follows:

Section 2.1 explores the roll of PS in a recent landscape of similar concepts. Section 2.2 presents

a set of design issues or desired requirements of PS incentive schemes. Section 2.3 presents a

taxonomy of the available incentive mechanisms for PS. Finally, Section 2.4 presents an qualitative

evaluation of the different systems, and the advantages and disadvantage of each one based on the

proposed design issues.

2.1 Similar Concepts

The revision of the state of the art incentives mechanism in PS has led to the discovery of a

variety of concepts such as Human Computing (HC), Crowdsourcing (CDS), Social Computing

(SC), Collective Intelligence (CI), and Citizen Science (CS), all of which seem to include PS and

always appear linked to it. This section gives a set of brief descriptions of each of these concepts,

and proposes the place of PS in this new landscape of related concepts.

Participatory Sensing is the process through which community members use the sensors em-

bedded in their personal belongings (e.g., smart phones, bicycles, shoes, cars, etc) to measure a

complex spatial phenomenon in order to discover underlying patterns. [4] Human Computation is a

computing parading leverages the human capacity to solve some problems that computers does not

handle very well. A typical example is the human capacity to solve CAPTCHAS. CAPTCHA is

program that picks a random string of letters and then it renders the string into a randomly distorted

image. This program generates a test which consists of asking the user to type the characters that
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appear in the image. Humans can do it easily, however machines cannot. Another, term close to PS

is CrowdSourcing which is a mechanism used for several companies that consists of outsourcing a

task that used to be carried out by regular employees in order to reduce production costs and avoid

costly payroll. [5]

Citizen Science is also a popular model of citizen participation. This participation make possible

to accomplish research goals that otherwise would not be possible. Some of the most common tasks

carried out for the voluntaries include collection and data analysis, testing, and some times scientific

dissemination. Other models such as Social Computing emerged from the concern about social

behavior. This model is often understood in two different ways. On one hand, the concept may be

refereed as a way to support social behavior; this is the case of tools such as email, social networks,

blogs, and in general, all the computational ways to support human interactions. On the other

hand, this concept may be refereed to the different ways to support the computation carried out by

collectives. Some examples include prediction markets, online auctions, and reputation systems. [6]

Finally, the concept of Collective Intelligence is related with the knowledge that emerges for

the competition and interaction within groups. Although the members may not work together in a

coordinate way, an agreement seems to emerge. Financial markets are a good example to illustrate

this concept. In this case the stock price is not set just for an individual or in a coordinate way,

instead it emerge from the independent work of many people all of them working for their own

benefit. [6]

2.1.1 Place of Participatory Sensing

According to Paulos et al. [7, 8] the use of mobile phones as a measurement instrument for

environmental sensing is just one of several methods used in CS campaigns. Therefore, it is con-

sidered PS completely included in this framework. On the other hand, PS seems to intersect HC

in the sense that PS is clearly an alternative to the traditional way of sensing the environment (e.g.,

metereological stations) which involve machines and algorithms that lack the number and mobility

of human beings. However, authors such as Quinn and Bedersonm [9]; Yuen et al. [10]; and Doan

et al. [11] emphasize that the human participation in HC and CDS is directed by the computational
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Figure 2.1: Frameworks of Human Participation

system or process. From this point of view, when the PS task is carried out by a spontaneous group

of people with no clear guidance (e.g., using social networks) it can not be considered as part of HC

nor CDS. Besides, part of PS appears to be in the intersection of HC and CDS. On the one hand,

today the sensing process in PS may be carried out by machines in opposition to HC, but on the

other hand, the same task may be done by training employees (e.g., in opposition to CDS). In both

cases PS is an alternative for replacing either one, the machine mode or the employee mode, which

results in a trade off between quality and costs.

Figure 5.1 illustrates the place of PS in this landscape of related concepts; collective intelligence

is a superset of social computing and crowdsourcing, because both are defined in terms of social

behavior. Whereas human computation replaces computers with humans, crowdsourcing replaces

traditional human workers with members of the public. The key distinctions between collective in-

telligence and human computation are the same as with crowdsourcing (i.e., the system coordinates

human participation). However, there is an additional distinction that collective intelligence applies

only when the process depends on a group of participants. According to Quinn and Bedersonm [9]

given that the definition of PS does not say anything about groups, there could be an PS system of

a single worker in isolation. This is the reason that part of PS is outside of CI.
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2.2 Design Issues for Incentive Mechanisms in PS

The following characteristics were identified as necessary conditions for incentive mechanisms

for PS: Economic feasibility, data quality, area coverage, fairness, adequate number of participants,

adaptable to increased demands, and finally, works independent or dependent of the human control.

2.2.1 Economically Feasible

For any project, budget is a critical factor. Activities like PS need a critical mass of people to

maintain both reliability and coverage. However, budget concerns constrain these goals. Hence,

a key design issue is to maintain an equilibrium between reliability and coverage. A common

approach to address this problem is to estimate the reservation wage, which is defined as the lowest

wage rate at which a worker would be willing to accept a particular type of job. That means that

a job offer involving the same type of work and the same working conditions, but at a lower wage

rate, would be rejected by the worker. However, according to Addison et al. [12] an individual’s

reservation wage may change over time depending on a variety of factors. Taking into account the

dynamic nature of this indicator, the introduction of additional components such as entertainment

and competitiveness may contribute to lower the reservation wage. Section 2.3 introduces some

dynamic monetary incentives for PS that combine monetary with intrinsic motivations to make

economically feasible the system deployment as well as non monetary mechanisms that use other

types of motivations to encourage user participation.

2.2.2 Data Quality

Information is the core of a PS system, and its incentive mechanism must ensure that potential

consumers receive a higher Quality of Information (QoI) according to their requirements. A natural

question is, how can a PS incentive mechanism encourage the collection of quality data? One of

the most common approaches utilized to address this problem is the use of reputation schemes.

Generally, users’ reputations may be computed from their past performances, the assessments of

their peers, or by a combination of those two. Yang et al. [13] proposes the use of this criteria to

rank participants in four levels that go from very trustworthy in the top 25% to very untrusworthy
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in the botton 75% - 100%. On the other hand, Huang et al. [14] uses the Gompertz function to rate

the trustability level of the data provided by participants. In both cases, these reliability indicators

can be linked to credit incentives in order to encourage the user movement from low to top quality

levels. Once computed, this indicator (e.g., trustability index) may be used to predict quality. Pham

et al. [15] proposes the use of those indicators as a criteria for data acquisition. Pham et al. [15]

models the selection of participants as a multi-objective optimization problem, where quality is one

of the objectives and the outcome is the best trade off between quality and cost. Reddy et al. [16]

propose a feedback reinforcement method to assess metrics such as: timeliness capture, relevancy,

coverage, and responsiveness. The feedback component continuously reinforces the improvement

of these metrics by the use of monetary and social-base incentives. Finally, Liu et al. [17] propose

an on demand method for data acquisition, in which each query is associated with a required quality

level. User’s credit reward is linked to the QoI satisfaction index of the data customer. In this way,

depending of the query quality level requirement, it is directed to the group that may provide this

quality level.

2.2.3 Area Coverage

Another important goal of any PS incentive mechanism is always selecting the best subset of

users in order to estimate a complex spatial phenomenon (e.g., temperature, pollution, noise levels).

To address this problem Reddy et al. [18] propose the use of mobility profiles as part of the partici-

pant’s selection criteria in the recruitment process. Using a similar approach, Falaki et al. [19] and

Shilton et al. [20] propose increasing the participant’s demographic diversity and social network af-

filiation. They propose to leverage the mobility patterns of different groups to increase the sensing

coverage area, and also envision tackling problems such as language barriers by the use intrinsic

motivations. Kuznetsov and Paulos [21] propose the involvement of stakeholders such as students,

parents, bicyclists, and homeless people. They say that each of these groups is disseminated on

different public spaces. On the other hand, Lee and Hon [2] propose the use of Virtual Participation

Credit (VPC), a mechanism for sensing samples acquisition that uses a principle of locality that

assumes people with a similar reward expectation are clustered geographically.
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2.2.4 Fairness

Fairness is a key factor in accomplishing goals such as retention, coverage, and economic fea-

sibility. Usually this concept is understood as the equal opportunity of participation. However, in

the case of dynamic pricing models based on reverse auctions, fairness is understood as a scheme

in which a user whose bid is cheaper has a higher chance to be selected than a user whose bids are

more expensive. In this case (incentives models based on reverse auctions), this feature (fairness)

may lead to a geographical coverage imbalance as well as user drop out. In the former case, be-

cause the participants with a lower reservation wage may be located in a particular region of the

target area, and in the latter case, because the samples will always be acquired from those with a

lower reservation wage causing that, after several periods of waiting, those with a higher one drop

out because they do not have the opportunity to participate. Some authors, such as Lee and Hon

[2] address this problem by the use of mechanism such as VPC and Recruitment (RC) which avoid

always acquiring samples from the same users (e.g., the cheapest ones). On the other hand, Pham et

al. [15] tackle this situation using a mechanism that not only considers the sample’s price, but also

its quality. Finally, Jaimes et al. [1] approach the same problem by means of a greedy algorithm that

not only considers the sample’s price, but also their location, which allows that the users’ location

as well as their mobility patterns, increases or decreases their chances to be chosen.

2.2.5 Adequate Number of Participants

Because the number of participants and their mobility patterns, PS seems to be an appealing

alternative to traditional sensing. Factors such as sensing frequency, target area size, type of phe-

nomenon to be analyzed, and sensing demands can be used to determine the necessary number of

participants for a specific sensing request. However it is always necessary to have an additional

number of parcipants, given the uncertainty in terms of size, location and accuracy of next request

of sensing (e.g., sensing on demand) and the natural dropping out of participants (e.g., high fre-

quency sensing). In some monetary based schemes, in which a budget constraint determines the

number of selected users, the starvation of participation may cause dropping out of them. This is

the case of [2, 15] in which the users must send the sensing data in advance, and then the system
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decides based on factors like quality, whether to acquire them or not. In this case, the extra burden

of collecting and transmitting data without any reward may cause the user to drop out after a few

rounds. The inclusion of reputation schemes to predict data quality such those reviewed in sec-

tion 2.2.2, may avoid this drawback. In this way, all the subscribers of a Phone Network Provider

(PNP) are potential participants of the PS system, and their participation depends on whether their

reward expectations are satisfied.

2.2.6 Adaptable to Increased Demands

Scalability can be defined in terms of how well a solution to problem will work when the size

of the problem increases. From this point of view, the incentive systems must have the ability

to maintain performance, usefulness, and usability regardless of expansion and concentration of

participants from local to a more distributed pattern. This expansion implies not only both an

increasing number of participants and the inclusion of new target areas, but also the inclusion of new

types of participants in terms of their intrinsic interests and expected rewards. It may be necessary to

use methods that dynamically adapt to different types of population according to their motivations.

In terms of number of nodes and area coverage, PNP are able to scale to millions of nodes, which

implies almost a total coverage. However, the ability to attract and maintain a wide range of users

based on their different types of motivations, has not yet been sufficiently developed. Approaches

such as Micro-Blog [22] combines the social incentives supplied by the use of social networks with a

type of incentive called “give and take” which encourages respond queries when they are generated

by strangers.

2.2.7 Independent / Human Controlled

An equally important design issue has to do with the ability of the system to work autonomously

in the absence of human intervention, i.e., continue encouraging the user participation in scenarios

in which the user acts as passive carrier of the sensors. Lane et al. [23] and Kapadia et al. [24]

classified the grade of user’s participation as opportunistic and participatory. In the former case,

users volunteer their cellphones to transparently sense the environment while they continue with
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their daily lives without being interrupted. They may not be aware of when or how their cellphones

are remotely tasked to collect and report data. In the latter case, users are actively involved in the

sensing process (e.g., taking a picture, manually activating a sensor, manually accepting or rejecting

a request for sensing). The emergence of hybrid systems such as [25, 26] that combine these two

approaches, leads to incorporating new characteristics like the inclusion of agents that automatically

negotiate on the user’s behalf. Sun and Nakata [27] propose a an agent-based architecture for PS

to overcome the lack of user’s active participation. This architecture includes four types of agents:

user agent, local agent, data verification agent, event monitoring agent, and central agent. User

agents provide raw data, which are processed by the local and verification agents, which in turn

send it to the database. The event monitoring agent analyzes and detects database anomalies and

potential hazards. Finally, the central agent is responsible for receiving and processing every query.

A detailed overview of the role that systems of intelligent agents play in the design of dynamic

incentive mechanisms is presented by Parkes et al. [28].

2.3 Taxonomy

PS incentives can be classified in different ways. One way is based on the level of user partici-

pation (i.e., Opportunistic or Participatory Systems). Since there are many incentives that apply to

both of them, in this thesis, the classification is based on the types of stimuli that encourage user

participation. In Figure 2.2, this classification approach initially identifies two large branches: Mon-

etary and non Monetary incentives. The former is classified as either Static or Dynamic. The latter

are divided into the following categories: Collective Motives, Social Reward, and Intrinsic Motives-

based incentives. Finally, the Social Reward-based incentives are further divided as Interaction, and

Self-Interest-based incentives.

2.3.1 Monetary Incentives

When the sensing activity does not bring any immediate benefit for users, monetary rewards are

powerful motivators. They encourage participants to perform tasks that otherwise they would not

perform voluntarily. The way the reward is determined leads to two types of approaches: Static
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Incentives for Participatory Sensing

Monetary

Static Dynamic

No Monetary

Collective Motives Social Reward

Interaction Self Interes

Intrinsic Motives and Fun

Figure 2.2: Taxonomy of Incentives for Participatory Sensing

and Dynamic. In the former, the amount to pay to each participant is estimated in advance and

the amount may differ for each participant. In the latter, the payment depends on the reservation

wage of each participant. A common approach is to combine monetary rewards with other types

of incentives (e.g., Intrinsic Motives, Social-based incentives, etc) in order to decrease the user’s

reservation wage.

2.3.1.1 Monetary Static Incentives

Static types of monetary incentives include the first four of the five types of micro-payments pre-

sented by Reddy et al. [29]: Macro, Low, Medium, High, and Complete micro-payments. Reddy’s

findings showed that the way to estimate this payment affects the participation level and data quality.

In terms of quality and coverage, the most successful methods reported in this study were medium

and high micro-payments, and in terms of the number of submitted samples, the best method was

the dynamic one (i.e., Complete micro-payment). However, this type of macro-payment also caused

the highest level of users dropping out.

Musthag et al. [30] study confirmed these results using three types of micro-payments: Uniform,

Variable, and Hidden. In the Uniform scheme, a fixed amount was rewarded for completing a micro-

task; in the Variable scheme, random amounts were assigned based on a prior distribution; and in

the Hidden scheme, rewards again varied, but the amount was not revealed until after the micro-

task was completed. Their findings showed that in all the cases they retained around 62% of the
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participants, the percent of completion rate was slightly higher in the variable approaches with

86.92% followed by 86.26% and 81.68%. On the other hand, the Variable approach obtained the

highest level of positive participants perception followed by the Uniform and the Hidde one. Their

conclusion point out the superiority strategy of use Variant over Uniform, and the poor performance

of Hidden. Finally, they result confirm the findings of Reddy et al. [29] in the sense that the data

quality is influenced by the incentive strategy.

2.3.1.2 Monetary Dynamic Incentives

Lee and Hon [2] present Reverse Auction Dynamic Price with Virtual Participation Credit and

Recruitment (RADP-VPC-RC) an incentive mechanism inspired in micro-economic theory and mo-

tivated by the following scenario. There are n participants spread through the area of interest. They

are willing to sell their sensing data to an auctioneer who in turn wants to acquire the m less ex-

pensive samples, within a time window (i.e,. rounds). The same process is repeated for k different

rounds and is carried out through a reverse auction. The first component (RADP) is a recurrent

reverse auction that dynamically reduces the reservation wage of each participant. Figure 2.3 shows

the RADP-VPC-RC process overview. Once the auctioneer buys the m cheaper samples, the win-

ners (i.e., those who managed to sell their samples) increase their bid’s price by 10% expecting to

increase their profits and losers decrease it by 20% in the hope of winning in the next round. In

order to model the drop out, losers (i.e., those who did not manage to sell their samples) evaluate

their ROI value (i.e., which is based on their reservation wage and sum of the cost that the user

incurs in collecting the data) which is represented by equation 2.1. If it is below a certain threshold,

then they withdraw from the system, otherwise they continue participating in the next round.
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Figure 2.3: RADP-VPC-RC Algorithm 



S
r
i =

e
r
i + βi

pri .ti + βi
(2.1)

Here, eri corresponds to the earned reward by users i until round r, pri .ti corresponds to the

minimum reward, with p
r
i as the number of participation instances of i up to the current auction

round r, ti as the user’s true valuation (reservation wage), and βi as the tolerance period. In order

to increase the level of participation, users who lost in the previous round r − 1 and continue

participating, grants a VPC v
r
i = v

r−1

i + α , where α corresponds to the amount of VPC. Hence,

losers increase their chances to win by using their virtual bid’s price b
r
i
∗ = b

r
i − v

r
i rather than

the real bid’s price. Additionally, the RC mechanism allows the auctioneer to communicate the

maximum price paid ϕk to a winner in the last round to the users who dropped out in previous

rounds. This information allows them re-evaluate their ROI and potentially return to the system in

the next auction round. This expected ROI is evaluated as follows:

S
r+1

k =
e
r
k + ϕk + βk

(prk + 1).tk + βk
(2.2)

This economic model avoids two typical problems of reverse auction: dropping out and cost

explosion, making the project economically feasible by means of the combination of RADP, VPC,

and RC. However, others problems such as: coverage and data quality are not totally addressed.

The former, is weakly tackled by the use of VPC and by a proposal of applying the RADP-VPC-RC

simultaneously in different regions, and the latter is not addressed at all. However, other proposals

such as Pham et al. [15] and Jaimes et al. [1] based on RADP, address those problems by using

multi-objective Knapsack and Budgeted Maximum Coverage approaches respectively.

Inspired by a similar scenario as above, Pham et al. [15] addresses the problem of selecting the

samples that will be acquired in each round, minimizing the ratio between the total price paid for the

acquired samples and its total quality (e.i., it is assumed that the network provider receives the sam-

ples, its price, and they determine its quality before acquiring them). This NP-problem is modeled

as an instance of a multi-objective Knapsack, where the constrain m is the number of samples to

be acquired, and objectives both maximize the quality of the acquired data and minimize the costs.

15



They solve this multi-objective optimization problem by the use of techniques of evolutionary al-

gorithm. This proposal includes three steps in which the Univariate Model Distribution Algorithm

(UDMA) [31] and Third Evolution step Generalized Differential Evolution (EGDE3) [32] algo-

rithms are used to (1) select the initial population by a pair-wise tournament, (2) Use UMDA to

create the next generation, and (3) transform individuals from infeasible to feasible states. This

evolutionary process is repeated and the resulted individuals are the input for the next generation.

Their simulation results show that the proposed scheme acquires samples of high quality by 10%

less money than RADP and up to 15% less than Genetic Algorithms (GA) scheme. Besides, this

hybrid scheme solves the Knapsack problem three times faster than GA.

Another, representative approach is presented by Liu et al. [17]. This work presents a network

management framework to tackle three fundamental problems: maintaining energy supply, sup-

porting quality information (QoI), and incentivizing the user participation so that the PNP obtains

maximum revenue. Even though the solution of the three problems are related each other, the first

two are outside the scope of this thesis, so here, is only dealing with the latter. The proposed frame-

work is motivated for the following scenario. There are a set P of users subscribed to a PNP, and

a user (querier) that additionally owns a subscription to a PS plan offered by the company. Any

time the querier asks the PNP for contextual information about a site of interest k, the PNP in turn

re-directs the query to a set of N users within the proximity of k, with N ⊆ P . Once the query is

received, the users who decided to participate sending their sensing data, are rewarded based in the

PNP’s profits. In this dynamic pricing scheme, unlike the RADP-VPC-RC, the user’s reward ex-

pectation may be unknown in advance and must be predicted. The exponential smoothing method

is used to predict the current expectation reward of each user. This method uses the most recent

payment history to compute the current expected reward and the degree of satisfaction expressed by

the users who received this payments to adjust this value. Equation 2.3 shows the expected reward

for user i, who answers a query q with r attributes required.

ϕ̂
i,r
q = (1− µ)ϕ̂i,r

q−1
+ ϕ

i,r
q , ∀i ∈ N, q ∈ Q, (2.3)
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where ϕ̂
i,r
q−1

, ϕ
i,r
q−1

, and µ ∈ (0, 1), correspond to the predicted and actual reward requirements

for the query q − 1 respectively and µ ∈ (0, 1) to a weight factor. On the other hand, the system

compute the exact participant’s reward, minimizing the sum of mean square error of the predicted

value computed in Equation 2.3 as follow:

ω
∗

q = argmin
1

N

∑

i∈N

{ϕ̂i,r
q − ωq(ĉ

i
q)}

2subject to:

∥∥∥∥
ωq − ωq−1

ωq−1

∥∥∥∥ ≤ δ (2.4)

where δ represents an upper bound in terms of the percent of adaptation from PNP and ĉ
i
q is the

type of information with which the user i responds to query q. Figure 2.4 sketch the final reward

computation process.

This framework addresses issues such as project’s economic feasibility, data’s quality assurance,

and requirements in terms of the number of participants. On the other hand, each query is associated

with r levels of QoI attributes. Once the PS system receive the answers to the query q, it fusion all

of them in order to offer a higher level QoI answer to the querier. Besides, quality indexes such

as µ
r
q and µ

q
q (i.e., required and attained degree of event understanding) are used to measure the

QoI satisfaction index. These ways to measure quality satisfaction allow easily identify quality

problem in the systems. On the other hand, the retaining is addressed by a combination of dynamic

credit reward and a reduction of impact of the participants power consumption. Other issues like

are coverage are not totally address, but can be inferred that it depends of PNP coverage service.

Finally, Xie et al. [33] propose an incentive mechanism motivated by an intermittent connection

environment like Delay-tolerant networks. Here, each query for contextual information is sending

to a group N with n members, within the proximity of querier interest site. Each query is associated

with a tuple (r, sr,m) which include the type of message r; a specific sink sr which is the only node

authorized to receive data of type r from nodes in N and deliver these data back to the querier; and

a message identification sequence number m. Given the nature of the network (i.e., intermittent

and low level connection) it is possible that the mobile node that obtained the information does not

have the opportunity to meet with the corresponding sink, and instead, have occasional encounters

with other nodes. Besides, the sink only rewards the node from which it get the data (i.e., even, if

this node was not the data generator), only if a copy of the data has not been acquired so far. In
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Figure 2.4: Dynamic Pricing Reward Model

this context, the proposed scheme incentivize a collaborative data trade between nodes, so that, the

information finally being reached by the sink, and it in turns can delivered it in a safe way to the

querier. This data trade is expected under the assumption that nodes are selfish and they want to

increase its profits. Therefore, they want to trade copies of different types of data, so that, when a

node meets a sink, this node has high chances to be rewarded.

Let Pi(r) denoted the probability that node i has an encounter with the sink. Let Am
i (r) be the

message appraisal, which is probability that other nodes, but i has not delivered any copy of the

message m to the sink that support r type of messages. Once two nodes i and j have contact, they

start the bargain process determining which information will be traded. This process is modeled

as a two-person cooperative game, and a Nash equilibrium is applied to reach the optimal solution.

Equations 2.5 shows the message appraisals values for nodes i and j before and after i sends a

message with sequential number m of type r to j. At this moment both node have a copy of m.





A
m
i (r) = [Am

i (r)] (1− Pj(r)) sender

A
m
j (r) =

[
A

m
j (r)

]
(1− Pi(r)) receiver,

(2.5)

Finally, the i node expected credit reward is given by equation 2.6

R
m
i = A

m
i (r)× Pi(r) (2.6)

2.3.2 Non-monetary Incentives

These type of incentives have been the subject of intense study and research. These type of

incentives allow the voluntary participation of citizens in research projects that otherwise would not
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be possible to carry out because its high costs of execution. Agencies like NFS strongly encourage

the use of these type of incentives in activities such as: gather information, data collection, analyze

samples, and analyze data, through framework such as CS [34] and PS. Some well-known exam-

ples of this type of projects include Galaxy Zoo [35] (i.e., a project that involve the participation

of citizens in the classification of galaxies), and eBird et al. [36] (i.e., a project headed by Cornell

Lab of Ornithology). These types of incentives have reached its climax with the advent of social

networks, the mass use of blogs, the new smartphones’ communication capacities, and in general,

technologies that support the interaction among members of networks and communities. Part of the

proposed classification of Non-Monetary Rewards-based incentives has been influenced by the the-

oretical work in social movement participation of Klanermans and Stekelenburg [37], and Simons

et al. [38] as well as the research of Nov et al. [39] who after surveyed 4376 volunteers, found that

collective, intrinsic and social-reward incentives were most significants factors of participation. In

the context of PS this thesis has identified two subsets of social rewards incentives: Interaction and

Self Interest. In the former case, rewards comes from the interaction with other members of the

network, among them are, recognition, new friends, reputation, and felt part of a community. In

the Latter, the reward comes from the use of the resources created by the community for personal

benefit.

2.3.2.1 Collective Incentives

This type of incentive encourages the attainment of a common good. This incentive was identi-

fied as primary motivation in PS, because ultimately this is the philosophy of PS, work together for

a common good (i.e., a better environment, a better community, and better planet). Once reached

the objective, everybody will benefit from the goal achievement, no matter whether they have par-

ticipated or not. For instance a public PS campaign to measure pollution levels, will improve the

wellness of all the members of the community no matter whether they have or have not participated

personally. According with Simon et al. [38] the collective good may be insufficient as a motivating

force, because people can hope for a ”free ride.” In addition to the collective good, potential free

riders may also need additional incentives, which may have the form of social rewards, economic
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rewards, intrinsic motivation, and fun an entertainment. To this category belongs all the PS systems

which do not mention any type of incentive, because it is understood by default that the people will

participate for a common good.

Dantec et al. [40, 41] present a system oriented to the care in challenging environments. The

system leverage the advantages of the cellphones to provide care and shelter for homeless mothers.

Providers, staff, and people in need leverage the infrastructure to improve the logistic, that include

the grocery bargain hunting by the providers and allocation the resources by the staff.

Mendez et al. [42] present P-Sense a PS system for air pollution monitoring. The system include

sensors to measure levels carbon dioxide, combustible gas, carbon monoxide, and air quality as

well as temperature and relative humidity. The benefits in terms of wellness and conservation of the

environment from this system are part of the collective interest and represent a common good.

Kanjo [43] presents NoiseSPY a PS platform for urban noise monitoring. This system mea-

sure noise levels in order to generate map of sound levels that may be used for citizens and urban

campaigns to improve the noise contamination.

2.3.2.2 Social Incentives

Social motivation play a powerful roll in user participation. Having the opportunity to interact

with other members of the community, being aware about what they are doing, gaining reputation,

taking self benefit from content create by the community, and use the network as a self presentation

tool [44] are just some of the reasons since millions of people join each year to social networks.

In a survey about the motivating potential of the features for increasing participation in PS [26].

Answers were ranked from the least motivating (1) to the most motivating (10); features such as

being able to publicly comment on other participants observations (6.9±2.8), and being notified of

other participants making observations on items that you had first observed (6.7 ± 3.2), indicating

that social networking aspects were highly desired. This results, along with other studies, suggests

that interaction among members of the community through social networks such as: Facebook [45],

Twitter [46], and Flickr [47, 48] is a strong way to incite people to take part in schemes of PS.

20



2.3.2.3 Social Interaction Incentives

The use of technologies such as social networks, blogs, SMS, email, chat, VOIP have become

part of daily routines of millions of people around the word, as well as the primary way for social

interaction. PS systems like CenceMe [49] use the concept of ”sensing presence” which allow

participants of social networks share his/her status in terms of activity, disposition, habits, and

surrounding (e,g., temperature, ozone levels, noise) in a non-verbal way, which leads to new levels of

connections. This system leverage the incentive characteristics of participation in social networks,

the number of participants can growing at a similar rate as the members of social networks, coverage

and scalability are guarantee for the same mechanism. The system is feasible from an economical

point of view, and finally the system works independently and under human control.

Another PS system that use this type of incentive is NoiseTube [50], a monitor noise pollution

application that allows participants measuring and sharing the levels of noise around them. This

system apply the concept of social translucence [51] as a mechanism to support social interaction.

This concept based on visibility, awareness, and accountability is used by NoiseTube to increase the

level of participation via social stimulation. Participants can exhibit their contribution via Elog, an

environmental log which allows participants see maps of noise, show its contribution, and receive

feedback. Furthermore, the system can be embed as a web widget into web pages and social net-

works, allowing participants to be aware of his/her own and others participation, receive comments,

and make the information public with which in turn they get self promotion.

Micro-Blog [22] propose to handle incentives by means of a combination of social and explicit

mechanism. The former is address by the use of social networks, which makes possible the partic-

ipation by the interaction of the social groups (e.g., friends in Facebook). However, in order avoid

confining the participation in social cluster, they propose the use of a pool of n free query credits

for each user (i.e., explicit mechanism). Each time a user make a query or reply to one, their credits

are decreased or increase respectively.

PIER [52] also use a model of incentives that include social interaction through social networks,

a careful manage of privacy, and control of the data shared. Users may compare the levels of

pollution exposure via facebook application module, and make and receive commentaries from
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other users. Authors envision include mechanisms of reputation to improve the reliability in the

share information.

One advantage of these incentive mechanism is that the PS system inherits all the advantages

in terms of recruitment and participation of the philosophy of social networks. On the other hand,

from the economic point of view, is economically feasible maintain the user participation. However,

none of the reviewed proposals mention how to cover the PS system operation costs. Followers of

these type of incentive approaches envision that PS operation costs will be charged to PNP and it in

turns will offer PS’s capacities as part of the service package.

2.3.2.4 Intrinsic Incentives and Fun

Authors like Wiggins et al. [36, 34, 53] have demonstrated how users can be involved in ac-

tive participation projects under specific conditions. Intrinsic Motives-based incentives are aimed

at groups of people with specific interests. Typical examples of these type of incentive include

games and activities such as: gardening, and bird watching among others, where the majority of

participants volunteered due to their inherent interest. An example of the application of this type of

incentives is eBirding [54]. This project launched by the Cornell Lab of Ornithology, in partner-

ship with the Audubon Society, is focusing on a specific target group called birders, who range from

sporadic to those whom observing birds becomes a life style. This project was initially based on a

science-centric model of participation (i.e., Collective incentives in this taxonomy), but shifted to

a birder-centric model when contributions plateaued in 2005. This new intrinsic motivation model

(i.e., Intrinsic) turned out in major changes in the system, that included different features specific

to the birder interest. After five years, contributions went from a few thousand to around two mil-

lion observations per month [39]. This example suggests that intrinsic motivations may increase

significant the level of participation when the right intrinsic incentive is used for the right target

population, and the application is careful design with this purpose in mind.

On the other hand, intrinsic motivation like gaming, play an important roll in the recruitment

and retention of participants. Every day, people around the world spend millions of hours playing

computer games. A recent report of the International Game Developer Association (Igda) [55] revels
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that over 200 millions people, i.e., over 25% of all Internet users, play online games every week.

Authors such as Von Ahn, Law, Dabbish, and Hacker [56, 57, 58, 59, 60, 61, 62, 63], [64] have

pointed out about the potential of a type of games called casual games in which the development of

tasks are part of a game. One of first works in this field, was the ESP Game [63], this is an online

game that links anonymous online individuals and has them independently tag a random online

image. Once they separately suggest an identical tag, they receive points for how quickly they did so.

Thus, the system ends up with independently confirmed (i.e., validated) semantic information about

the photo. This game with potential applications in language translation, Monitoring of security

cameras, Improving Web search, text summarization according with Von [64], was licensed by

Google in 2006, who made its own version called the Google Image Labeler [65]. According

with Von [62] the games design with a specific purpose “Human Computation Games” must be

constrained by the computational problem to solve; which involves a trade off between between fun

and practicality.

One of recent applications of this type of incentives to PS is presented by Han et al. [26]. In

order to measure the impact of use intrinsic incentives like gaming in PS projects, the CENS lab

of UCLA chose the BudBurst project [66] as a testing platform. BudBurst is an environmental

CS national project that engage citizens in the collection of ecological data. CENS team created

a playing infrastructure which allow to participants tag location information about the observed

plants; visualization features like maps and display of gain points; and Floracaching [67] a variant

of the well-know game geocaching. A post-experiment survey asked to participants to rank from 1

to 10 in increasing order, the experiment’s most motivating elements, game was highly ranked (7.9

± 1.5), followed for social interaction (6.3± 3.4). This findings show the potential of the incentives

schemes based on gaming for engage user participation.

2.3.3 Self-benefits

Finally, the type of users’ incentive mechanisms based on the direct benefit obtained by for their

participation were reviewed. In this type of scheme users receive immediate gratification for their

participation, benefiting from content created by other participants [68]. This is the case of initia-
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tives that require sharing of knowledge or experiences. By adding your own facet of information

to the project, it becomes framed on a greater scale. For instance, users may submit the local price

of milk, lettuce, beer, gas, etc or just take a picture of its bar code and receive an instant feedback

about the price of same products in near stores. In other words, while users are making a query by

sending a bar code picture, they are populating the database. This is the case of LiveCompare [69]

that allows for grocery bargain hunting through PS. Other application are PetrolWatch [70] and and

MobiShop [68] systems based on PS that leverage the ubiquity of smartphones to share consumer

gas pricing information.

These PS system of specific purpose has an special target population, and it is a challenge

incorporation this types of incentive into more general application. They have a great potential, in

part because users is paying for each query with their participation, In fact, due to the utility in terms

of user’s money savings, they have great commercial potential.

2.4 Performance Evaluation of the Current Systems

The qualitative comparison of the incentive systems has been hindered by the fact that each

system works over different scenarios, use different approaches, and works for a specific sensing

model. Some of the systems correspond to operational implementations, other are pilot experiments,

and some other are theoretical models tested using simulations. However, the evaluation is based

on the results of the experiment, simulation, or a proposed approach. For example, those systems

that use social networks, it follows that the network provides coverage. In other cases like [30] the

N/A on a field of Table 2.1 indicates that this metric is meaningless in that context. Finally, The

absence of X on the a field of the same table denotes that the design issue has not even been taken

into account or that simulation results show a poor performance.
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Table 2.1: Classification of the Type of Incentives in Terms of Design Issues

Design Issues

Type of Incentive Incentive Mechanism EcoFeasi Quality Coverage Fairness Num of users Scalability Control

Monetary
Static Macro-Micro -Payments [29] X X X

High Micro-Payments [29] X X X X

Medium Micro-Payments [29] X X X X

Low Micro-Payments [29] X X X X

Uniform Micro-Payments [30] X N/A X X

Variable Micro-Payments [30] X N/A X X

Hidden Micro-Payments [30] X N/A X X

Dynamic RADPC-VPC-RC [2] X X X

Dynamic Price [15] X X X X X

Manag for Context-Aware [17] X X X

Bargain-based [33] X

Complete Micro-Payments [29] X X X

No Monetary

Social Rew Interaction CenceMe [49] X X X X X

NoiseTube [50] X X X X

Micro-Blog [22] X X X X X

PIER [52] X X X X X X X

Self-Inter LiveCompare [69] X X X X

PetrolWatch [70] X X X X

MobiShop [71] X X X X

Collective CRM [40] X X X X

P-Sense [42]

NoiseSPY [43] X X X X X

intrinsic motives eBirding [54] X X X X

Floracaching [26] X X X X X
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CHAPTER 3

THE GREEDY INCENTIVE ALGORITHM

This chapter discusses the algorithms’ design, elaborates on the parameters, provides a func-

tional specification, and describes the GIA algorithm with the help of a sample model.

RADP-VPC-RC and the GBMC algorithms are important components of GIA . While RADP-

VPC-RC tackles the problem of cost explosion and avoids users from dropping out of the system,

GBMC considers the location of the users, the coverage, and the budget constraints of the auction-

eer. With these two algorithms together, GIA buys samples within the spatial and temporal coverage

needed under a fixed budget. Further, GIA does not assume static users and rather includes addi-

tional mechanisms to encourage user mobility as a mean to extend the geographical coverage even

further.

3.1 Geometric Coverage Model

In order to address the coverage problem, GIA uses the following geometric disk model

f(d(ui, uj)) =





1 If d(ui, uj) ≤ R

0 Otherwise

(3.1)

where d(ui, uj) is the Euclidean distance between a sensor ui and another sensor uj , and R > 0

is a constant that defines the area of coverage of each sensor. Indeed, this function defines a disk

centered at sensor ui with radius R. All sensors within such a disk have a coverage measure of 1

and are said to be covered by sensor ui. On the other hand, all sensors outside such a disk have a

coverage measure of 0 and are said to be not covered by this sensor.
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Figure 3.1: Example of Coverage per User

3.2 Relationship Between Geometric and Auction Models

One of main characteristics of the GIA for sample acquisition consists in the modification of

the RADP-VPC-RC auction scheme. This auction mechanism is meant to buy k units in increasing

order of cost. In this scheme, the geometric coverage model described before was used to carry out

this process. Here, every sensor is drawn as a disk of radius R centered at its location, as shown

in Figure 3.1. Of course, each sensor is covered by at least the disk centered at itself. The natural

question here is: Does there exist a sub-collection of disks whose union cover all the points? If the

elements covered by diski are assigned to the set Si for i = 1, . . . , n, where n is the number of

disks, the previous problem becomes the well-known NP-Complete Set Cover Problem.

3.3 The Greedy Budgeted Maximum Coverage Algorithm (GBMC)

The heart of the incentive mechanism is the Greedy Budgeted Maximum Coverage (GBMC)

algorithm, which is executed in every round of the auction to decide which samples to buy. The

algorithm, which is detailed in pseudocode in Algorithm 1, finds a S
′ ⊆ S that covers the greatest

possible area covered by S within the budget constraint.

Let assign the elements covered by each diski to each set Si, associate the weight wi of Si as its

cardinality, and its cost ci as the cost of the sample provided by the sensor ui located at the center

of the diski. Let G⊆S be a collection of sets, w(G) and c(G) denote the total number of elements

covered by G and the total cost of the sets in G, respectively. Let W ′

i , i = 1, . . . , n, denote the
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total number of elements covered by set Si but not covered by any set in G. The problem now can

be stated as follows: Given a set U of n elements, a collection {Si}, i = 1, . . . , n of subsets of

S, and a budget L, find a subset S′⊆S such that the total cost of elements in S
′ does not exceed

L and the total weight of elements covered by S
′ is maximized. This NP-hard problem, presented

by Kuller [3] in 1999, is known as the Budgeted Maximum Coverage Problem. The BMC problem

has been used by authors such as Leskovec [72] and El-Arini [73] in their work on monitoring the

blogosphere, and Curtis [74] in merging infections.

Algorithm 1, which is the greedy algorithm proposed in [3] to solve the BMC problem, solves

this problem in three steps. Rather than buying the cheapest k samples, it acquires samples using

the following criteria. The first step uses the sub-routine GREEDY AREA PRICE(S), which takes as

input the collection S and selects at each step a set Si that maximizes the ratio W
′

i/ci. The second

step uses the sub-routine GREEDY AREA(S), which selects at each step a set Sj that maximizes W ′

j

constrained to the budget. The collections G and G
′ returned by the first and second sub-routines

are the candidates for the final output. Finally, the last step uses the sub-routine GBMC(), which

outputs the candidate solution having the maximum weight.

Clearly, the weight or number elements covered by the collections G and G
′ depends on R.

When R tends to zero, the number of elements of Si tends to 1 and the expression W
′

i/ci becomes

1/ci, which reaches its maximum when ci reaches its minimum. In this case, the RADP-VPC-RC

and GIA systems are equivalents. However, as the length of the radius is increased, more samples

are included in diski, and once a sample provided by ui is purchased all the samples within a

distance less than or equal to R are considered redundant and are discarded as candidates to be

acquired. Section 2.4 presents an analysis about the influence of radius R over the number of active

participants.

3.4 Budget

One of the main assumptions made in most previous works is that of an infinite budget to tun the

auctions. This assumption is not realistic in practice, as data collectors may have budget constraints.

In the proposed mechanism, the system runs with a limited budget. Here a global budget is evenly
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Algorithm 1: The Greedy Budgeted Maximum Coverage Algorithm for GIA.

input : S a collection of sets made up by the user locations

output: S′ ⊆ S, covering set

GREEDY AREA PRICE(S)

begin

G← ∅

C ← 0
U ← S

while U 6= ∅ do

select Si ∈ U that maximizes
W ′

i

ci

if C + ci ≤ L then

G← G ∪ Si

C ← C + ci

end

U ← U \ Si

end

return G

end

GREEDY AREA(S)

begin

G
′ ← ∅

C
′ ← 0

U
′ ← S

while U
′ 6= ∅ do

select Sj ∈ U
′ that maximizes W ′

j

if C ′ + c
′

j ≤ L then

G
′ ← G

′ ∪ Sj

C
′ ← C

′ + c
′

j

end

U
′ ← U

′ \ Sj

end

return G
′

end

GBMC()
begin

G← GREEDY AREA PRICE(S)

G
′ ← GREEDY AREA(S)

if (w(G) ≥ w(G’)) then

S’ = G

else

S’= G’

end

end
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divided by the number of rounds or auctions. However, at the end of each round ri, if the total

amount of budget assigned to round ri is not used completely, then the remaining part is added to

round ri + 1.

3.5 Advantages of the GBMC Algorithm

This section illustrates the advantages in terms of coverage of using the GBMC compared

with other popular algorithms such as the Greedy Set Cover (GSC) algorithm Presented by Kle-

imberg and Tardos [75], which maximizes W
′

i/ci and corresponds to the sub-routine GREEDY

AREA PRICE of the Algorithm 1.
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Figure 3.2: The Proposed Incentive Mechanism 



The following example illustrates how the GBMC overcomes problems where the well-known

GCS algorithm fails. Given a deployment of N users in a target area, and radius R, consider the

following scenario. Two users (sensors), u1 and u2, cover 1 and p users respectively including

themselves, in other words, their samples have weighs W
′

1 = 1, and W
′

2 = p. Let us assign the

costs ci = 1 and c2 = p + 1 for these samples and let us define the total budget L = p + 1. In

this situation, Algorithm 1 acquires u2 whereas the GSC algorithm purchases u1. Remember, that

the optimal solution consists of covering the maximum number of participants given a budget. Let

p = 10. In this case, GSC tries to maximize W
′

i/ci for i = 1, 2, which results in the purchase of

u1 because W
′

1/c1 > W
′

2/c2 given that W ′

1 = 1, c1 = 1, W ′

2 = 10, c2 = 10 + 1. However, in

the second round there is not enough budget to acquire u2 because one unit has been spent in the

first round and the remaining 10 units of budget are not enough to acquire u2. In contrast, by using

the budgeted approach, GBMC first uses the sub-routine GREEDY AREA PRICE that returns the

decision to acquire u1, as the GSC algorithm does; however, the final decision is postponed until

it compares it with the decision returned by the GREEDY AREA sub-routine. GREEDY AREA, on

the other hand, acquires the sample ui that maximizes the number of elements covered W
′

i without

violating the budget for i = 1, 2. In this case GREEDY AREA acquires u2 because W
′

2 > W
′

1. The

final decision is taken by the final routine GBMC() that takes as input the results returned by the

two prior sub-routines and decides which of the results will be acquired comparing the number of

elements covered by each one. So, in this case, the final decision is to purchase u2. Although in

this case there is not enough budget to buy the other sample in the next round either, it is important

to emphasize that the purchasing entity will cover the same area but will be left with more money.

Nonetheless, when there is enough money to buy many samples in many rounds, this three step

process will show its performance advantage over the other one, in particular, in terms of coverage.

This advantage will be shown later in the thesis.
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CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

4.1 Modeling the PS System Components

This chapter describes how the different parts of the PS system were modeled and presents the

results of the performance evaluation comparing the proposed mechanism versus RADP-VPC-RC.

Part of this work was published in [1] (Copyright c© 2012 IEEE)

Table 4.1: Simulation Parameters Copyright c© 2012 IEEE [1]

Parameters Experiment 1 Experiment 2 Experiment 3

Deployment area 100m x 100m

Instances 100

Deployment distribution uniform

Deployment distribution Four normal distributions

with parameters:

µ1 = (30, 80),

µ2 = (80, 80), µ3 =

(50, 50), µ4 = (90, 30),

Cov=

(

40 0

0 40

)

Uniform true valuation distribution [0,10] no

Normal true valuation distribution µ = 5, σ = 2 yes

Exponential true valuation distribution µ = 5 no

Normal true valuation distribution µ1 = 5, µ2 = 10, µ3 =

15, µ4 = 20, σ = 2

RADP-VPC-RC no yes yes

GIA yes yes yes

Radius R 1:10 5 5

Budget per round 100 20:200 0:350

Beta (3,7) (3,7) (3,7)

Alpha not used 7 not used

ROI Threshold 0.5 0.5 0.5

The GIA incentive mechanism, which is shown as a flowchart in Figure 3.2, works in rounds,

as follows. Initially, a number of users are randomly distributed over the area of interest. For this,

we used 2-dimensional uniform and normal distributions with the parameters shown in Table 4.1.

Those users who are located in the area of interest receive a message announcing that a new round

is about to start. Users interested in the auction set their true valuations ti, which are randomly
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generated. We perform experiments using a normal, uniform, or exponential distribution with the

parameters specified in Table 4.1. For each ti, a bid price bi is randomly generated from a uniform

distribution between ti and 1.5ti. Then, the system generates a set of user locations, which are

associated to the bid prices. With this information, a file indexed by user IDs is generated to allow

us to track the behavior of the users through the different rounds. This file serves as the input to

Algorithm 1 that determines which and how many samples will be purchased given the bid price,

the location of the users, and the budget per round. At this point, Algorithm 1 chooses the winners

of the round, those users to whom the system will buy the samples from. Subsequently, 50% of

those winners, randomly selected, increase their bid prices by 10% and all the losers decrease their

bid price by 20%. Then, all the participants increase their participation counter by 1. Next, the

losers evaluate their Return of Investment (ROI) index using Equation 2.1. If this value is above a

pre-defined threshold, equal to 0.5 in this work, they remain participating in the auction; otherwise,

they drop out. At this point, the system sends the highest price paid per sample and the locations

that were not covered in the previous round to those users who dropped out of the system in previous

rounds. Using this privileged information, these users (losers) evaluate their chances of winning in

the next round evaluating his ROI function for the next round using Equation 2.2. If this value is

above the threshold, they rejoin the system with a 50% probability; otherwise, they remain out of

the auctions. Also, users could use the location information to move to different areas and increase

their chances to win the auction. This process continues and losers constantly receive this privileged

information and test their chances to rejoin. The entire process repeats until a series of n different

rounds are carried out, which in our case n = 1000, or the data collector runs out of money. It is

worth mentioning that, for comparison purposes, the values utilized in all the parameters described

in this paragraph are the same ones used by the authors of RADP-VPC-RC in [2].

Another part of the system that needs to be modeled in the simulation tool is the user mobility.

As stated before, we do not assume static users. After a random initial deployment, the mobility

algorithm computes the locations of the participants for the next round using a displacement vector

(
−→
R ) that contains their displacement from the previous round. This vector is defined as the addi-

tion of a displacement vector on the X axis (
−→
X ) and another vector on the Y axis (

−→
Y ), meaning
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Figure 4.1: Radius vs. Number of Active Participants Copyright c© 2012 IEEE [1]

−→
R =

−→
X +

−→
Y . The displacement vector on each axis is generated using a random function (i.e.,

(−1)uni(0,2)) that defines the mobility direction. Note that the magnitude of the vector represents the

participant’s speed, which value is generated as the multiplication of the number of steps, randomly

generated between 0 and 3, times the step length, randomly generated between 0 and 11.

4.2 Performance Evaluation

Three sets of experiments are included. The first set is meant to determine the ideal length of

radius R. Once an ideal R is found, the second set consists of experiments to compare the average

number of active participants, and average cost per round between the RADP-VPC-RC and GIA

algorithms using different distributions for user true valuations. Finally, the third set of experiments

is meant to demonstrate the superiority of the GIA algorithm in terms of coverage under conditions

of stratified locations of the participants in the area of interest.

4.2.1 Experiment 1: Determining the Ideal Length of Radius R

In order to study the relationship between the radius R and the number of active participants

and the average price per round, the length of R was increased from 1 to 10 in steps of one. One

thousand rounds were executed and the experiment was repeated 50 times and the results averaged

using a fixed budget of 100 units per round. For every length of R, the average number of active
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Figure 4.2: Radius vs. Budget Assigned per Round Copyright c© 2012 IEEE [1]

participants was recorded. This process was carried out using three different distributions for the

true valuations of the users and the uniform distribution for the initial deployment of the partici-

pants. The idea behind this experiment is to find the length of the radius R for which the average

number of active participants decreases significantly. Figure 4.1 shows that when the radius R is

increased beyond 5, the number of active participants decreases regardless of the distribution. This

is based on the following rationale. If the radius is set as long as the distance from the center of

the user to the farthest point, the algorithm will only buy one sample because this disk will cover

the entire population. However, from the sensing point of view, the sensed data might not be a

good representation of the real values in all places. On the other hand, if the radius is too small,

the algorithm will buy more samples than necessary, as the users are too close to each other and the

data will present a high level of redundancy. In short, there is a tradeoff between the radius R and

the granularity and quality of the sensed data.

Figure 4.2 shows that if a radius bigger than 5 is used, the GIA algorithm does not use all the

allocated budget per round to buy samples. However, when R ≤ 5 the algorithm still uses the entire

budget per round. Putting the results of these two figures together, turns out that value of R = 5

provides a good level of participation while rendering non redundant data. In practice, however, the

value of R has to be set to a number that considers how the variable of interest changes with the

distance.
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4.2.2 Experiment 2: Comparing the Performance Metrics

The main goal of this experiment is to determine the number of active users in the system as

the budget per round is increased from 20 to 200 when the users set their true valuations using a

normal distribution with µ = 5 and σ = 2, an exponential distribution with µ = 5, and a uniform

distribution between [0,10]. In the case of the GIA algorithm, a radius R = 5 was used.

Figure 4.3(a) shows that both algorithms present a very similar performance buying a simi-

lar number of samples per round per budget. This result basically says that both algorithms, GIA

and RADP-VPC-RC, include effective methods for user participation and rejoining the system. Al-

though the number of active users are similar, the GIA algorithm buys samples in a different manner

since it avoids to buy samples from close by places that will render fairly similar or redundant data.

4.2.3 Experiment 3: Comparing Coverage

The main goal of this experiment is to compare the amount of the area of interest covered by

the GIA and RADP-VPC-RC algorithms. For this purpose a stratified scenario was simulated. This

scenario could correspond to the case where participants from different socioeconomic status having

different true valuations live in distinct regions of the area (city). In this scenario the RADP-VPC-

RC algorithm does not choose a representative sample of the population and instead, purchases data

containing a high level of redundancy. On the other hand, GIA is able to buy non-redundant samples

from each of the user types. The initial user deployment of locations was generated with a cluster

structure. Four clusters with µ1 = (30, 80), µ2 = (80, 80), µ3 = (50, 50), and µ4 = (90, 30)

respectively, and covariance matrix

Cov =



40 0

0 40




were generated with 25 locations each, for a total of 100 locations. The true valuations of the users

were generated using normal distributions with µ1 = 5, µ2 = 10, µ3 = 15, µ4 = 20, and σ = 2.

Each cluster of true valuation was associated with a cluster of location in order to simulate the

expected scenario.
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Figure 4.4 shows the percentage of area covered, the number of active participants, and total cost

per round for the two algorithms as the number of samples acquired varies from 5 to 50 in steps of

5. From the Figures 4.4(a) and 4.4(b), it is clear that both algorithms have a similar number of active

participants and spend a similar amount of money to buy their samples; however, as it is shown in

Figure 4.4(c), it is also clear that the GIA algorithm buys those samples from users who are more

spread throughout the entire area of interest, thus providing a better coverage and therefore reducing

the acquisition of redundant data. For example, this last figure shows that when fifty samples are

acquired, the GIA algorithm covers up to 64% more area than RADP-VPC-RC.
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(a) Normal distribution.

(b) Exponential distribution.

(c) Uniform distribution.

Figure 4.3: Experiment 2 - GIA vs. RADP-VPC-RC Copyright c© 2012 IEEE [1]
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(a) Number of Samples vs. Number of Active Participants

(b) Number of Samples vs. Cost

(c) Number of Samples vs. Percentage of Covered Area

Figure 4.4: Experiment 3 - GIA vs. RADP-VPC-RC Copyright c© 2012 IEEE [1]
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

This thesis presents the Greedy Incentive Algorithm (GIA), a location-based reverse auction

incentive mechanism for participatory sensing systems with budget constraints. The algorithm uses

the location of the users to improve the coverage of the area of interest and reduce the collection

of redundant data. Simulation results show the superiority of the GIA algorithm compared with

RADP-VPC-RC, another reverse auction mechanism found in the literature. In general, the GIA

algorithm is shown to increase the area coverage by up to 64% while maintaining a similar amount

of active users in the system and spending a similar budget than the RADP-VPC-RC algorithm.

Future work is under way to model the dynamic admission of new users, as the continuous

admission of new members in any round might be useful to find an equilibrium among the average

number of active participants, fair prices paid per the sample, and the budget constrains. Future

work include the use of Game Theory to further analyze these systems. Other future works include

looking at more realistic models to simulate R and the mobility of the users as well as different

ways to establish the true price and ROI for different users.

This is also the first work that survey the state of the art of mechanism of incentives for PS.

Additional to GIA, this thesis include the following contributions. First, the role of PS in a emerging

variety of similar concepts that share several characteristics with PS and identifies the relationship

of PS with each of them. Second, a set of design issues are proposed which are used as metrics to

evaluate incentive mechanisms for PS. Third, a tree-level taxonomy is proposed base on the type of

user motivation used for the current PS incentive mechanisms. Fourth, a set recommendations and
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guidelines are proposed for future research. Finally, the main components of a sensing data market

architecture that supports the three types of PS models reviewed in this survey are proposed.

5.2 Future Research

After having reviewed the state of the art in terms of incentives mechanisms for PS, some ideas

and research guidelines are proposed for future research.

5.2.1 Costs and Utility Functions

It is necessary to propose functions to estimate the cost of data acquisition base on factor such

as: true valuation T , data level of perturbation for location privacy purposes P ; quality of the

sensor q used for the data acquisition; elapsed time since the data request was done and the sample

was taken; user’s reputation R; user’s location (e.g., coverage) L; and finally, taking inspiration

from [33] the data’s appraisal A as showed in equation 2.5 as a criteria of data acquisition.

C : (T, P, q, time,R, L,A) → ℜ (5.1)

5.2.2 Schemes that Support Different Models of Sensing

In Section 2.3.1 four proposals were reviewed aimed to three different types of sensing model.

The first model consider sense a region continuously in fix time intervals (i.e., rounds) some po-

tential application are air pollution and temperature among others.. The second model considered a

sensing on demand (i.e., a user has a demand of information about a specific place and the query is

directed to a group of users within the target area). Finally, and less frequent scenario (e.g., natural

disasters) in which is common the use TDN-like infrastructure. Here the communication between

the PS system and the users (i.e., data collectors) pass through a sink, and data’s trade is encouraged

to maximize the users’ profit. There is not any incentive mechanism that support these three types

of sensing models.
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5.2.3 Type of Incentive Mechanism

The literature review showed that even the potential of gaming as a powerful motivator for

user participation in PS, only the work of Han et al. [26] have applied this mechanism to improve

participation in PS. Further other types of incentive schemes such as lotteries and gambling have

not been explore so far. On the other hand, although several experiments measure the level of

dropping out and retention this phenomenon only has been studied rigorously by Lee and Hoh [2]

and Musthag et a. [30]. The former in the context of recurrent reverse auctions and latter in the

context of the use of Uniform, Variable and Hidden micro-payments.

5.2.4 Working Autonomous, Intelligent Agents

Despite the abundant information in this field the literature review did not find any work in

which the incentive system works on a platform intelligent agents. However several of schemes

reviewed may be easily extended to this environment.

5.2.5 Economic Models

The reviewed of the state of the art showed that there are only two proposals of data markets, the

works of Liu et a. [17] and Lee and Hoh [2] respectively. The former is based on micro-economics

and includes the participation of an auctioneer (i.e., PS as entity) and n bidders (i.e., users), besides

includes a complete mechanism of incentives, allocation of resources, assignation of rewards, and

control of dropping out and retention. The latter, include a dynamic resource allocation and rewards

as well as the use of energy as mechanism to decrease the users’ reservation wage. Furthermore,

factors such as QoI satisfaction and network operator’s profits are elements to compute the user’s

rewards.

5.2.5.1 Proposal for a Data Market

Taking inspiration of the types of sensing model reviewed in section 5.2.2 as well as the works

of Liu et a. [17], Lee and Hoh [2], and Xie et al. [33] this thesis proposes a data market that

involves the following elements: sensor, sensor’s owners, data brokers, sensor’s manufacturers, a
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PS entity, and a PNP. The following is the description of the participants. Sensors (e.g., those

embedded in smartphones, or static sensor networks deployed in the area). Sensor’s owner i.e., the

carrier of a smartphone or the sensor network’s owners. Sensing data brokers i.e., an entity that

groups a set of sensor’s owners (e.g., PNP, CS project, or just an entity which has assigned a set of

sensor’s owners) in certain area based on some criteria (e.g., level of user privacy, sensor quality,

etc.). Sensor’s manufacturers this group may represents the hardware manufacturer. The following

is a description of the propose model. There is a querier that require for contextual information

of a site k, the querier submit a query q to the PS system (e.g., which may be part of PNP) and it

in turns re-submit the query to a set of {1 · · ·n} data brokers which may provide the data. Data

brokers compute both the cost of the query’s answer and the level of quality that they may offer and

then they deliver this information back to the PS System. The PS system selects the data broker

that offers the best trade off among price, quality and coverage. Once the data broker is selected,

it in turns outsource the sensor’s owners by the use of the most convenient incentive mechanism

that maximizes the group utility. The data obtained from from the sensors’ owners are fused by

the data broker in order to offer the level of QoI required. On the other hand, sensors’ owners may

provide data to different data brokers and data brokers in turn may provide data to different PS

systems. In this context, as Xie et al. [33] propose, two sensor’s owners ai, bj who are leaving the

influence region of their corresponding data broker i and j, may wish to trade their data in order

to maximize their profits; within a time window while information is still valuable, or store it for

other type of clients. In a second scenario, when is required to sense a wide target area continuously

(e.g., temperature, humidity, pollution levels, etc) the PS system may use a reverse auction to select

the subset of data brokers that can offer the best trade of among price, quality and coverage. A

third scenario in which may be necessary to use a DTN-like infrastructure, the PS may use a data

trade protocol as propose by Xie et al. [33]. Finally, since the data’s price is a function of the

data’s quality which in turns depends of the sensor quality; a high demand of high quality sensors

will cause both the sensors manufacturers, phone’s manufacturer as well as PNP will facilitate the

users’ access to smartphones with each time more sensing capacities, compute power, and storage
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Figure 5.1: Proposal for a Incentive Architecture for PS

space for less price. Figure 5.1 sketches the main components of the three level incentive proposed

architecture.
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Figure A.1: Permission
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Appendix B: Common Terms and Abbreviations Used in this Thesis

Table B.1: Common Terms and Abbreviations Used in this Thesis

Users Private owners of the sensors

PS Participatory Sensing

CS Citizen Science

QoI Quality of Information

HC Human Computing

CDS CrowdSourcing

SC Social Computing

CI Collective Intelligence

RADP Reverse Auction Dynamic Price

VPC Virtual Participation Credit

RC Recruitment

RADP-VPC-RC Reverse Auction Dynamic Price with Virtual

Participation Credit and Recruitment Algo-

rithm

GBMC Greedy Budgeted Maximum Cover

UDMA Univariate Model Distribution Algorithm

EGDE3 Third Evolution step Generalized Differen-

tial Evolution

GA Genetic Algorithm

PNP Phone Network Provider

NFS National Science Foundation

SMS Short Message Service

VOIP Voice over Internet Protocol

DTN Delay Tolerant Networks

ROI Return Of Investment

CENS Center for Embedded Networked Sensing

CRM Community Resource Messenger
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