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Abstract—With the abundance and ubiquity of mobile de-
vices, a new class of applications is emerging, called partici-
patory sensing (PS), where people can contribute data (e.g.,
images, video) collected by their mobile devices to central
data servers. However, privacy concerns are becoming a major
impediment in the success of many participatory sensing
systems. While several privacy preserving techniques exist
in the context of conventional location-based services, they
are not directly applicable to the PS systems because of the
extra information that the PS systems can collect from their
participants. In this paper, we formally define the problem
of privacy in PS systems and identify its unique challenges
assuming an un-trusted central data server model. We propose
PiRi, a privacy-aware framework for PS systems, which enables
participation of the users without compromising their privacy.
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I. INTRODUCTION

With the advent of mobile technology, the area of par-
ticipatory sensing (PS) has attracted many researchers in
different domains such as public health, urban planning,
and traffic. The goal is to leverage sensor equipped mobile
devices to collect and share data, which can later be utilized
for analysis, mining, prediction or any other type of data
processing. While many unsolicited PS systems exist (e.g.,
Flickr, Youtube), in which users participate by arbitrarily
collecting data, other PS systems are campaign-based, which
require a coordinated effort of the participants to collect a
particular set of data that the server requires for any purpose.
Some real-world examples of PS campaigns include [1], [2],
where users leverage their mobile devices to collect traffic
information.

However, privacy concerns are the significant barriers to
the success of any participatory sensing campaign, which
delay the progress of massive deployment of such systems.
Consider a scenario where the goal of the PS campaign is
to collect pictures/videos from the anti-government riots at
different locations of a city with the coordinated effort of the
participants. Accordingly, each participant u should query
the server for the set of closeby locations from which data
needs to be collected (termed data collection points or DC-
points). These are the DC-points that are closer to u than
to any other participant. However, u may not be willing to
disclose his identity due to safety reasons. An alternative

is that u sends his query to a trusted server, known as
anonymizer. The anonymizer removes the user’s ID from
the query and forwards the query to the server. However,
the server requires u’s location information to answer the
query. Due to the strong correlation between people and
their movements (see [3]), a malicious server can identify u
by associating his location information to u. Thus, the server
can identify a query issuer by associating the query to the
location from which the query is issued. We refer to this
process as a location-based attack. Our goal in this paper
is to protect the campaign participants from location-based
attacks by disassociating a query from the query location.

Existing privacy preserving techniques have been pro-
posed to address these concerns in the context of location-
based services (LBS) [4], [5]. Unfortunately, certain char-
acteristics of a PS campaign distinguish it from conven-
tional LBS, and therefore, prevent a direct adaption of
LBS approaches to such systems. One characteristic of a
PS campaign is that in order to collect data through a
coordinated effort, all the participants query the PS server
for the closeby DC-points. This is in contrast to LBS which
serves millions of users from which any arbitrary subset of
them might ask query at a given time and location. We refer
to this as the all-inclusivity property. Another characteristic
of a PS campaign, is that each participant queries for all
the DC-points, which are closer to him than to any other
participant. Thus, the second property of the PS campaign
is that each participant asks a range query from the server
which is dependent on the location of other users. We refer
to this property as range dependency. These two properties,
which reveal extra information to the server as compared to
the conventional LBS, introduce major privacy leaks to the
system. Thus, the system becomes unresilient to location-
based attacks.

In this paper, we devise a privacy-aware framework for
PS campaigns, which addresses these two major privacy
leaks. Our approach, termed PiRi has the two following
properties: Partial-inclusivity and Range independence. PiRi
is based on the observation that the range queries sent by
participants have significant overlaps. Therefore, instead of
each participant asking a separate query, only a group of the
representative participants ask queries from the server, and



share their results with those who have not posed any query.
Moreover, instead of each participant submitting a range
query, which is dependent on other participants’ locations,
we propose an adjustment technique that adjusts the range
query such that the query becomes independent of the others.
To the best of our knowledge, this paper is the first attempt
in introducing a privacy framework for PS campaigns during
the coordination phase.

The remainder of this paper is organized as follows.
Section II reviews the related work. In Section III, we
formally define our problem, and discuss our system model.
Thereafter, in Section IV we explain our PiRi approach.
Finally, in Section V we conclude and discuss the future
directions of this study.

II. RELATED WORK

Privacy preserving techniques have been studied in the
context of location-based services. One category of well-
known techniques is the spatial K-anonymity (SKA) [6], [5],
[4], where the user’s location is blurred in a cloaked area
that contains at least K-1 other users.

Most of the SKA techniques assume a centralized ar-
chitecture [4], which utilizes a trusted third party known
as location anonymizer. The anonymizer is responsible for
first cloaking user’s location in an area before contacting
the location-based server. The centralized approach have two
drawbacks. First, it does not scale because the users should
repeatedly report their location to the anonymizer. Second,
by storing all the users’ locations, the anonymizer becomes
a single point for attacks. To address these shortcomings,
recent techniques [6] focus on distributed environments,
where the users employ some complex data structures to
anonymize their location among themselves via fixed in-
frastructures (e.g., base stations). However, because of high
update cost, these approaches are not designed for the
cases where users frequently move or join/leave the system.
Therefore, alternative approaches have been proposed [5]
for unstructured peer-to-peer networks where users cloak
their location in a region by communicating with their
neighboring peers without requiring a shared data structure.
In this paper, we employ the P2P spatial cloaking techniques
to hide the user’s location when querying the PS server.

Despite all the studies about privacy in the context of LBS,
only a few work [7], [8] have studied privacy in participatory
sensing. However, their focus is on the data contribution,
rather than the coordination phase. That is, these approaches
deal with how participants upload the collected data to the
server without revealing their identity, whereas our focus is
on how to privately assign a set of data collection points to
each participant.

III. PRELIMINARIES

A. Formal Problem Definition
A major focus in the PS campaign is to design a frame-

work in which each participant is assigned to a set of

data collection points (DC-points), where data should be
collected. In this section, we formally define this problem.

Definition 1 (Participatory Assignment): Given a cam-
paign C(P,U) ∈ R2, with P as the set of DC-points, and
U as the set of participants, the Participatory Assignment
(PA) problem is to assign to each participant u ∈ U any
DC-point p ∈ P , such that p is closer to u than to any other
participant in U .

Note that for simplification, we do not assume the partic-
ipants move during the assignment. Moreover, participants
are the current active users of the system willing to partici-
pate in the process.

In order to solve the PA problem, a straightforward
solution is that each participant sends his location to the
server. The server then assigns to each participant the set of
DC-points close to him by computing the Voronoi diagram
of the participants, which is a partitioning of environment
into a set of cells, where each cell Vu belongs to a participant
u, and any point in the cell Vu is closer to u than to any
other participants in the environment. Figure 1 depicts such
scenario.

Once the server computes the Voronoi diagram of the par-
ticipants, it forwards to each participant u, all the DC-points
lying inside the corresponding cell Vu. However, in many
scenarios the server is not trusted, and therefore, a participant
may not be willing to reveal his identity to the server. Even
if the participant hides his identity from the server (i.e., only
reveals his location), due to the strong correlation between
people and their movements ([3]), a participant can still be
identified by his location. In the following, we first formally
define our privacy attack. Thereafter, we define the privacy
problem.

Definition 2 (Location-based attack): A location-based
attack is to identify a query issuer by associating the query
to the query location (i.e., location from which the query is
issued).

Definition 3 (Problem Definition): The Privacy-Aware
Participatory Assignment (PAPA) problem is a variation
of the PA problem (Definition 1), in which the goal is to
protect participants’ identity from location-based attacks.

B. System Model

In this section, we first describe our privacy threat model,
and then discuss our system architecture which consists of
two entities, participants and the PS server.

Our assumption is that participants trust each other, and
do not reveal any sensitive information about their peers.
However, they trust neither non-participant nor the PS server.
We refer to any such entity as adversary. Moreover, the
adversary, if needed, can obtain the locations of all partic-
ipants [9]. The reason is that participants often issue their
queries from the same locations (office, home), which can
be identified through physical observation, triangulation, etc.
Moreover, each user must register with the server, receive the



campaign password, and become the campaign participant
before communicating with other campaign participants. Fi-
nally, in order to guarantee the pseudonymity of participants’
location information, each query is assigned with a unique
pseudonymous identity, which is totally unrelated to the
participants’s personal identity.

Our PS server which contains the list of DC-points,
is equipped with a privacy-aware query processor, which
processes the queries issued by the participants. Each par-
ticipant can determine his privacy level, by specifying two
parameters: K, and A. K determines the K-anonymity, and A
specifies the minimum resolution of the cloaked region. Each
participant is equipped with two wireless network interface
cards. One is dedicated to the communication with the PS
server through a base station or wireless modem. The other
one is dedicated to the P2P communication among the peers
through a wireless LAN, e.g., Bluetooth or IEEE 802.11.
Also, each participant is equipped with a positioning device,
e.g., GPS, which can determine its current location.

IV. PIRI APPROACH

To solve the PAPA problem, participants cannot share
their locations with the untrustworthy server for the assign-
ment of DC-points. Therefore, the centralized solution to the
PA problem is no longer a viable solution. Thus, one baseline
solution is that participants communicate among their peers
to compute their Voronoi cell. Thereafter, each participant
performs a privacy-aware range query [5] to retrieve all the
DC-points inside his Voronoi cell.

However, this baseline approach has major privacy leaks,
which originates from the two characteristics of a PS cam-
paign: all-inclusivity and range dependency. These proper-
ties leak enough information to the server with which the
server can easily identify each participant by linking his
query to the query location. This gets even easier, if the
server knows the exact locations of all the participants. The
reason is that on one hand the server receives a set of
query regions, and on the other hand, the server has the
query locations. Each query region overlaps with a set of
participants, one of which have issued the query. Therefore,
the server can associate the query to its location by solving
a matching problem between these two sets of data. As a
result, the more information the server has, the more correct
matches it can find between the queries and query locations.
Hence, the baseline approach is not appropriate for our
PAPA problem.

Our goal is to overcome the drawbacks of the baseline ap-
proach by preventing these privacy leaks. Our PiRi approach
has two major steps, Query Formation and Query Selection,
which are discussed in the following.

A. Query Formation
To solve the PAPA problem, a set of DC-points those

inside his Voronoi cell, should be assigned to each par-
ticipant. This indicates that each participant should first

compute his Voronoi cell in a distributed way [10] to form
the spatial range query. Thereafter, by employing the P2P
SKA technique [5], the participant forms a privacy-aware
range query. However, the problem is that the range query
is dependent on the size of the participant’s Voronoi cell
(range dependency), which is a potential for information
leak. The reason is that the participant Ui must send its
cloaked region along with the radius ri (i.e., the radius of
the smallest enclosing circle of his Voronoi cell) to the server
to retrieve those DC-points that are inside his Voronoi cell.
However, each of the K participants in the cloaked region,
termed local peer, has a different Voronoi size, and therefore,
a different r. Consider an extreme case where the server
knows the locations of the participants and hence it can
compute their Voronoi cells, and the radius r for each of
them. Consequently, the server can easily identify the query
issuer (i.e., the set of all participants in the cloaked region
with radius r). Figure 2 depicts such scenario, where U1

(black dot) cloaks himself with U2, and sends the cloaked
region along with radius r1 to the server (see the size of
r1 as compared to r2). The server, knowing the location of
the participants, and hence their Voronoi cells (i.e., r1, and
r2), matches the query with radius r1 to its query location
(i.e., the location of a participant with the Voronoi cell of
the same radius).

One approach to avoid the range dependency leak is that
each participant Ui not only cloaks his location among K-
1 other peers but also cloaks his range query among those
of the other K-1 peers. For example, instead of forming his
range query with radius ri, the participant can form his query
with radius rmax, where rmax is the maximum radius among
all the K peers inside the cloaked region. This guarantees
the K-anonymity at all times.
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B. Query Selection

Once all participants formed their query regions, they can
send them out to the server. Since the server is receiving
queries from all participants, it can utilize the gathered
information (i.e, query regions) from all participants to form
an attack (all-inclusivity leak). Figure 3 illustrates such
scenario. For simplicity, we assume that only users U1..3

participate in the campaign. The figure shows that U1 cloaks
himself with U2. Similarly, U2 forms a cloaked region with



U1. Consequently, both U1 and U2 form identical query
regions. The figure also depicts that U3 cloaks himself with
U1. Accordingly, the server can easily identify U3 by relating
it to the query region R3, since U3 appears only once
(i.e., R3) in all the three submitted query regions to the
server. This indicates the more participants submit queries
to the server, the more information server has to infer the
participants’ identities. Our algorithm attempts to prevent
this leak by minimizing the number of queries submitted to
the server, while assigning the nearby DC-points to every
participant.

In order to address this issue, we observe that there is a
large overlap among the query regions of the participants.
Therefore, by receiving the result from the server, one can
share his result with all his peers whose Voronoi cells lay
completely inside his query region. The question is how to
select the group of representative participants. To answer
this question, we should solve the following optimization
problem.

Definition 4 (V-Cover): Given a campaign C(P,U) ∈
R2, with P as the set of DC-points, and U as the set
of participants, let R and V be the set of query regions
and Voronoi cells for the set U , respectively, where Ri

corresponds to the query region for user Ui, and Vi is the
Voronoi cell for Ui. The V-Cover problem is to cover the
entire set V with minimum subset of query regions.

It can be proved that the V–cover problem is NP-hard
by reduction from the minimum set cover problem. Thus,
we can employ one of the well-known heuristics for solving
the set cover problem, a greedy algorithm, which at each
iteration picks the set with the largest number of uncovered
elements. Similarly, in order to solve the V-cover problem,
at each step of iteration, we should pick a representative
participant whose query region covers the largest number of
uncovered Voronoi cells from V . However, this approach
is applicable only in a centralized architecture, where a
global knowledge of the environment is available. Toward
this end, we need to extend the greedy heuristic to support a
distributed architecture. One approach is to design a voting
mechanism such that the participants agree locally among
their neighbors on selecting a set of representatives. That
is, each participant picks a peer from the set of his local
peers, based on a score value. Intuitively, the score value
captures how significant a participant is in representing other
peers, which can be defined based on 1) the number of local
peers covered by his query region (K), and 2) the number
of query regions covering each of his local peers. According
to (1), a participant with large query region (i.e., large K)
is assigned a high score value. However, as (2) suggests,
the number of query regions that cover each of those local
peers also affects the score value. After being selected, each
representative issues a query, filters the result on behalf of
every local peer, and sends them the corresponding result.

V. CONCLUSION AND FUTURE WORK

In this paper, for the first time we introduced the problem
of privacy-aware participatory assignment in PS systems. We
proposed the PiRi approach, a solution to the PAPA problem,
which addresses the major privacy leaks in PS system.

As a future work, we aim to extend the problem where
participants have different constraints (e.g., time, source and
destination). Our goal is to incorporate these constraints in
the framework yet preserving the privacy of the participants.
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