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Abstract—User-contributed or crowd-sourced information is
becoming increasingly common. In this paper, we consider the
specific case of participatory sensing whereby people contribute
information captured by sensors, typically those on a smartphone,
and share the information with others. We propose a new metric
called Quality of Contributed Service (QCS) which characterizes
the information quality and timeliness of a specific real-time
sensed quantity achieved in a participatory manner. Participatory
sensing has the problem that contributions are sporadic and infre-
quent. To overcome this, we formulate a market-based framework
for participatory sensing with plausible models of the market
participants comprising data contributors, service consumers
and a service provider. We analyze the market equilibrium and
obtain closed form expressions for the resulting QCS at market
equilibrium. Next, we examine the effects of realistic behaviors of
the market participants and the nature of the market equilibrium
that emerges through extensive simulations. Our results show
that, starting from purely random behavior, the market and its
participants can converge to the market equilibrium with good
QCS within a short period of time.

I. INTRODUCTION

User-contributed or crowd-sourced information is becom-
ing increasingly common. Together with the rise of social
media, they are increasingly being relied on as alternative
sources of information that supplement, or in some instances
even replace, traditional information channels. One specific
aspect of user-contributed or crowd-sourced information is
participatory sensing whereby people contribute information
captured by sensors, typically those on a smartphone, and
share the information with other users or a service provider.
The vast penetration of smartphones with a variety of built-
in sensors such as GPS, accelerometer and camera amongst
the population creates the potential of dense high-quality
participatory sensing and makes it an appealing alternative to
deployed sensors for large-scale data collection [1], [2].

There are several examples of smartphone applications that
harness user-contributed data. Waze [3] is a community-based
traffic and navigation application that enable drivers to share
real-time traffic and road information in a particular area with
other drivers, with the objectives of saving time and fuel
costs for people on their daily commutes. Applications like
Universal Studios Wait Times and Disneyland Wait Times col-
lect user-contributed waiting time information for the various
attractions of Disneyland and Universal Studios, respectively,
supplementing the official waiting time information dissemi-
nated by the theme park operators.
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A Singapore-based smartphone application WeatherLah [4]
receives crowd-sourced data in the form of a ‘yes’ or ‘no’
answer from each user about whether it is raining or not at
a particular location. Although weather information from the
Singapore National Environmental Agency (NEA) and other
sources are available, they are usually based on satellite images
taken at high altitude and may not reflect the actual fine-
grained situation on the ground, which is where WeatherLah
can be useful. Another application by the same developer,
Mana Rapid Transit [5] invites iPhone users to submit a simple
‘yes’ or ‘no’ answer to the question “Is it crowded where you
are right now?” to determine the level of crowdedness in the
Mass Rapid Transit (MRT) subway stations and trains. This
application has proven its worth during the two unfortunate
major disruptions in the Singapore MRT system in December
2011 as the information provided led commuters to make al-
ternative travel arrangements and avoid extreme over-crowding
within the subway stations.

In [2], we presented ContriSense:Bus, a participatory sens-
ing system comprising a client application on Android smart-
phones (Fig. 1) and a server or cloud back-end which performs
spatio-temporal processing. Commuters contribute GPS traces
while on public bus journeys which are processed to yield
travel time measurements along segments delimited by two
neighbouring bus-stops. Commuters can then query for the
travel time of a specified bus journey comprising a number of
segments. The system also informs the commuter making the
query on the confidence level of the result for each segment.

Participatory sensing has the potential to achieve a greater
sensing reach and coverage compared to the case of deployed
sensors, especially when there are many data contributors.
However, under normal circumstances, there are very few
user contributions to the WeatherLah, Mana Rapid Transit
and most other crowd-sourced or participatory applications.
Thus, one serious weakness of participatory sensing is that
user contributions are sporadic and infrequent, largely due to
users’ indifference and the cost to them in terms of mobile
data charges, battery life and inconvenience. Even when and
where there is data being contributed, the quality of the
contributed data in terms of accuracy, resolution, frequency
and timeliness may vary greatly as different contributors have
different sensors, smartphone models and mobile data plans.

In [6], we explored several ways to incentivize participatory
sensing and studied the fairness and social welfare charac-
teristics of several algorithms to apportion the service quota
of compelling services to a user based on the user’s level of
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Fig. 1. ContriSense:Bus participatory sensing application for public transport
on Android smartphones. Record and Query can happen simultaneously, with
query results derived from earlier contributions.

contribution and demand for services.
In this paper, we tackle the challenge of attracting a regular

stream of data contributions of reasonable quality through
market-based mechanisms so that useful information can be
extracted and passed on to service consumers who would
pay for the information. First, in Section II, we motivate the
need to consider information quality in participatory sensing.
Next, in Section III, we formulate a market-based framework
for participatory sensing with plausible models of the market
participants comprising data contributors, service consumers
and a service provider, and propose a new metric called
Quality of Contributed Service (QCS) which characterizes
the information quality and timeliness of a specific real-
time sensed quantity achieved through participatory means. In
Section IV, we analyze what happens at market equilibrium for
the contributors and consumers, and design several algorithms
to achieve the market equilibrium.

Next, in Section V, we examine the effects of realistic
behaviors of the market participants and the nature of the mar-
ket equilibrium that emerges through extensive simulations.
Our results show that, starting from purely random behavior,
the market and its participants can quickly converge to the
market equilibrium with good QCS. Finally, we conclude in
Section VI and discuss possible areas of future work.

To the best of our knowledge, this paper is the first to quan-
tify the Quality of Contributed Service (QCS) for participatory
sensing, derive the market equilibrium and determine the level
of obtainable QCS at that point.

II. PARTICIPATORY SENSING AND INFORMATION QUALITY

Participatory sensing can be employed to gather sensor
information in: (1) continuous-valued form, such as tempera-
ture and other environmental parameters, travel durations in
ContriSense [2] and wait time durations in queues, e.g. at
theme parks such as Disneyland and Universal Studios, or (2)
binary form, such as the presence of absence of an event in
event detection applications, or the ‘yes’ or ‘no’ responses

in the WeatherLah and Mana Rapid Transit applications, as
described in Section I.

One of the main motivations of this paper is to characterize
the information quality (IQ) achievable through participatory
sensing. In this paper, we consider the specific case of col-
lecting time-sensitive binary event information. Although this
is more restrictive than the continuous-valued case, we start
with this in order to rigorously study the expected equilibrium
conditions and the IQ that can be achieved. We leave the
study of the continuous-valued form of participatory sensing
for future work.

Similar to [6], we consider a participatory sensing scenario
in which contributors contribute raw sensor data and/or pro-
cessed sensor information over a wireless or cellular connec-
tion to a server or service provider (SP) which aggregates the
information contributed by many contributors and performs
additional processing on the information received. Consumers
query the SP to seek the information they desire, paying a
token sum for this information. This ecosystem comprising
contributors, consumers and the SP will only be sustainable
if each party derives some utility from this arrangement. This
issue is the focus of subsequent sections of this paper.

A. Information Quality of Contributions

Although there are a number of information utility measures
[7], we focus on those related to the binary decision of whether
a Phenomenon of Interest (PoI) is present or absent.

Following event detection theory [8], we are concerned with
the detection accuracy of the system whose IQ is reflected in
the degree of confidence that an event of interest has occurred.
In this section, we develop the relationship between the IQ of
an individual contribution by an individual contributor to the
target IQ of the system in terms of the target probabilities of
detection and false alarm, Pd and Pf , respectively.

We let hypothesis H1 denote the presence of a PoI; H0

denotes the corresponding absence of the PoI. The probabil-
ities P (H1) = p and P (H0) = 1 − p, where 0 < p < 1,
are assumed to be known a priori and can be based on
historical information. Each contributor independently senses
and collects data about the environment periodically. When
conditioned upon the hypothesis Hi, i ∈ {0, 1}, observations
are assumed to be independently and identically distributed
(i.i.d.) by each contributor as well as across contributors.

The independent signal yk observed by a contributor k is:

yk =

{
wk if H0 (PoI is absent);

f(rk) + wk if H1 (PoI is present),

where wk ∼ N (0, σ2
w) is the noise seen by contributor k that

follows a normal distribution with zero mean and standard
deviation σw; rk is the distance between contributor k and
the PoI; and f is a function that monotonically decreases with
increasing rk.

For each sampled signal yk, contributor k makes a per-
sample binary decision bk ∈ {0, 1} such that:

bk =

{
0 if yk < Tk;
1 otherwise,

where Tk is the per-sample threshold of contributor k.



The per-sample probability of false alarm pk0 by contributor
k is independent of its location, and given by [9]:

pk0 = P (bk = 1|H0) = Q(
Tk
σw

) (1)

where Q(x) is the Gaussian Q-function of a standard nor-
mal distribution. The corresponding per-sample probability of
detection pk1 (where pk1 > pk0 from the characteristics of the
Q-function) at contributor k is dependent on the distance rk
between contributor k and the PoI, and given by:

pk1 = P (bk = 1|H1) = Q(
Tk − f(rk)

σw
) (2)

A specific IQ metric used in decision fusion applications
[10], [11] is the log-likelihood ratio Si which characterizes
the information quality (IQ) in terms of the certainty of the
presence or absence of the PoI at a sensor node i, defined as

Si , log
P (bi|H1)

P (bi|H0)
= log Λ(bi) (3)

where H1,0 corresponds to the case that the PoI is actually
present or absent, and bi = {1, 0} corresponds to node i’s
decision on whether the PoI is present or absent, respectively.
Eqn. (3) can be evaluated from Eqn.s (1) and (2).

In our case of participatory sensing, the contributor k
contributes a decision bk and provides an IQ measure qk which
reflects his certainty on the presence or absense of the event.
We use the quantity Si given by Eqn. (3) above to be the IQ
measure qk of the contribution from contributor k, which can
be evaluated either by the contributor himself or the SP. This
quantity will be used in the system model for a contributor
that will be developed in Section III-A.

B. Cumulative Information Quality at Service Provider
In decision fusion applications, the role of the fusion center

(FC) is to detect the presence of the PoI by making a global bi-
nary decision Ĥ = {H0, H1} based on the decisions that it has
received from a set of n sensor nodes. Let B = {b1, b2, ..., bn}
be the set of per-sample binary decisions that the FC receives
from each sensor node in a time epoch. The optimal decision
fusion rule for the FC using aggregated data from all the sensor
nodes is the Likelihood Ratio Test (LRT) [8] [12]:

Λ(B) =
P (b1, b2, ..., bn|H1)

P (b1, b2, ..., bn|H0)

H1

R
H0

1− p
p

(4)

The FC makes the decision that the PoI is present (Ĥ = H1)
if Λ(B) ≥ 1−p

p , and decides that the PoI is absent otherwise.
Since observations across sensor nodes are i.i.d., the cumu-

lative log-likelihood ratio SFC at the FC is:

SFC = log Λ(B) = log

n∏
i=1

Λ(bi) =

n∑
i=1

Si (5)

where Si is defined in Eqn. (3) above. The summation property
of the log-likelihood ratio is particularly useful and will be
exploited later.

The level of SFC achieved reflects the degree of confidence
in the global binary decision and can be regarded as the
cumulative information quality at the FC. Following Wald
[13], the hypothesis H1 that the PoI is present, i.e. an event of

interest has occurred, is highly confident when the cumulative
log-likelihood ratio satisfies

SFC ≥ B

where B = log(Pd

Pf
), and Pd and Pf are the target detection

and false alarm probabilities, respectively.
The i.i.d. requirement is satisfied in the participatory sensing

case since each contributor makes his own observation and
decision. We assume that observations and decisions by the
same contributor at two different points in time are also
independent. Rewriting Eqn. (5) for the participatory sensing
case where the FC is the Service Provider (SP), we arrive at

QSP =

ñ∑
i=1

qi (6)

for the aggregated cumulative IQ at the SP. Note that index i is
used in place of k since contributions from many contributors
are aggregated at the SP, and ñ is the number of such
contributions in a valid time interval that will be defined in
the next section.

A similar test
QSP ≥ B (7)

can be performed to determine whether there is high confi-
dence in the global binary decision at the SP.

The summation structure in Eqn. (6) will be augmented with
time-decaying weights in Section III-B to form the Quality of
Contributed Service (QCS) metric proposed in this paper. QCS
can be viewed as the cumulative time-decaying or timeliness-
weighted log-likelihood ratio of the global decision at the SP
on the presence of the PoI. This is a natural extension since
the confidence level in each contribution decreases over time
due to the fact that the status of the PoI is more likely to
change as a longer time elapses.

III. SYSTEM MODEL

Most participatory sensing applications are time sensitive
in nature, due to their objective of sourcing for up-to-date
information. This means that the value or usefulness of user-
contributed data decays with time and may even become
worthless after a certain period of time. The Quality of
Contributed Service (QCS) framework that will be developed
in this section takes this into account.1

In the following sub-sections, we will develop the system
model for a contributor in the participatory sensing system
before presenting the definition of QCS, followed by the model
for a consumer. Note that a user can be both a contributor and
a consumer although we treat them as separate roles here.

A. Contributor

An arbitrary contributor k ∈ {1, ..., Nz} makes contribu-
tions at a rate of λk per unit time, each with information
quality (IQ) qk as defined in Section II-A, where λk ≥ 0.

The contributor incurs some cost arising from sensing and
contributing, either in terms of telecommunication charges or
battery consumption. Let us denote the IQ-dependent cost by

1Our framework subsumes time-insensitive cases too, as shown in the
Appendix [14].



Fig. 2. Interactions between contributions and consumptions according to
temporal sequence. T indicates the length of each consumable window.

ck. Each contribution will thus incur a cost of ckqk to the
contributor.2

In return, a contribution i will receive remuneration ri from
the service provider (SP), where ri depends on both demand
for information by consumers and supply of contributions by
other contributors. The SP operates a platform that does not
just connect one consumer to one contributor, but connects
an indefinite number of consumers to an indefinite number
of contributors. Fig. 2 shows contribution events (originating
from several contributors) enter the platform at time instances
tz1,2,3,... and consumption events (originating from several
consumers) enter the platform at time instances ts1,2,3,.... We
consider the case where timely data are valuable whereas
outdated data are worthless. As such, we bring in the notion
of lifetime of a contribution, denoted by T as seen in the
figure.3 Accordingly, we define two sliding time windows for
consumers and contributors, respectively: (i) W−ts , [ts−T, ts]
is the consumable window of the consumption that enters the
platform at ts - only contributions with tz ∈W−ts are relevant
to this consumption; (ii) W+

tz , [tz, tz+T ] is the valid window
of the contribution that enters at tz - this contribution is only
valid to consumptions whose ts ∈W+

tz .
With these concepts, we are now ready to introduce the

demand and supply based remuneration scheme. A consumer
will have to pay a price of p for each instance of consumption
j. This amount, less a commission rate of η deducted by
the SP, will be shared by all the contributions made in j’s
consumable window W−tsj

. Conversely, an instance of contribu-
tion i will receive payment from all instances of consumption
happening during i’s valid window W+

tzi
. The remuneration ri

is calculated as

ri , (1− η)p
∑

tsj∈W
+
tz
i

q(i)∑
tzl ∈W

−
ts
j

q(l)
(8)

where the subscript of q with parentheses indicates that it

2Quality-dependent cost is also adopted by many other works such as [15].
In the case of constant contribution cost regardless of quality, it can be easily
shown that, in any Nash Equilibrium, each contributor will contribute at the
maximum quality so as to maximize his payoff. We will not consider this
case in this paper.

3In addition, a time-decaying effect is associated with each contribution and
will be formulated in Section III-B.

pertains to the IQ of an instance of contribution in order to
differentiate it from qk which refers to the IQ associated with
contributions from a contributor k.

This remuneration scheme (8) has two important features:
• It is risk free for the SP, in the sense that the SP does

not act as an reseller who buys from one market and then
sells to another market, which presents the risk of loss to
the SP when the revenue of selling does not cover the cost
of buying. The remuneration scheme (8) carries no risk
of loss as it uses a balance equation among consumers
and contributors.

• It implies that remuneration is postponed - a contributor
can only receive remuneration at interval T after making
a contribution. This is analogous to the real life situation
where an employee only receives his salary a certain
period (e.g. a month) later. In many participatory sensing
applications such as traffic monitoring, the interval T is
fairly short such as one hour, which should be acceptable
to contributors. In fact, such a postponed scheme has the
advantage that contributors will be forward-looking and
tend to maintain their contribution levels and only make
adjustments after some time when they review the payoff.
This not only provides some stability in the system and IQ
assurance to the SP and consumers, but also motivates us
to use the concept of “review period” (RP) in the design
of a mechanism to achieve market equilibrium that will
be presented in Section IV-A.

Denote by Rk the total remuneration received by contributor
k per unit time, and denote by πzk his payoff per unit time.
Under the common assumption that users are rational, we
assume that a contributor k’s objective is to maximize his own
payoff, i.e.

maximize πzk = Rk − ckλkqk (9)

where the decision variables are λk and qk, and we will
analyze Rk later. This optimization will be conducted for each
time slot, which is the RP just mentioned. Therefore, λk and
qk may vary from RP to RP.

B. Quality of Contributed Service (QCS)
In this sub-section, we develop a new metric called Quality

of Contributed Service (QCS) which characterizes the infor-
mation quality and timeliness of a real-time sensed quantity
achieved in a participatory manner. The QCS metric extends
the information quality (IQ) measure of each contribution and
the cumulative IQ at the service provider (SP) presented in
Section II.

QCS can be defined with respect to an individual consump-
tion, which reflects a particular one-time consumer experience
of using the service, or with respect to the whole system,
reflecting the expected consumer experience. These two per-
spectives can be mde concrete: (1) a single consumption that
happens at ts will experience an instantaneous QCS of

Q(ts) ,
∑

tzi∈W
−
ts

q(i)wi ≡
ñ∑
i=1

q(i)wi (10)

and, (2) the system QCS is given by

Q , Ets [Q(ts)]



In Eqn. (10), W−ts and q(i) are the consumable window and
information quality of a contribution, respectively, ñ is the
number of contributions (treated as a random variable) in W−ts ,
wi is the normalized time-decaying factor, defined as

wi ,
e−∆tzi − e−T

1− e−T
, (11)

where ∆tzi , t
s − tzi , tzi ∈W

−
ts .

The definition of wi in Eqn. (11) is similar to the discount
factor in dynamic programming and the Bellman equation, and
the exponential weighted moving average (EWMA) [16]. This
can be seen by ignoring the normalizing term and noticing that
e−∆tzi = (e−a)

∆tzi
a for such a that 0 < e−a < 1 and that ∆tzi

a
equals the number of epochs between the two points in time.

The QCS defined in Eqn. (10) is a cumulative time-decaying
or timeliness-weighted quality of contribution: the more con-
tributions, or the higher the quality of the contributions, or
the more up-to-date the contributions are in the consumable
window, the higher will be the QCS value. We have exploited
the summation property of the cumulative log-likelihood ratio
shown in Eqns (5) and (6).

Note that the time-decaying factor wi does not affect the
remuneration ri as shown in in Eqn. (8). This prevents the
remuneration from diminishing too rapidly in order to ensure
that contributors are motivated to contribute.

C. Consumer

An arbitrary consumer k ∈ {1, ..., Ns}4 consumes the
service (e.g. query for a phenomenon of interest or PoI) at
a rate of µk per unit time, for which he pays a price of
p for each consumption. We assume µk ≥ 0 and p > 0.
Similar to the above, µk may vary from RP to RP while being
unchanged within each RP. The price p is fixed in each RP.5
In addition, the service time of each consumption is assumed
to be negligible.

A consumer is associated with a QCS valuation factor, βk,
which represents how “generous” or “stringent” a consumer
valuates the QCS, denoted by Q. In other words, βkQ is the
“satisfaction level” or “psychological price” a consumer rates
the service to be at, e.g. a low βk indicates a “hard-to-satisfy”
consumer. Thus, a consumer gains a utility of βkQ− p.

However, this view only treats each consumption in iso-
lation, whereas consumptions tend to occur successively in
practice since the PoI constantly changes. In this situation, a
consumer’s utility would not evolve in an additive manner6 as
µkβkQ− µkp, but rather, non-linearly as ψk(µk)βkQ− µkp,
where ψk(µk) is a non-linear function. This function ψk(·)
satisfies:

1) ψk(0) = 0;
2) monotonically increasing and concave in µk;
3) ψk(µk) ∼ µk when µk → 0+, where ∼ is a Bachmann-

Landau notation [20] meaning “asymptotically equal”;

4We use k as a generic index. Consumer k should not be deemed to be the
same as contributor k.

5We do not consider dynamic pricing in this paper and leave that for future
work. In practice, dynamic pricing encounters several difficulties [17], [18].
Flat pricing, in addition to being simpler, is appealing to consumers.

6This simpler case was considered in [19] in a different setting.

4) ψk(µk) = o(µk) when µk → ∞, where o(·) is also
a Bachmann-Landau notation meaning “asymptotically
dominated by”.

Property 2 captures the effect of decreasing marginal utility
as consumption increases, which is common in economics.
Property 3 emulates the scenario that when the consumption
rate is extremely low, consecutive consumptions can be treated
as isolated. Property 4 is similar to Property 2.

Two examples satisfying the above properties are:

ψk(x) =
1

a
log(1 + ax), a > 0 (12)

and
ψk(x) = 1− 1

a
e−ax, a > 0. (13)

Under the same assumption of rationality as in the case of
contributors, the objective of a consumer is to maximize his
utility received per unit time, or formally

maximize πsk = ψk(µk)βkQ− µkp (14)

where the decision variable is µk ≥ 0.

IV. MARKET EQUILIBRIUM

User-contributed sensing and services are still at an early
stage of development. In this new paradigm, since users mak-
ing contributions are not obligated to do so, but are altruism- or
incentive-driven (for example, this paper considers monetary
incentive), there are two pertinent questions of interest:
• Does a market equilibrium exist? In other words, will the

system stabilize at a certain QCS level?
• If the answer is “yes”, what specifically are the achievable

QCS and the contribution and consumption levels at the
market equilibrium?

We studied these issues and performed a market equilibrium
(ME) analysis using the models for contributor and consumer,
and the QCS definition, presented in Section III above. Due
to the space constraint of this paper, only the key theoretical
results of this analysis are presented below. The full derivation
and results of the analysis can be found in the Appendix to
this paper [14].

Let Σo represent other contributors’ aggregate contribution
level, U ,

∑Ns

k=1 µk be the aggregate consumption rate and
Rall , (1−η)pU be the total remuneration that all contributors
receive per unit time.

Theorem 1. The optimal contribution level for maximizing a
contributor’s payoff is given by

z∗ =

√
ΣoRall
c

− Σo

provided that c < Rall/Σo, or otherwise z∗ = 0.

Corollary 1. The optimal consumption rate for maximizing a
consumer’s utility of (13) is given by

µ∗ = log
βQ

p

respectively, provided that p < βQ, or otherwise µ∗ = 0.



Theorem 5. Under the consumer model of (13), the QCS at
market equilibrium is

Qme = −C2 · Ω(− p

βC2
)

where C2 = κp(1− η)(1− 1
Nz

)Ns/c and Ω(·) is the Lambert
W-function.

The Lambert W-function, also called the omega function,
is the inverse function of f(W ) = WeW . For instance,
Ω(e) = 1, Ω(−1/e) = −1, and Ω(1) = 0.56714 (the “omega
constant”).

A. Algorithms to Achieve Market Equilibrium

The theoretical results above guide us towards the design
of a mechanism for the system to achieve the ME, which we
present here as three Algorithms 1, 2 and 3.

At the end of each RP, the SP will announce Rall and
Nz in the elapsed RP, for each contributor to decide on
his contribution level z in the next RP. On the other hand,
consumers do not need to rely on the SP to disseminate
information on Q because they can experience the (changing)
QCS instantaneously and thus, can adjust their consumption
rates µ promptly. As a result, they do not even need to follow
the RPs.

Throughout this paper, we do not treat Nz merely as the
number of (registered) contributors who may or may not
contribute, but the effective number of contributors who are
actually contributing. This reflects the real situation where
participatory sensing usually has a large population to serve
as potential contributors but the pool of “active contributors”
is usually much smaller. Finally, note that the pool of active
contributors does not always have to contain the same set of
users to achieve the ME, as newly joined contributors can also
be guided by the mechanism described above.

In practical settings, it may be too onerous for users to
manually follow the steps in the algorithms presented here.
An application running on, e.g. an on-board car computer, can
be configured to contribute and/or consume at exponentially
distributed intervals determined by the mechanism described
in this section.

Algorithm 1 Algorithm for Contributor
1: for m = 1→∞ do
2: if m = 1 then
3: Randomly choose a contribution level z
4: else
5: Receive Rall(m− 1) and Nz(m− 1) from the SP
6: Determine z∗ according to

z∗ ← Nz(m−1)−1
Nz(m−1)2

Rall(m−1)
c

7: end if
8: Choose λ and q such that λq = z∗

9: Contribute at the chosen level (i.e. at exponentially
distributed intervals of mean 1/λ and quality q) till the
end of the RP

10: end for

Algorithm 2 Algorithm for Consumer
1: Randomly choose the initial consumption time ts
2: loop
3: Consume service at ts and pay price p to the SP
4: Experience QCS and obtain a satisfaction level of

βQ(ts)
5: Determine µ according to µ← log βQ

p
6: Consume at the chosen rate (i.e. at exponentially dis-

tributed intervals of mean 1/µ)
7: end loop

Algorithm 3 Algorithm for SP
1: Set a countdown timer tm ← ||RP|| (duration of RP)

associated with callback function endOfRP
2: loop
3: Wait for an incoming event
4: if event=contribution then
5: Evaluate and record the contribution with timestamp
6: else if event=consumption then
7: Serve the consumer, i.e. provide aggregated informa-

tion with QCS Q, and receive payment p
8: Remunerate contributors in the consumable window

according to Eqn. (8)
9: end if

10: end loop
————————————————————————
CALLBACK endOfRP:

1: if tm fires then
2: Calculate and announce Rall and Nz
3: Reset tm← ||RP||
4: end if

V. PERFORMANCE EVALUATION

In this section, we first conduct discrete-event driven simu-
lations to verify our theoretical analysis of market equilibrium
(ME) by examining key parameters such as QCS and con-
tribution and consumption levels, as well as to evaluate the
speed of convergence and the parameters of the market-based
mechanism for achieving ME.

A. Market-Based Mechanism
Four cases are considered in evaluating Algorithms 1, 2 and

3:
1) Homogeneous Users with Optimal Adjustments: All

users are homogeneous. Each contributor is able to
adjust his rate and quality of contribution to achieve the
ME based on information provided by the SP, following
Algorithm 1. Each consumer is also able to adjust
his rate of consumption based on his perceived QCS,
following Algorithm 2. This case can be treated as the
system operating under ideal conditions.

2) Homogeneous Users with Sub-optimal Adjustments: This
is similar to Case 1 above, with the difference that
contributors and consumers are unwilling or unable to
adjust their behaviors precisely to the optimal settings,



due to various real-life factors such as indifference or
lack of knowledge.

3) Heterogeneous Users with Optimal Adjustments: Due to
different human usage patterns, smartphone models and
mobile data plans in use, the unit cost c of making a
contribution is different for different contributors. Each
contributor is still able to adjust his rate and quality
of contributions based on information provided by the
SP. For consumers, we take into account the different
psychological factors of different people by considering
different user-specific β. Each consumer is still able to
adjust his rate of consumption based on his perceived
QCS.

4) Heterogeneous Users with Sub-Optimal Adjustments:
This is a combination of Cases 2 and 3 above.

In the simulations, QCS is computed as the actual experi-
enced QCS which is determined using Eqn. (10) with actual
arrival patterns of contributors and consumers according to
two random Poisson point processes. This gives the actual
perceived QCS result under realistic operating conditions.
Similarly, the Rall value in Algorithm 1 is computed as the
actual remuneration that the SP paid to all the contributors
averaged over time.

The simulation setup is as follows. Contributors and con-
sumers enter the system as two Poisson point processes with
mean Λ =

∑Nz

k=1 λk and U =
∑Ns

k=1 µk, respectively. The
time unit is hour. T=1, ||RP||=24, p=1, η=0.3, c=1, β=2,
Nz=Ns=100. As explained in Section IV-A, the population
size can be arbitrarily large, but the number of active contrib-
utors is usually much smaller, and assumed here to be fairly
stable. With these settings, the theoretical result of Theorem
5 above gives the theoretical Qme to be 168.612.7

As aforementioned, since z = λq, a contributor can either
adjust λ or q or both to achieve a certain z. In the simulations,
we let λ � U(0, 2) (where “�” means “draws from” and
U(a, b) means uniformly distributed between a and b), and
each contributor adjusts q as per q = z/λ where z is specified
in Algorithm 1. In the initial RP, q� U(0, 1). In the event that
Q drops to as low as βQ ≤ p for a consumer, he will choose
µ� U(0, 2). In fact, this did not happen in the simulations,
meaning that βQ > p was always satisfied.

In Cases 2 and 4, contributors and consumers deviate
from the optimal settings following a normal distribution
with standard deviation 50% of the optimal settings, i.e.
zk � N (z∗, 0.5z∗) and µk � N (µ∗, 0.5µ∗). The zk’s and
µk’s are independently generated.

In Cases 3 and 4, the heterogeneity is characterized by a
random deviation of maximal ±50% from the homogeneous
case, i.e. each ck � U(0.5, 1.5) and each βk � U(1, 3).

1) Results: The results of Case 1 are shown in Fig. 3. We
see from the convergence trajectory that if users make the
optimal adjustments, the system converges to the ME in only
4 or 5 RPs and the converged QCS matches well with the
theoretical value of Qme.

This shows that the SP is able to achieve a good cumulative
IQ that exceeds the IQ threshold, i.e. it is able to make

7The Lambert W-function is a special multi-valued function and the other
solution of 0.508861 should not be taken.

(a) Convergence trajectory. (b) z̄ and µ̄ at ME.

Fig. 3. Case 1: Homogeneous users with optimal adjustments.

the global decision with high confidence, as discussed in
Section II-B and expressed by Eqn.s (6) and (7), taking into
account the fact that QCS is a timeliness-weighted sum of the
IQ value of each contribution.

Fig. 3b compares the optimal contribution level z∗ and
consumption rate µ∗, which are the analytical ME values,
with z̄ and µ̄, which are the simulation results. z̄ and µ̄ are
calculated as the average of z and µ in RPs of m = 6 till 20
(since ME is observed to be achieved after 4 or 5 RPs, and
the results for m > 20 are similar to m ≤ 20) for all users
over 10 simulation runs. In Fig. 3b, we see that z̄ and µ̄ are
almost identical to the theoretical values, which validates our
analysis.

(a) Convergence trajectory. (b) z̄ and µ̄ at ME.

Fig. 4. Case 2: Homogeneous users with sub-optimal adjustments.

In Case 2 where users make sub-optimal adjustments,
Fig. 4a shows that slight fluctuations in QCS occur, but
are nevertheless still centred around the theoretical Qme. In
Fig. 4b, we see that z̄ and µ̄ in this case differ slightly from
their optimal values: although zk and µk are generated from
the normal distribution with means z∗ and µ∗, respectively, the
simulation average is not equal to the optimal settings. This
is because of a non-linear effect: the impact of zk when it is
above the optimal setting is larger than its impact when it is
below the optimal setting; similarly for µ.

For Case 3, the result in Fig. 5a shows that, interestingly, the
user heterogeneity raises the Qme of the homogeneous case
by 5 − 18%. This is attributed to the increased contribution
level z̄ as seen in Fig. 5b.

Finally, let us look at Fig. 6 for Case 4 which is the most
comprehensive and realistic experiment. We can see that the
results demonstrate a combination of the results from Cases 2



(a) Convergence trajectory. (b) z̄ and µ̄ at ME.

Fig. 5. Case 3: Heterogeneous users with optimal adjustments.

(a) Convergence trajectory. (b) z̄ and µ̄ at ME.

Fig. 6. Case 4: Heterogeneous users with sub-optimal adjustments.

and 3: the convergence trajectory is fluctuating like in Case 2,
and the QCS is higher than Qme like in Case 3. This obser-
vation applies similarly to Fig. 6b as well. The key message
is that, even under fairly high heterogeneity (maximal ±50%
deviation) and sub-optimal adjustments (standard deviation of
50% about the optimum), the market can still converge to an
equilibrium close to the theoretical ME and the user activity
level is also well predicted by the analysis.

B. Summary of Findings
• The market-based mechanism can lead the users to the

market equilibrium (ME) that is in agreement with the
ME analyzed theoretically.

• This mechanism is effective, with a fast convergence
speed and accommodates well user heterogeneity and
sub-optimal behavior adjustments.

• This mechanism is robust to the randomness of user
behavior: the market consistently converges to the same
equilibrium regardless of how users start off in the initial
period when the mechanism is not yet in effect.

VI. CONCLUSION

Participatory sensing has so far been regarded as a “best
effort” or “opportunistic” form of sensing that is inferior to
deployed sensors. This paper has quantified the quality of
service of participatory sensing systems whose service relies
solely on user contributions by proposing the concept of
Quality of Contributed Service (QCS). We take a market-
based approach whereby each contributor contributing data is
motivated by obtaining a share of consumer payment from the
service provider, according to his contribution rate and quality;

on the other hand, consumers choose the service consumption
rate based on how well the QCS meets his satisfaction level.
Both contributors and consumers are not altruistic but are
rational, behaving (contributing or consuming) in the manner
that maximizes their respective payoffs or utilities. We derive
the optimal contribution level and consumption rate and prove
the existence of the market equilibrium, at which QCS is
shown to be significant and non-trivial. Our findings indicate
that participatory sensing can be used for reliable sensing
purposes when certain incentives, e.g. monetary as in this
paper, and a market framework are properly set up. In future
work, we plan to study the effects of dynamic pricing on
the achievable information quality in participatory sensing,
as well as study the achievable information quality for user
contributions in the form of continuous-valued data rather than
that of binary events considered in this paper.
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