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ABSTRACT
Participatory sensing is an emerging concept that integrates
crowd-sourced data collection and knowledge discovery of
collective behavior. Capitalizing on the advent of abundant
sensors and information collection systems in near-future
vehicles, we develop a participatory sensing based system
and its methodologies for driving energy efficiency applica-
tions. Distance-to-empty (DTE) is the distance an electric
or internal-combustion engine (ICE) vehicle can reach before
its energy/fuel is exhausted, which is determined by a variety
of uncertain factors, such as driving behavior, terrain, types
of road, traffic, and vehicle specification. Green telematics
aims to optimize the route selection with lower energy con-
sumption. In this paper, we explore an effective approach
that integrates the vehicle data gathered from participatory
sensing to provide more accurate personalized DTE predic-
tion and green telematics. Our approach relies on extracting
the driver/vehicle/route dependent features and discovering
correlations from collective driving data. We also present
concrete case studies of our results, such as (1) DTE predic-
tion for EVs based on the data of ICE vehicles, (2) classifi-
cation and recommendations of energy-efficient driving be-
havior, and (3) route-level energy consumption geo-fencing
and planning.

Categories and Subject Descriptors
J.0 [Computer Applications]: General; K.4 [Computing
Milieux]: Computers and Society
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Participatory sensing, Distance-to-empty, Green telematics

1. INTRODUCTION
While the in-vehicle information systems are increasingly

sophisticated, the information presented in vehicles is not
always accurate. One of the major features is distance-to-
empty (DTE), which is the distance an electric or internal-
combustion engine (ICE) vehicle can reach before its en-
ergy/fuel is exhausted. DTE is determined by a variety of
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factors, such as driver behavior, terrain, types of road, and
traffic, as well as the vehicle specification (e.g., electric or
gasoline power, tank capacity, engine load, vehicle weight).

The conventional approach of DTE prediction employed
by car manufacturers is based on the projection of past long-
term average vehicle energy efficiency (i.e., the total con-
sumed energy/fuel over the total travelled distance). If there
is perfect knowledge about the vehicle, driving behavior and
the route to travel, future energy efficiency can be estimated
with high accuracy. However, there are numerous uncertain
factors, which make accurate prediction challenging.

On the other hand, the option of green telematics is be-
ing enabled by telematics providers, which aims to opti-
mize the route selection decisions with lower fuel/energy
consumption [5]. Green telematics systems are critical to
optimal planning for recharging/refueling and fleet manage-
ment. Like DTE prediction, green telematics is affected by
the uncertain factors, such as driving behavior and routes.

These driving energy efficiency applications can be en-
hanced by exploring the historic data from other drivers.
Participatory sensing is an emerging concept that integrates
crowd-sourced data collection and knowledge discovery of
collective behavior, enabling a variety of novel applications
for pervasive computing systems [3]. The vehicles are be-
coming a vital platform for participatory sensing. First,
there is a rise of advanced in-vehicle information systems,
equipped with network connectivity and processing power,
which can be turned into mobile sensing and information
collection systems. Second, the wide availability of smart-
phones carried by passengers can extend the computing and
sensing abilities of vehicles. Third, there are abundant off-
the-shelf and after-market products for vehicle diagnostic
tools to gather driving data and vehicle information. A
participatory sensing platform for vehicles has been criti-
cal for a number of intelligent transportation applications
(e.g., Google Map, Waze, real-time traffic alerts). Waze is
a participatory App for traffic monitoring, which however
does not have driving energy efficiency features.

In this paper, we focus on the applications of participatory
sensing related to driving energy efficiency. In particular,
there are a few example applications as follows.

1. Vehicle Variable Applications: Range anxiety is a crit-
ical issue for EVs, and accurate DTE prediction is
highly desirable [12]. Since there are far many more
ICE vehicles on the road than EVs, one can harness
the data collected from ICE vehicles to improve the
accuracy of DTE prediction for EVs. In particular,
the data of taxis and buses on regular routes can shed



light on the energy consumption of other vehicles.

2. Driver Variable Applications: With the diverse data
collected from various drivers, one can compare the
driving behavior among drivers. By identifying the
driver-specific characteristics from the data, one can
analyze the driving behavior and make energy effi-
cient driving recommendations. The insights gathered
from driving behavior analytics are also relevant to safe
driving and auto insurance, to the benefit of consumers
(e.g., pay-as-you-drive plan [6]).

3. Route Variable Applications: Extensive green telemat-
ics can be enabled to compare different route options
according to energy/fuel consumption. Route-level en-
ergy consumption geo-fencing can be constructed for
EVs. Moreover, one can also optimize the route selec-
tion in order to refuel at cheaper gas stations.

In spite of the promising potential, there are several chal-
lenges of developing an effective participatory sensing sys-
tem for driving energy efficiency applications:

1. Automation: With the availability of large amount of
the data, an automated system is required to process
and analyze data, with minimal human assistance.

2. Flexibility: The analytics synthesized from the data
should be reusable to diverse applications, without the
need for re-processing.

3. Errors and Noise: There exist considerable errors and
noise in the participatory sensing data (e.g., due to
synchronization, mechanic dumping, loss of data, dif-
ferences in data sources). The system needs to resolve
the inconsistency and maximize the integrality.

4. Scalability and Efficiency: Many applications require
real-time processing, and the system needs to deliver
the results efficiently in a scalable manner.

In this paper, we explore an effective approach that inte-
grates the vehicle data gathered from participatory sensing
to provide more accurate personalized applications. Our
approach relies on extracting the driver/vehicle/route de-
pendent features and discovering correlations from collec-
tive driving data. Furthermore, we present concrete case
studies that utilize our results in diverse related applica-
tions, such as (1) DTE prediction for EVs based on the data
of ICE vehicles, (2) classification and recommendations of
energy-efficient driving behavior, and (3) route-level energy
consumption geo-fencing and planning.

Outline: We present the related work in Sec. 2. The
system framework is presented in Sec. 3. The methodology
of energy consumption model and correlation discovery is
presented in Sec. 4. We performed empirical evaluation on
our methodology on electric and ICE vehicles, with results
discussed in Sec. 5. Finally, the case studies that utilize our
results are discussed in Sec. 6.

2. RELATED WORK
The problem of estimating DTE has been the subject of

a significant number of academic publications, and is also a
feature which vehicle manufacturers have been including in
production vehicles for over two decades [2]. At its most ba-
sic level, the DTE, or range remaining can be estimated by
observing the mean energy use over short and long distances

as the authors describe in [12]. The same authors proceed to
describe a system for estimating future travel profile using a
Monte Carlo approach, which is a critical step in determin-
ing remaining energy. Estimates of stochastic effects which
may impact travel velocity and acceleration profiles can be
crowd-sourced for identifying traffic congestion [4].

The second step is using an accurate vehicle model to
take the travel profile generated and turn it into future en-
ergy demands. Such model-based estimation can be per-
formed as described in [7] for EVs. It is also possible for
fuel consumption data shared between vehicles to be used
without underlying physical profile and vehicle modeling to
predict the energy consumption for a given route [5], al-
though this approach is sensitive to much uncertainty and
necessitates rigorous machine learning approaches – some-
thing which these authors have investigated for control ap-
plications, but which can easily be applied to the problem
at the center of this work [11]. Early efforts at using social
network participation to identify areas of fuel use reduction
have been published [8]. Another participatory sensing sys-
tem for improving fuel efficiency has been proposed in [10],
and a simpler model for predicting fuel consumption across
a driver-route matrix was proposed in [14].

This work differentiates from the previous work in several
aspects: (1) We explicitly consider the features related to
the driver, vehicle and route dependence in the energy con-
sumption model. (2) We explore the correlations in driving
data for personalized applications of individual drivers. (3)
We present a unified study to diverse applications related to
driving energy efficiency.

3. SYSTEM FRAMEWORK
We developed a system framework (depicted in Fig. 1)

that consists of a number of components for data sensing
and collection, data analytics, and information processing.
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Figure 1: System framework.

3.1 Data Collection
The data sensing and collection system supports a range

of methods. One method was based on a smartphone App.
We developed an App for Android phone paired over a Blue-
tooth connection with a standard ELM327 dongle (depicted
in Fig. 2), which is widely available online and in automotive
electronic stores. The dongle plugs into the OBD port, and
the ELM327 protocol is used by the App to query for data



on specific engine and other vehicle parameters. The OBD
data, supplemented with data from the phone’s own posi-
tioning and accelerometer sensors, are accumulated within
the device and, if configured and connected for this purpose,
uploaded to a specific data server.

Another method is to rely on a tailor-made sensor-equipped
electronic unit that plugs directly into the OBD port to draw
power and query similar data, uploading the data over the
cellular network. In future, when in-vehicle computers be-
come more open to legal software customization, it would
also be possible to develop user-level programs that can be
installed on these computers and query data through APIs
and use either the onboard connectivity or a paired mobile
data device to support participatory sensing.

Figure 2: Android app and ELM327 dongle

3.2 Data Processing and Analytics
The data processing and analytics system receives data

from the participatory sensing devices, stores it in databases,
and processes it with analytic models for the applications.
In a companion project, we develop CloudThink platform [1]
as an open system for storing the data uploaded over Inter-
net connections from the various in-vehicle data-gathering
applications and devices, with a data access server allowing
secure and traceable API service in multiple formats, and a
web server to permit data visualization.

4. METHODOLOGY
In this section, we present a unified energy/fuel consump-

tion model for both electric and ICE vehicles.

4.1 Basic Concepts
In order to perform the participatory sensing and subse-

quent estimation of DTE, features of the model must be
defined. For this work, three categories of features impor-
tant for the estimation will be described. The first relates
vehicle speed and idle duration to the typical traffic condi-
tions experienced on a road segment. The second enables the
type of driver to be defined and parameterized. The third
describes the physical characteristics of the vehicle which is
the subject of the identification. The following subsections
provide more details on how the model was constructed.

1. Route: The level of traffic which is expected for a road
segment depends on a plethora of factors, including
time of day, day of year, special events, etc., and is
generally difficult to predict. For this work, the type
of routes was used as the primary explanatory variable
and was divided into three categories: small public or
private roads with urban traffic, lower capacity“urban”
highways, and higher capacity freeways.

2. Driver: The parameterization of the driver was en-
abled through the black-box statistical approach cho-
sen for the model described in the next section. Differ-
ent drivers are expected to behave according to prefer-
ences for stop/start accelerations, aggression in various
scenarios, propensity for hypermiling, etc.

3. Vehicle: The extrinsic parameters capturing vehicle
characteristics are only the weight of the vehicle. All
other characteristics such as power, wheelbase, top
speed are parametrized implicitly in the regression co-
efficients identified during the modeling process. This
parameter is selected to be universal to both electric
and ICE vehicles.

4.2 Energy Consumption Model
A tuple of driver-vehicle-route combination is denoted by

(D,V,R). The driving data repository is consisted of the
data sets as a subset of {(D,V,R)}.

We divide a route R by a set of n segments1. The set of
segments are denoted by {Ri}ni=1.

The total energy consumption E of driver D with vehicle
V on route R is given by:

ED,V,R =

n∑
i=1

(Edrv
D,V,Ri + Eidl

D,V,Ri) (1)

where Edrv
D,V,Ri is the driving energy consumption and Eidl

D,V,Ri

is the idling energy consumption of segment Ri. In this pa-
per, we denote a symbol by ˆ for its estimated quantity. For
example, ÊD,V,R denotes the estimated energy consumption.

4.2.1 Driving Energy Consumption Model
Considering a particular segment, the driving energy con-

sumption of a moving vehicle Edrv has unit in liter or kWh.
Here, we drop the subscript D,V,Ri for brevity.

While there are more sophisticated approaches of estimat-
ing the driving energy consumption by detailed modelling of
vehicle mechanics, this paper utilizes a black-box approach
without the detailed knowledge of vehicle mechanics. This
approach aims to maximize the applicability on a wide range
of scenarios arising from participatory sensing.

In this paper, we estimate Êdrv by a linear equation:

Êdrv = α1v̄ + α2v̄
2 + ~α3

~d+ ~α4~a+ ~α5~g

+α6`+ α7m+ c (2)

where

• v̄ is the continuous average speed (i.e., the average
speed without idling);

• ~d = (τd, µd, σd) is the deceleration tuple, where

– τd is the total duration of deceleration;

– µd is the mean deceleration (i.e., the sum of de-
celeration values divided by the deceleration du-
ration);

– σd is the standard deviation of deceleration;

• ~a is the acceleration tuple (similar to the deceleration
tuple);

1The length of each segment we choose currently is 100m.
But we remark that it is possible to have dynamically vari-
able lengths according to the road environments.



• ~g = (ḡx, ḡy, ḡz) is the gyroscope tuple, where

– ḡx, ḡy, ḡz are the mean absolute measurement val-
ues in x/y/z-axis along the moving vehicle;

• ` is the auxiliary load of idling, which the baseline
reading when the vehicle is not moving;

• m is the vehicle weight;

• α1, ..., α8, c are coefficients.

Remarks:

1. The deceleration tuple is critical to capture the energy
consumption for EVs in the presence of regenerative
braking, by which the vehicle’s kinetic energy is con-
verted to energy storage, during braking.

2. The deceleration duration τd can capture the dynamic
of deceleration. For example, when a driver gradually
releases gas pedal from high speed, the mean deceler-
ation µd is small with a long deceleration duration, on
the other hand, when a driver decelerates his vehicle
for a short brake (e.g., avoiding speed camera), µd is
also small with a short deceleration duration. In both
cases, the mean deceleration will be similar, but the
duration of deceleration can distinguish the difference.

3. The gyroscope tuple ~g can capture the curvature of
a route. Normally, travelling a curve route consumes
more energy than a straight route, in spite of equal
distance. The gyroscope provides important informa-
tion about the environments. The gyroscope may be
available in smartphones.

4. The auxiliary load of idling ` is the calculated engine
load when the vehicle is not moving, which is often
available from On Board Diagnostic (OBD) port. The
auxiliary load of idling provides the baseline energy
consumption of a stationary vehicle, which is more
affected by factors such as in-vehicle air-conditioning
and stereo systems.

4.2.2 Idling Energy Consumption Model
Similarly, we rely on a black-box approach to estimate the

idling energy consumption. Considering a particular seg-
ment, we estimate the idling energy consumption Êidl by a
linear equation:

Êidl = β1τ
idl + β2` (3)

where

• τ idl is the total idle duration,

• ` is the auxiliary load of idling.

Here, we drop the subscript D,V,Ri for brevity. The auxil-
iary load of idling ` provides the baseline energy consump-
tion of a stationary vehicle.

4.3 Estimation of Coefficients
The coefficients (α1, ..., α7), (β1, β2) and c in the linear

equations (Eqns. (2)-(3)) can be estimated by the standard
regression method, if provided a sufficiently large data set

of driving data (v̄, ~d,~a,~g, `,m, τ idl) and energy consumption

data (Êdrv, Êidl). We assume that each driver-vehicle pair

(D,V) has collected sufficient historic personal driving data,
and the coefficients can be estimated in a-priori manner.

One notable advantage of regression method is that it is
less susceptible to random noise, which can arise from var-
ious sources (e.g., due to synchronization, mechanic dump-
ing, inaccurate measurements).

4.4 Dependence and Features
By participatory sensing, drivers can share their driving

data (e.g., coefficients of Eqns. (2)-(3)) with each other.
Next, we explore an effective approach that integrates the
participatory sensing data to personalized applications.

In fact, the linear equations (Eqns. (2)-(3)) provide a con-
venient way to extract the features that are related to driver,
vehicle, and route dependence. In Table 1, we heuristically
assign the dependence of each parameter, according to the
major effects from the driver, vehicle or route.

For the coefficients, it is assumed that their dependence
is complementary to that of the respective parameters. For
example, the average speed v̄ is more likely affected by the
driver and route, while to a less extent by the type of vehicle.
Hence, coefficient α1 is considered to be vehicle-dependent,
such that the product α1v̄ will be specific to a particular
tuple (D,V,Ri). For convenience, we assume that c is driver-
dependent.

Parameters Driver- Vehicle- Route-
dependent dependent dependent

v̄, ~d,~a,~g X X
` X X
m X
τ idl X

α1, ..., ~α5 X
α6 X
α7 X X
c X
β1 X X
β2 X

Table 1: Dependence of parameters and coefficients.

In light of dependence, we can specify each quantity by
the respective subscripts when referring to a particular tuple
(D,V,Ri). For example, we write v̄(D,V) and α1(V).

We denote a matrix of energy consumptions by E = (ED,V,Ri).
Each ED,V,Ri can be computed by a linear equation:

ED,V,Ri = (cV, cRi , cD,Ri , cD,V)·(xD,Ri ,xD,V,xV,xRi)
T +c (4)

where

cV = (α1(V), α2(V), ~α3(V), ~α4(V), ~α5(V)) (5)

xD,Ri = (v̄D,Ri , v̄
2
D,Ri , ~dD,Ri ,~aD,Ri , ~gD,Ri) (6)

cRi = (α6(Ri), β2(Ri)) (7)

xD,V = (`D,V, `D,V) (8)

cD,Ri = (α7(D,Ri)) (9)

xV = (mV) (10)

cD,V = (β1(D,V)) (11)

xRi = (τ idlRi ) (12)

To conveniently align with dependence, we refer the inputs
as features, when they are grouped by the driver, vehicle or



route dependence. The features we refer to are as follows.

• Driver dependent features: xD,Ri , xD,V, cD,Ri , cD,V.

• Vehicle dependent features: cV, xD,V, xV, cD,V.

• Route dependent features: xD,Ri , cRi , cD,Ri , xRi .

A number of applications can be enabled by flexibly sub-
stituting the proper features. We present several examples
as follows.

1. To predict ED,V,Ri by a different driver (D′,V,Ri), we
can use the following equation:

ÊD,V,Ri = (cV, cRi , cD′,Ri , cD′,V) · (xD′,Ri ,xD′,V,xV,xRi)
T +c′ (13)

2. To predict ED,V,Ri by a different vehicle (D,V′,Ri), we
can use the following equation:

ÊD,V,Ri = (cV, cRi , cD,Ri , cD,V′) · (xD,Ri ,xD,V′ ,xV,xRi)
T + c (14)

3. To predict ED,V,Ri by a different route (D,V,R′
i
), we

can use the following equation:

ÊD,V,Ri = (cV, cR′i , cD,R′i , cD,V) · (xD,R′i ,xD,V,xV,xR′i)
T + c (15)

4.5 Correlation Discovery in Driving Data Set
Let all the data sets in the repository be {D,V,Ri}. Note

that not every tuple is present in the repository. Next, we
seek to identify the correlations in {D,V,Ri}, such that one
can identify the most similar (D′,V,Ri) to predict the energy
consumption of (D,V,Ri).

In this paper, we characterize the correlation in the driv-
ing data between a pair (D,V) and (D′,V′) with the same
route using the concept of dynamic time warping (DTW)
[13]. DTW is a widely used concept for determining the
similarity among time series, and identifying the correspond-
ing similar regions between two time series. DTW has been
used in many applications, such as speech recognition, ges-
ture recognition, robotics and bioinformatics.

The basic idea of DTW is to determine an optimal align-
ment between two time series. Consider two time series
X = (x[t])nX

t=1 and Y = (y[t])nY
t=1 of lengths nX and nY

respectively. A warp path is defined as W = (w[k])nW
k=1,

where the kth element is wk = (i, j), such that i is an in-
dex from time series x[t] and j is an index from time se-
ries y[t]. nW is the length of the warp path W , such that
max(nX , nY ) ≤ nW < nX + nY .

The warp path W is subject to the following constraints:

1. w[1] = (1, 1);

2. w[nW ] = (nX , nY );

3. if w[k] = (i, j) and w[k+1] = (i′, j′), then i ≤ i′ ≤ i+1
and j ≤ j′ ≤ j + 1.

An optimal warp path (illustrated in Fig. 3) is the one
with the minimum distance dist(W ∗), defined by:

dist(W ∗) = arg min
w

nW∑
k=1

d(w[k]) (16)

where d(w[k]) is the distance of the coordinates (i, j) of the
kth element in W .

A simple approach to determine an optimal warp path
between two time series is to use dynamic programming.

w[2]

w[3]

w[4]

w[5]

w[6]

w[7]

w[8]

w[1]

Figure 3: An illustration of warp path

But there are other more efficient algorithms with linear
running time [13].

Let vD,V,Ri [t] be the time series of speed profile for tuple

(D,V,Ri). For each pair of (D,V,Ri) and (D′,V′,Ri), let

χRi

(D,V),(D′,V′) = dist(W ∗) (17)

where W ∗ is the minimum-distance warp path between the
time series vD,V,Ri [t] and vD′,V′,Ri [t].

Let R(D,V) be a set of route segments that have speed
profiles recorded with (D,V). Namely, if Ri ∈ R(D,V), then
the speed profile vD,V,Ri [t] exists in the repository.

Define a correlation metric between each pair of (D,V)
and (D′,V′) by the average minimum warp path distance
over all recorded segments:

χ̄(D,V),(D′,V′) =

∑
Ri∈R(D,V)∩R(D′,V′)

χRi

(D,V),(D′,V′)

|R(D,V) ∩R(D′,V′)| (18)

Note that χ̄(D,V),(D′,V′) =∞, if R(D,V) ∩R(D′,V′) = ∅.
In this paper, we will use χ̄(D,V),(D′,V′) to characterize the

similarity between each pair of (D,V) and (D′,V′). We find
the tuple (D′,V′) with the smallest value χ̄(D,V),(D′,V′) to
estimate energy consumption of (D,V). We also employ
k-nearest neighbors (k-NN) clustering to find the k most
similar speed profiles of (D,V).

Example 1. In Fig. 4, the speed profiles of three drivers
(D1,V1), (D2,V2), (D3,V3) on the same route R1 are plotted.
Table 2 shows the minimum warp path distances between
driver (D1,V1) and other drivers. We observe that smaller
minimum warp path distance indeed shows closer similarity
in the speed profiles; (D1,V1) is more similar with (D2,V2)
than (D3,V3).

Minimum warp path distance

χR1

(D1,V1),(D2,V2)
1.1385

χR1

(D1,V1),(D3,V3)
1.3883

Table 2: Minimum warp path distance

5. EXPERIMENTS
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Figure 4: Speed profiles of three drivers on the same route.

We performed experiments to empirically evaluate the
performance of our approach. The observations are reported
in this section.

5.1 Experiment Setup

5.1.1 Routes
We select a range of different roads, as depicted in Fig. 5

and summarized in Table 3. R1 has light traffic, consisting
of both highway and suburban roads. R2 has heavier traffic
with traffic lights, and thus results in the much longer idle
time seen in Table 3. R3 and R4 are similar in terms of
traffic, with no need to stop. However, R3 has a number of
traffic signs and speed bumps, which force drivers to slow
down, whereas R4 has no restriction.

Route Average Route Average Driving Average Idle
Length (KM) Duration (sec) Duration (sec)

R1 21.49 1356.4 10.4
R2 10.36 761.8 398.6
R3 6.78 412 0
R4 8.18 450.8 0

Table 3: The routes in the experiments.

5.1.2 Vehicles
Four vehicles are used in the experiments, as summarized

in Table 4, which consist of three ICE vehicles and one EV.
The pictures of the vehicles are shown in Fig. 6.

(a) Toyota Yaris (b) Hyundai Veloster

(c) Nissan LEAF (d) BMW 650i

Figure 6: The vehicles in the experiments.

Vehicle Maker Model Year Type Displacement
V1 Toyota Yaris 2014 ICE 1.5
V2 Hyundai Veloster 2014 ICE 1.6
V3 Nissan LEAF 2013 EV NA
V4 BMW 650i 2014 ICE 5.0

Table 4: The vehicles in the experiments.

5.1.3 Data Collection
For ICE vehicles, we collected data through Bluetooth

ELM327 dongles connected to the vehicles’ onboard diag-
nostic (OBD) ports and paired with a smartphone App. The
OBD data collected include mass air-flow, manifold absolute
pressure, intake air temperature and engines’ RPM, which
are then utilized to compute the fuel consumption rate. Fur-
thermore, the geo-location data, accelerometer and gyro-
scope measurements from the smartphone are also recorded.
For EV (i.e., Nissan LEAF), we rely on Android App called
“LEAF Spy Pro” to collect the EV’s data. The sample rate
of our smartphone App is 2 Hz, whereas the one for LEAF
spy pro is 0.25 Hz.

5.2 Data Sets
Fig. 7 shows some sample driving data. Fig. 7a shows the

speed profiles of the EV and an ICE vehicle by the same
driver on the same route. We can observe that both ve-
hicles stopped several times due to traffic lights. Fig. 7b
shows the energy consumption profiles of EV and ICE ve-
hicles. Although the speed profiles are similar, there are
remarkable differences in the energy consumption profiles.
Notably, the energy consumption level decreases when the
EV slows down, because of the regenerative braking that
can convert kinetic energy into stored energy in battery.

Figs. 7c-7d show the driving data collected from the ve-
hicles. The gyroscope data is used to determine the vehicle
movement and orientation, which is gathered from smart-
phone. However, the gyroscope data is required to be aligned
with vehicle’s moving direction in order to obtain the cor-
rected orientation. We use an automatic alignment algo-
rithm to infer the vehicle’s reference orientation [9, 15].

5.3 Estimation Errors
To evaluate the accuracy of estimation, we measure the

deviation error of the estimated energy consumption by the
per segment error:

εi =
|(Edrv

D,V,Ri + Eidl
D,V,Ri)− (Êdrv

D,V,Ri + Êidl
D,V,Ri)|

Edrv
D,V,Ri + Eidl

D,V,Ri

(19)

and the accumulative error:

εacc =
|ED,V,R − ÊD,V,R|

ED,V,R
(20)

As an example, we plot the distribution of per-segment
errors of one vehicle collected from three rounds of exper-
iments in Fig. 8. It shows that the mean error is about
3.5% and the distribution is close to a normal distribution.
Since we are interested in the energy consumption of the
overall trip, the accumulative error is more relevant. Fig. 9
shows the accumulative error against travelled distance. We
observe that the accumulative error fluctuates against trav-
elled distance, but there is a general trend of decreasing



(a) Route R1. (b) Route R2.
(c) Route R3. (d) Route R4.

Figure 5: The routes in the experiments.
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(b) Energy/fuel consumption profiles of EV and ICE vehicle.
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(c) Sample driving data of ICE vehicle.
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Figure 7: Sample driving data.

error. This is due to the fact that the positive and nega-
tive deviations can offset each other over a longer distance.
Therefore, the accumulative error reaches a lower value after
a longer distance.

5.4 Energy Consumption Model Validation
We first use the data sets of R1 and R2 to obtain the co-

efficients of Eqns. (2)-(3). Next, we examine the accuracy
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Figure 8: Distribution of per segment errors.
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Figure 9: Accumulative error against travelled distance.

of estimating the energy consumption using Eqns. (2)-(3)
against the actual energy consumption. The respective ac-
cumulative error averaged over three rounds of experiments
are shown in Table 5 and Fig. 10. We observe that the ac-
cumulative errors range from 0.1% to around 5%, which is
sufficient to practical DTE prediction. In Fig. 11, we use
other drivers’ driving data to predict other drivers’ energy
consumption in the same route. The initial error is relatively
large due to several reasons: 1) the prediction can overes-
timate or underestimate the accurate DTE, which creates
short-term fluctuations. The prediction error will be off-
set by the positive and negative deviations in a long term.
Therefore, the accumulative error can reach a lower value
after a longer distance. 2) For vehicle D3 (LEAF), the sam-
ple rate is relative low, therefore, the initial error is larger
than others’, because the driving behavior cannot be fully
captured when sample rate is low. We are working on in-
creasing the sample rate of the LEAF which will improve



the initial error.

Route Vehicle Driver Average accumulative error
R1 V1 D1 3.6%
R1 V2 D2 0.1%
R1 V3 D2 3.2%
R1 V3 D3 2.0%
R1 V4 D4 0.1%
R2 V1 D1 4.4%
R2 V2 D2 3.7%
R2 V3 D2 4.7%
R2 V3 D3 5.4%
R2 V4 D4 5.1%

Table 5: Estimation errors for route-vehicle-driver tuples.

5.5 Correlation Discovery
Next, we obtain the correlation metrics χ̄(D,V),(D′,V′) in Ta-

ble 6. The two top-most similar pairs are highlighted in bold
in each row. For example, (D1,V1) has a small value with
(D2,V2) and (D3,V3). We use k-nearest neighbor method
to choose the k most similar (D′,V′) for each (D,V), and
use their respective driving data to estimate the energy con-
sumption of (D,V).

χ̄(D,V),(D′,V′)(D1,V1) (D2,V2) (D3,V3) (D2,V3) (D4,V4)
(D1,V1) 0 1.0799 1.0214 1.1659 1.2319
(D2,V2) 1.0799 0 1.1022 0.9872 1.1895
(D3,V3) 1.0214 1.1022 0 1.1423 1.4211
(D2,V3) 1.1659 0.9872 1.1423 0 1.2169
(D4,V4) 1.2319 1.1895 1.4211 1.2169 0

Table 6: Correlation metrics.

6. CASE STUDIES
In this section, we apply our results to some concrete case

studies: (1) DTE prediction, (2) characterization of driving
behavior, (3) energy-efficient driving recommendations, and
(4) route-level energy consumption geo-fencing and refueling
planning.

6.1 DTE Prediction
Based on the correlation metrics, we can estimate the en-

ergy consumption using the driving data by the most similar
driver-vehicle pairs. In particular, one can use the data of
ICE vehicles (V1,V2,V4) to predict the energy consumption
of the EV (V3).

In the following, five scenarios are considered:

1. Predicting (D1,V1) using estimators (D2,V2),(D3,V3)

2. Predicting (D2,V2) using estimators (D1,V1),(D2,V3)

3. Predicting (D3,V3) using estimators (D1,V1),(D2,V2)

4. Predicting (D2,V3) using estimators (D2,V2),(D3,V3)

5. Predicting (D4,V4) using estimators (D2,V2),(D2,V3)

The respective accumulative errors for route R1 are shown
in Table 7, along with the prediction using its own data.
Three rounds of data for each driver-vehicle pair are aver-
aged and then used to predict others. For each driver-vehicle

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Distance (km)

A
cc

um
ul

at
iv

e 
er

ro
r

 

 

Round 1
Round 2
Round 3

(a) (D1,V1) on route R1
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(b) (D1,V1) on route R2
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(c) (D2,V2) on route R1
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(d) (D2,V2) on route R2
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(e) (D3,V3) on route R1
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(f) (D3,V3) on route R2
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(g) (D2,V3) on route R1
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(h) (D2,V3) on route R2
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(i) (D4,V4) on route R1
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(j) (D4,V4) on route R2

Figure 10: Estimation errors against traveled distance.

pair, we use the two most similar driver-vehicle pairs, as well
as its own data. The diagonal entries of the Table 7 are
the predictions based on the own data. Except driver (D4),
the estimation errors are observed to be low. Driver (D4)
drives much more aggressively compared to other drivers,
and hence, its correlation metrics have larger values. There-
fore, the estimation errors are larger for (D4) using other
drivers.

6.1.1 DTE Prediction for EV
In particular, we study the performance of DTE prediction

for EV (i.e., Nissan LEAF). The data collected from EV
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(b) (D2,V2)
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(c) (D3,V3)
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(d) (D2,V3)
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Figure 11: Estimation errors against traveled distance.

Estimator
Error (D1,V1)(D2,V2)(D3,V3)(D2,V3)(D4,V4)

(D1,V1) 4.7% 5.8% 4.6% .. ..
(D2,V2) 4.3% 1.4% .. 2.4% ..
(D3,V3) 5.2% 7.4% 2.0% .. ..
(D2,V3) .. 5.9% 6.7% 5.3% ..
(D4,V4) .. 12.1% .. 10.3% 2.5%

Table 7: Estimation errors.

includes:

1. State of charge (SOC), denoted by S, indicates how
much electricity remains in the battery.

2. Initial capacity of the battery, denoted by BA.

3. Battery pack voltage when driving, denoted by BV .

The remaining energy (∆Et) in battery at time t is given by:

∆Et = St × BA × Bt
V (21)

If the future average power intensity (P̄) is known, then
DTE is given by:

DTE =
∆Et

P̄
(22)

We especially compare the DTE prediction based on our
energy consumption model with the on board DTE meter on
Nissan LEAF, which is captured by a camera mounted over
the dashboard. Fig. 12 shows our estimated DTE and on
board DTE meter readings in the experiment. The reference
line in the Fig. 12 denotes the true DTE as the distance
goes. We observe that our approach gives a considerably
more accurate prediction than the onboard meter.
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Figure 12: Comparison between our estimated DTE and
onboard DTE meter reading.

6.2 Classification of Driving Behavior
The correlation metrics between every pair of drivers can

provide a distance matrix. One can apply standard clus-
tering techniques on the set of driver-vehicle pairs in such
a metric space. The clustered data set can classify energy-
efficient driving behavior. Fig. 13 shows the clustered data
set based on Table 6. We observe that energy-efficient driver-
vehicle pairs (colored in green) tend to stay closer in the
correlation metric space. Likewise, one can also obtain the
cluster of energy-inefficient driver-vehicle pairs, and a com-
plete classification of driving behavior.

(D2,V3)

(D3,V3)

(D4,V4)

(D2,V2)

(D1,V1)1.02

1.14

1.10
1.42

1.23

1.22

0.99

1.191.17
1.08

Figure 13: Clustering of driver-vehicle pairs based on corre-
lation metrics. Green nodes are the energy-efficient driver,
whereas the red node is energy-inefficient driver.

6.3 Driving Recommendations
Our energy consumption model can be applied to pro-

vide recommendations of energy-efficient driving. Assuming
other parameters are constant (e.g., acceleration, decelera-
tion, and gyroscope data), the energy consumption is only
dependent on the vehicle speed in our model. For exam-
ple, Fig. 14 shows the energy intensity of several driver-
vehicle pairs at different speeds. It is observed that there is
a minimum point for ICE vehicles (namely, the least energy-
consuming speed), and an energy intensity increasing with
speed for EV (because electric motors operate more effi-
ciency at low speeds). For ICE vehicles, we can recommend
that the driver to maintain at the least energy-consuming
speed obtained from the model. For EV, the optimal speed
will be the smallest possible speed that can arrive at the
destination before a deadline.

6.4 Geo-fencing and Planning
Geo-fencing depicts the geographical range before the en-

ergy of vehicle is exhausted. Traditionally, geo-fencing is
estimated only considering the geographical distance. With
the information from our model, more detailed route-level
energy consumption geo-fencing can be constructed, for ex-
ample, as seen in Fig. 15. The route-level energy consump-
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Figure 14: Energy intensity of vehicles at different speed
according to our energy consumption model.

tion geo-fencing is constructed in the following manner. We
first obtain the map data from OpenStreetMap (OSM). We
employ our model to estimate the energy consumption at
each point along a route. The least energy consumption
required to reach a particular point can be estimated by
A∗ algorithm, considering multiple route alternatives. The
least energy consumption will be visualized on top of OSM
data to provide route-level energy consumption geo-fencing.
A critical application energy consumption geo-fencing is to
enable informed decisions for refueling.

Figure 15: Route-level energy consumption geo-fencing.

7. CONCLUSION AND FUTURE WORK
An effective approach has been proposed to integrates the

vehicle data gathered from diverse drivers and vehicles for
personalized applications of improving driving energy effi-
ciency. Our system provides a unifying approach for both
ICE vehicles and EVs. The advantages include identifying
the features according to the driver, vehicle and route de-
pendence. The processed data can flexibly support diverse
applications, such as DTE prediction, green telematics and
energy-efficient route planning, and classification of energy
efficient driving behavior.

Future work will include integration of extensive data from
large-scale datasets such as those to be available from Cloud-
Think [1] as well as from expanded GIS databases(e.g. the
geometric of the roads). We are working to integrate our
methodology to open platforms (e.g. OpenStreetMap). More-
over, hybrid vehicles or plug-in hybrid vehicles are not con-
sidered in this work, because of the lack of proper software
to interoperate the proprietary data about battery state in
these vehicles. Proper software will be sought in future to
allow further experiments on these vehicles.
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