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Abstract—The ubiquity of mobile devices has brought forth
the concept of participatory sensing, whereby ordinary citizens
can now contribute and share information from the urban envi-
ronment. However, such applications introduce a key research
challenge: preserving the location privacy of the individuals
contributing data. In this paper, we propose the use ofmicroag-
gregation, a concept used for protecting privacy in databases, as
a solution to this problem. We compare microaggregation with
tessellation, the current state-of-the-art, and demonstrate that
each technique has its advantage in certain mutually exclusive
situations. We propose a hybrid scheme called,Hybrid Variable-
Size Maximum Distance to Average Vector (V-MDAV), which
combines the positive aspects of both these techniques. Our
evaluations based on real-world data traces show that hybrid V-
MDAV improves the percentage of positive identifications made
by the application server by up to 100% and decreases the
information loss by about 40%. Furthermore, our studies show
that perturbing user locations with random Gaussian noise can
provide users with an extra layer of protection with very lit tle
impact on the system performance.

I. I NTRODUCTION

Over the past decade, we have witnessed an explosive growth of
mobile devices that are capable of capturing, processing, and trans-
mitting high fidelity multimedia content. Furthermore, theadvances
in positioning technologies and VLSI fabrication processes make
geo-localization an affordable feature in mobile devices.These have
motivated the research community to explore an alternativesensing
paradigm referred to asparticipatory sensing [2] or urban sensing [1],
that exploits the unique characteristics of these geo-intelligent, sensor-
equipped and computationally capable mobile devices. These systems
have led to the emergence of severalcitizen sensing applications,
wherein, the mobile phones carried by ordinary citizens collect and
share information about the urban landscape.

CarTel [3] is a system that uses mobile sensors mounted on
vehicles to collect information about traffic, quality of enroute Wi-Fi
Access Points (APs), and potholes on the road. A similar system has
been proposed in [4], which exploits sensor-rich smartphones carried
by passengers for monitoring road and traffic conditions. Other
applications of participatory sensing include, collecting information
about urban air pollution [5], cyclist experience [6] and diet [7]. In
our earlier research, we have applied the concept of participatory
sensing in sharing consumer pricing information in offline markets.
We have designed two systems,PetrolWatch [8] and MobiShop [9],
which use mobile camera phones to collect, process and deliver
pricing information from petrol stations and brick and mortar shops
to potential buyers.

In a typical participatory sensing application, the sensing data
uploaded by the users is invariably tagged with the location(ob-
tained from the embedded GPS in the phone or using WiFi based
localization) and time when the reading was recorded, sincethese
provide important contextual information. This can have serious
implications on user privacy, since, the sensor report uploaded by the

user may reveal his/her location at a particular time. Furthermore,
it may be possible to link multiple reports from the same userand
determine certain private information such as the locationof his/her
office and residence. Simple techniques such as using pseudonyms
or anonymizing the reports may not always work. For example,if an
adversary hasa priori knowledge of the user’s movement patterns,
it is fairly trivial to deanonymize the reports. Note that, participatory
sensing relies on the altruistic participation of users forsuccessful
operation. It is thus imperative that users are assured thattheir privacy
will not be violated to encourage sufficient participation.

In recent years, a few methods have been proposed for securing
location privacy in the context of participatory sensing. Cornelius et
al. have proposed AnonySense [10], a privacy-preserving architecture
for realizing participatory sensing applications. Their system uses the
concept of tessellation [11] for protection the location privacy of
contributing users. In tessellation, a point coordinate isgeneralized
to a plane in space, which is referred to as atile. The sensor reports
uploaded by users contain the tile id rather than the absolute location.
This genearlization is guided by the principle ofk-anonymity [12],
which ensures that at leastk users are located within the same tile.
Hence, it is impossible for an adversary to distinguish between thek
users. In this paper, we argue that the generalization approach adopted
by tessellation may not be particularly suited to certain applications
that require fine-grained location information. For example, consider
an application that collects traffic information from the mobile phones
carried by vehicular passengers [4]. If tessellation is employed, a
traffic report generated by a user at one particular intersection along
a road will be annotated with the tile id (which encompasses alarge
region), rather than the exact location of the intersection. When this
report is received by the application server, the aggregated location
information represented by the tile is of little use, since the server
cannot ascertain which road is being referred to in the report.

We suggest a simple modification to tessellation to overcomethe
aforementioned problem. Next, we propose to adoptmicroaggre-
gation, a branch of statistical disclosure control techniques [13],
[14], for preserving location privacy. To protect the privacy of
respondents, microaggregation creates a set of equivalence classes
(ECs) such that, records are collectively represented by the mean
of the respective classes. These ECs can be generated based on a
wide range of criteria, for example, minimum information loss. The
ECS can also be made to conform withk-anonymity, such that each
EC has at leastk members. Since, the mean is a numerical value,
microaggregation is a natural choice for conserving the numerical
properties of continuous variables [14]. Furthermore, since location
is often perceived as continuous data in most popular positioning
technologies, it is therefore reasonable to expect that finer fidelity
and higher usability of data can be achieved with microaggregation.

This paper makes the following specific contributions:

• We demonstrate the limitations of tessellation in providing
contextual support for participatory sensing applications. We
then show how to eliminate these drawbacks by making modi-
fications to tessellation.

• We propose an alternative approach, microaggregation, to ad-



dress location privacy. We compare microaggregation with our
modified version of tessellation and demonstrate that each
scheme has certain advantages in mutually exclusive situations.
To combine the strengths of these two schemes, we propose a
hybrid approach called, hybrid M-DAV.

• We use real-world user traces to evaluate the performance
of these privacy-enabling methods. We show that hybrid M-
DAV achieves twice the percentage of positive identifications
as compared to the other schemes and a 40% improvement in
information loss.

• We also propose an enhancement, which perturbs the user
locations with random Gaussian noise, as an extra level of
protection. We demonstrate this this extension has very little
impact on the system performance.

The rest of the paper is organised as follows. In Section II we
present a brief overview of the two central concepts used in this paper:
(i) tessellation and (ii) microaggregation. Section III outlines the
system model and assumptions. We introduce the proposed privacy-
preserving techniques in Section IV. Section V presents results from
our evaluations. Finally, Section VI concludes the paper.

II. RELATED WORK

Preserving the privacy of users’ locations in participatory sensing
is similar to safeguarding respondents’ privacy in databases, which
contain continuous-valued fields. Therefore, most of the concepts and
methods related to database disclosure control can be potentially
applied to participatory sensing. In particular, the concept of k-
anonymity [12], is widely used for preserving privacy in databases
as well as in participatory sensing systems.

Kapadia et al. proposed ak-anonymity technique based on gener-
alization in [11], referred to as tessellation. Tessellation partitions a
geographic area into cells. In their implementation, thesecells corre-
spond to the Voronoi polygons constructed around Wi-Fi APs.The
user distribution per cell is obtained from historical AP association
records and is used to cluster cells intotiles. A tile is an amalgamation
of cells such that the collective number of users per tile exceeds the
privacy requirementk. In other words, a tile is the lowest granularity
with which users represent their locations. Table I shows a sample
of a 3-anonymous location database based on tessellation. Further
details about the tessellation process are provided in Section V.

User ID Location Tile ID Class Mean
1 (1.5, 6.0) 1 (4.33, 5.17)
2 (4.5, 4.0) 1 (4.33, 5.17)
3 (4.5, 1.0) 1 (6.33, 1.33)
4 (6.5, 2.0) 2 (6.33, 1.33)
5 (7.0, 5.5) 2 (4.33, 5.17)
6 (8.0, 1.0) 2 (6.33, 1.33)

TABLE I
ANONYMIZED LOCATION DATABASE

Microaggregation [13] is an alternative approach, that hasbeen
used for implementing database disclosure control. Microaggregation
does not generalize nor suppress the values of an attribute of a
database record. Instead, it replaces the values with the mean of the
EC in which the record is found. An EC is a grouping of users such
that the class members are as homogeneous (i.e. similar) as possible.
The member similarities are often quantified by the Information
Loss (IL) metric, which effectively measures the differences between
records and their representations, i.e., mean of ECs. We give the
complete definition of IL and its implications in Section V. There are
many algorithms proposed to generate ECs with maximum within-
class homogeneity [13], [15], [16]. Maximum Distance to Average
Vector (MDAV) [13] is widely recognized as one of the most efficient
heuristics to date. However, MDAV cannot be readily adaptedto
the distribution of users in the target area, because it is a fixed
class size algorithm. The variable class size variant of MDAV, called

V-MDAV [16], was later proposed to ameliorate this shortcoming.
The rightmost column in Table I shows the result of applying V-
MDAV with the six location coordinates as inputs. The algorithmic
description of V-MDAV is presented in Section IV.

Domingo-Ferrer proposed a novel protocol, which leveragesmi-
croaggregation to address location privacy in Location-Based Ser-
vices (LBS) [17]. Their solution assumes a peer-to-peer system. A
user distorts his own location by artificially adding Gaussian variable
of zero mean and standard deviationσ to the latitude and longitude.
The distorted location coordinates are broadcast to nearbyneighbours
(i.e. peers) requesting for their Gaussian-perturbed location readings.
Upon receiving the responses from its peers, the user selects k − 1
other users such that they collectively span a region delimited by the
user’s privacy requirement. The mean of the group formed by the
user and itsk − 1 closest neighbours is then used in all messages
sent to the LBS server. However, this scheme cannot be readily
adopted in participatory sensing, since these systems typically utilize
a client-server architecture. In this paper, we explore theuse of
microaggregation for preserving location privacy in the context of
participatory sensing.

III. SYSTEM MODEL AND OPEN PROBLEMS

In this section, we first present the system model and assumptions.
Next, we present an example application, which demonstrates the
limitations of using tessellation in participatory sensing.

A. System Model and Assumptions
We leverage the AnonySense architecture [10] to provide partic-

ipatory sensing infrastructure support, but take a different approach
to address the issues of potential leakage of private location infor-
mation. In particular, we focus on the privacy protection feature
of AnonySense. Recall that, AnonySense employs tessellation for
implementing location privacy. Tessellation requires theexistence of
an additionalMap Server (MS), which is responsible for generating
the tessellation map (i.e. dividing the entire geographical region in
to tiles). Users query the MS to obtain the tessellation map,which
allows them to determine the appropriate tile location thatshould be
reported with the sensor readings.

In our implementation, a similar system entity is needed. However,
in our case this entity is also able to execute various microaggregation
algorithms (explained in Section IV) and is referred to as the
Anonymization Server (AS). The sequence of operations executed
when a user contributes data is as follows: a user collects data
demanded by an application with its mobile device and submits
reports when it has network connectivity (via 3G/WiFi). Theuser
consults the AS prior to submitting the report. The AS runs the
appropriate microaggregation algorithm and provides the user with
an anonymized location, which is used to annotate the report. The
application then processes and interprets the received data using the
anonymized location.

We make the following assumptions: 1) the AS is independently
owned by a third-praty and is isolated from attacks, 2) the ASdoes
not collude with applications and other system entities, and 3) users
periodically upload their whereabouts to the AS (or when they submit
queries) and trust the server with the confidentiality of their locations.
Note that, in practice it is unrealistic to demand that userstrust a
single system entity with their accurate locations. Hence,we propose
a scheme to relax this assumption in Section IV-D.

B. Motivating Application: PetrolWatch
We now present an illustrative example to demonstrate the draw-

backs of using tessellation for location privacy in participatory
sensing. In our earlier work [8], we have proposed a novel application,
PetrolWatch, which allows users to automatically collect,contribute
and share petrol price information using camera phones. Users mount
their camera-enabled mobile phones on the car dashboard. Through



the use of GPS and GIS, our system knows when the vehicle is
approaching a petrol station and triggers the camera automatically.
Pictures of the petrol price billboard are processed by a computer
vision algorithm to extract the fuel price. The prices are annotated
with the location coordinates and time and uploaded to the application
server. Users can query the server to locate the cheapest petrol station
in their vicinity.
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Fig. 1. Example Application: PetrolWatch

Fig. 1 illustrates a simple example of PetrolWatch assumingthat
tessellation is employed to provide location privacy. There are six
users spread across a region of size 9km× 7km (for simplicity we as-
sume a 2D coordinate system). This figure shows the locationsof the
users at a particular time instant. Assume that there is a petrol station
co-located with the current location of each user (i.e. 6 petrol stations
in total). Now assume that user 2, is in the process of contributing
petrol price information to the application server. A queryis first sent
from the user to the AS requesting for the anonymized location that
should be reported. Given the distribution of users, the AS constructs
two tiles as shown in Fig. 1 (following the guidelines of tessellation
in [11]) assuming the privacy requirement ofk = 3 and advises the
user of its anonymized location, i.e.tile 1. Consequently, the user
annotates the report withtile 1 instead of the actual location(4.5, 5).
When the report is submitted to the application, it needs to associate
the received report with one of the three petrol stations located in tile
1. However, without additional information, the application is unable
to determine that the petrol price included in the report corresponds
to the petrol station co-located with user 2. This simple example
clearly illustrates the intrinsic limitation of tessellation and serves as
the primary motivation for our proposed schemes.

It should be noted that Fig. 1 shows one possible arrangement
for clustering the users. It is likely that there could be other viable
alternatives, which may potentially have a different impact on the
performance of tessellation. A set of general instructionsfor tile
construction are provided in [11], but there is no discussion on the
impact of varying the tile configuration.

IV. PRIVACY PROTECTION APPROACHES

In this section, we first propose a simple modification to tessel-
lation and demonstrate how it overcomes the limitations identified
in Section III. Next, we present our proposed schemes,k-anonymity
with V-MDAV and hybrid V-MDAV. Lastly, Gaussian input pertur-
bation is proposed to further improve location privacy.

A. Tessellation with Tile center Reporting
From the example in Section III-B, it is evident that the problem

with tessellation is that it reports an entire region as the anonymized
location, instead of providing the location coordinates ofa point. In
this regard, a natural modification to tessellation involves representing
each tile by the location coordinates of the centroid of the tile. Hence,

we propose a modification, wherein, user reports are annotated with
the location coordinates of the center of the tile in which the user is
currently located. This requires a simple modification to the AS, such
that it includes the coordinates of each tile center with thetessellation
map. We illustrate the operation of this modified scheme by using
the same example as in Section III-B. With the above modification in
place, users 1, 2, and 3 would report their positions as (3, 3.5), which
is the centre of tile 1. Similarly, users 4, 5 and 6 would represent
their locations as (7.25, 3.25), the centre of tile 2. This modification
allows the application to better interpret the data received in the user
reports. For example, comparing the Euclidean distances between the
anonymized location reported by user 2 and those of the six candidate
petrol stations reveals that user 2 is most likely referringto the petrol
station in its vicinity.

We note here that computing Euclidean distances may not be
the best strategy for the application to analyse the data received.
Nonetheless, it adequately demonstrates one of the advantages of
this simple modification. In the rest of this paper, we will refer to
this modified version of tessellation as MT.

B. Location Anonymization with Microaggregation

Even though the above modification to tessellation works fine
in most situations, it should be noted that depending on the user
density, some tiles could be very large. In such cases, reporting the
center of the tile may actually cause the application to incorrectly
interpret the location contained in the report (this point is further
elaborated in the evaluations in Section V). As an alternative, we
propose the use of microaggregation for protecting location privacy
in participatory sensing. In particular, we adopt the Variable-size
Maximum Distance to Average Vector (V-MDAV) heuristic proposed
in [16]. The V-MDAV algorithm is recursive and involves two
principal successive operations: (i) Equivalence Class (EC) generation
and (ii) EC extension. The former step clusters users who exhibit
high geographic similarities, which is determined by theirrelative
Euclidean distances, in groups ofk. This ensures thatk-anonymity
is enforced. The latter step enables the algorithm to adapt to the user
distribution by allowing geographically close users to be merged with
an existing EC, despite the fact that each EC already conforms with
the k-anonymity requirement.

We illustrate the operation of this heuristic using the sameexample
depicted in Fig. 1. The AS generates two ECs: one encircles users 1,
2, and 5 and the other includes users 3, 4, and 6. In this approach,
user 2 represents its location as the mean of the EC to which
it belongs, i.e. (4.33, 5.17). This not only fulfils thek-anonymity
privacy requirement (the size of each EC is 3) but also ensures that
the anonymized location is in the point coordinate format.

C. Location Anonymization with Hybrid Microaggregation

We now present 2 simple examples to demonstrate that both MT
and V-MDAV have their advantages in certain mutually exclusive
situations. This observation motivates us to propose a novel technique
that combines the best of both these methods.

Let us first consider the same example in Fig. 1. Assume that
user 6 is in the process of uploading a petrol price report to the
application server. We assume that the server has some background
knowledge regarding the report, i.e., it knows that this report would
not have referred to the petrol station in the immediate vicinity of
user 4. This is a valid assumption because reports can often be filtered
by other attributes, for example, the brand of the petrol station. The
location data carried in the report can either be (7.25, 3.25) if MT is
employed or (6.33, 1.33) in the case of V-MDAV. Assume that the
application server compares the Euclidean distances of all6 petrol
stations to the location contained in the report and concludes that
the report corresponds to the petrol station, which is closest to the
reported location. In the case of MT, the server would incorrectly
interpret that this report originated from the petrol station co-located
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Fig. 2. An example demonstrating the benefit of Hybrid V-MDAV

with user 5. However, in the case of V-MDAV, a correct association
is made with the station located in the vicinity of user 6.

Let us now consider a different example as illustrated in Fig. 2.
Let us first focus on the MT algorithm. Observe that the cell in
which users 2, 3, and 4 are located satisfiesk = 3. Hence, this cell
forms a tile on its own. On the other hand, the cells in which the
remaining users are located need to be merged together according to
the rules of tessellation. In a similar vein, with V-MDAV, users 1,
2, and 3 constitute one EC, while the remaining users are grouped
into another EC. Now, assume that user 4 submits its report. The
user will anonymize his location using either (4, 1.75) in the case of
MT or (7.17, 5.5) in the case of V-MDAV. Using Euclidean distances
for interpretation as in the previous example, the application server
correctly associates the report submitted by user 4 with thepetrol
station located near user 4 for MT. However, V-MDAV results in an
incorrect association with the petrol station near user 5.

The following observations can be made based on the above ex-
amples: 1) V-MDAV enables the application to make better decisions
when the user distribution across different areas is consistent, as in
Fig. 1 2) On the contrary, in areas with dense distribution ofusers, as
in Fig. 2, MT performs better. Given that the two schemes havetheir
advantages in contrasting situations, we propose, Hybrid V-MDAV,
which attempts to combine the best of both these methods. Thehybrid
scheme adaptively makes a decision on whether to use MT or V-
MDAV. The operation of Hybrid V-MDAV is quite simple. If the
user is in a cell, which can form a tile by itself, i.e., if the number
of users within the cell exceedsk, then MT is used. Otherwise, the
algorithm switches to V-MDAV. If Hybrid V-MDAV is applied to
the example in Fig. 2, then users 2, 3 and 4 would employ the MT
algorithm, whereas the other users would use V-MDAV. This would
overcome the incorrect association explained earlier.

D. Gaussian Input Perturbation
All of the aforementioned methods assume the existence of a

trusted third-party server, which is aware of the true locations of
the participating users (recall that the user queries the ASand
provides its current location, each time he needs to upload areport).
Clearly, this represents a single point of failure, since, if this server is
compromised, the users’ privacy is at risk. Further, users may not be
comfortable with the idea of a server keeping track of their locations.
In fact, this may be a turn off for many users and hence, they may be
reluctant to participate. It is therefore, imperative to devise a strategy
that does away with this requirement, without incurring substantial
performance degradation.

We propose a simple perturbation scheme that artificially distorts
a user’s location prior to updating the AS. The artificial distortion
is induced by adding a random Gaussian noise with meanµ and
standard deviationσ to the X and Y coordinates of a user’s location
(we assume that the GPS coordinates are converted to a planar
2D coordinate system). In other words, if the current location

of a user is (x, y), then the user reports its perturbed location
[x+ p×N(µx, σx), y + p×N(µy , σy)] to the AS. The perturbation
parameters, i.e.,µ and σ, can be estimated from historical AP
visitation records.

Assume for now that we know the number of users in each of the
cells in Fig. 3 (we will explain how the details of Fig. 3 are obtained
in Section V). Based on this information, we can place the users at
randomly selected locations within the cell. The mean and standard
deviation of these random coordinates over all cells are used asµ
and σ estimates, respectively. Since the resultingσ is of the same
order of magnitude as users’ coordinates, a factorp is introduced
as a scaling variable so that the perturbed value does not deviate
significantly from a user’s true location.p usually takes on a small
fractional value (see evaluations in Section V).

V. EVALUATIONS

In this Section, we present results from a simulation study that
compares the performance of the three algorithms: MT, V-MDAV
and hybid V-MDAV, discussed in Section IV. The simulations were
conducted using real-world traces.

A. Goals, Methodology and Metrics
In our evaluations. we use the Dartmouth College campus traces

that are publicly available from [18]. The traces contain log entries
collected from Wi-Fi APs deployed on the Dartmouth College cam-
pus. Similar traces were used in the evaluations presented in [11]. In
particular, the “syslog/05 06” trace under “syslog” traceset and “aplo-
cations” trace under “movement” traceset are used to deduce user
distributions and to plot Voronoi polygons, respectively1. Each record
in the “syslog/05 06” trace represents an association, re-association
or disassociation of a user device with an AP. The “aplocations”
trace contains a list of APs deployed across the Dartmouth campus
and provides information about their(x, y) coordinates as well as
the floors on which they are located.

We consider a scenario wherein, a participatory sensing application
similar to PetrolWatch (discussed in Section III-B) has been deployed.
We assume that the application server generates tasks that require
users to collect certain contextual information from some Points
of Interest (PoI) in their immediate vicinity. Users who agree to
participate in the application accept the tasks, collect sensor data
and upload the sensor report to the server. Prior to generating the
sensor report, the user polls the AS, which provides the userwith the
anonymized location, depending on the location privacy algorithm
employed (MT, V-MDAV or Hybrid V-MDAV). The application
server is aware of the true locations of all PoI. When the server
receives the sensor report, it computes the Euclidean distance of each
PoI from the reported location. The report is associated with the PoI
that has the smallest distance.

For implementing MT, it is necessary to generate a tessellation
map of the entire geographical region, which is the university campus
in our scenario. In the following, we describe how this map was
generated. There are623 APs listed in the “aplocations” trace.
In order to simplify the analysis, we perform planarizationand
condensation similar to [11]. Specifically, the floor numbers of APs
are ignored and all APs are assumed to be located on floor 0
(planarization). Furthermore, APs located in the same building are
grouped together and collectively represented by their mean (x, y)
co-ordinates (condensation). Fig. 3 depicts the resulting124 APs and
their associated Voronoi polygons. We also normalize the locations
of the APs so that they are confined to a region of unit square area.
For generation of the user distribution per cell, we have considered
records between 12pm and 6pm over a one week period from the 1st

1There are three separate files available for download under the “sys-
log/05 06” trace; each one of them corresponds to association recordsfrom
Cisco APs, Aruba APs, and the combination of Cisco and Aruba APs. For
simplicity, we only considered the traces from the Cisco AP file.



of September, 2005 to the 7th of September, 2005. The number of
user associations per cell is a threshold value representing the number
of users that can be statistically expected to be present in acell for
95% of the specified time intervals. In our evaluations, thisinterval
is assumed to be 30 minutes. There are 153 users whose distributions
are marked by asterisks in Fig. 3. The coordinates of the users in a
cell are randomly generated, once the threshold value for that cell is
known. The cells are grouped to form tiles such thatk-anonymity is
attained. We usek = 10 in all our simulations. The tiles are shown
as colored regions in Fig. 3
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Fig. 3. Tessellation Map of the Simulation Scenario

Recall that, the users annotate the sensor reports with their
anonymized locations. When the application server receives a report,
it must determine the PoI that corresponds to the report. We define a
metric calledPositive Identification Percentage, which measures the
accuracy of establishing this association. This metric is defined as the
ratio of the total number of positive associations to the total number of
reports submitted. All the privacy-preserving algorithmsbeing evalu-
ated transform a user’s true location to an anonymized version. Hence,
it is of interest to determine how much information is lost inthe
transformation process. We quantify this loss of information by using
the Information Loss (IL) metric, which has been commonly used to
assess the performance of various microaggregation algorithms [13],
[16]. IL is formally defined as follows,

IL =
SSE

SST
, (1)

where

SSE =

g∑

j=1

n∑

i=1

(xi − xj)
2
, (2)

and
SST =

g∑

j=1

n∑

i=1

(xi − x)2, (3)

where xi denotes thei-th record in groupj with each of theg
groups containingn records.xj andx represent the group mean and
the mean of the entire dataset, respectively. SSE and SST represent
the sum of squared errors with respect to the group mean and the
mean of the entire dataset, respectively. Note that, SSE measures
the distances between the actual locations of the users and their
anonymized locations.

B. Simulation Results
We conduct a set of simulations to evaluate the positive identifi-

cation percentage and information loss achieved by MT, V-MDAV
and Hybrid V-MDAV. We assume that the PoI are co-located with
the users. We assume that a subset of the entire user population
submits reports to the application server. We vary the percentage of
users reporting data from20% to 100% in increments of20%. The

server associates each report with a PoI using the shortest Euclidean
distance. Figure. 4 represents the average value of both metrics (IL
and positive identification percentage).

One can readily observe that the performance of all three algo-
rithms do no vary significantly with an increase in the numberof
users contributing data. Hybrid V-MDAV achieves a 40% reduction
in IL as compared to MT. The performance of the hybrid scheme
is marginally better than that of V-MDAV. We explain the inferior
performance of MT by using tile3 in Fig. 3 as an illustrative example.
Observe that the center of tile3 denoted by a circle is quite distant
from the actual locations of the users. Recall that, in MT, users
report the center of the tile as their anonymized location. On the
contrary, with V-MDAV and hybrid V-MDAV the same set of users
would report a much closer coordinate, which is representedas a
square, as their anonymized location. As a result, the SSE islarger
with MT as compared to the other two algorithms. Consequently,
MT achieves higher IL. One might argue that the performance gap
could be improved by shrinking the size of tile3 such that it only
includes those cells in which users are found. This is a validargument.
However, one must remember the following: 1) the tiles in Fig. 3 were
constructed to fit all user distributions, which also account for the
Gaussian perturbation extension and 2) to the best of our knowledge,
there do not yet exist any real-time algorithms that produceoptimal
tessellation maps, which can adapt to the user distributions.
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Fig. 4. Percentage of Positive Identifications and IL as a function of the
percentage of users uploading reports.

Fig. 4 also suggests that there exists an inverse relationship
between the two metrics, IL and percentage of positive identifications.
For example, MT, which has the highest IL results in the lowest
positive identification percentage. Similarly, hybrid V-MDAV, which
achieves the highest positive identification percentage has the lowest
IL. Observe that, hybrid V-MDAV improves the positive identifica-
tions made by the server by more than 100%, in comparison with
MT. The significant improvement achieved by hybrid V-MDAV in
comparison with V-MDAV (about 50%) can be explained by an
illustrative example. Consider cell15, which accommodates20 users.
According to the rules of hybrid V-MDAV, these20 users replace their
locations with the center of the cell. Since, the users are densely
concentrated near the centre of the cell, the application server can
interpret the true locations with high accuracy. On the other hand,
V-MDAV separates these users by grouping some of them with those
in cell 41 in an attempt to lower IL while keeping the size of EC in
check, i.e., between10 and 19. As a result, the reported location
is somewhere in between the cells, which is not close to actual
users. Hence, the application server tends to make wrong associations,
which is reflected in the lower positive identification rate.It should
be noted that, even the best performing hybrid V-MDAV schemeonly
achieves a moderate level of positive identifications. Thisis because
the application server employs the simplistic Euclidean estimation
technique for making the PoI associations. We intend to investigate
alternate techniques in our future work.



C. Impact of Gaussian Input Perturbation
Next, we study the impact of Gaussian input perturbation on the

performance of the three algorithms. Recall, that in this enhancement,
the users do not report their true locations to the AS. Instead, a
random Gaussian noise is added to the location reported to the AS.
We repeat the previous set of simulations for different values of p,
which range from0.02 to 0.2 in increments of0.02. Recall, that
p is the scaling factor used for perturbing the true locationsof the
users (see Section IV-D). The larger the value ofp, the greater is the
deviation from the true location.

Figs. 5 and 6 illustrate the impact of Gaussian input perturbation on
the three algorithms when 40% and 80% of users report data. Since,
the results exhibit some fluctuations, we fit them with polynomials of
degree 1 to reveal the general trends. As in the previous simulations,
the percentage of users submitting reports has negligible impact
on the performance. Furthermore, the additional input perturbation
degrades the performance of all three algorithms. The levelof
performance degradation is more substantial for larger values ofp.
These results are expected since, the users are increasingly distorting
their locations that are reported to the AS. Fig. 6 reveals that the
performance gain of hybrid V-MDAV gradually diminishes asp
increases. Increasing the value ofp implies that the user distribu-
tion is more sparse, i.e., fewer cells are sufficient to provide the
required level of anonymity on their own. Therefore, the V-MDAV
component of the hybrid algorithm tends to dominate. As a result,
the performance of these two schemes converge. The results depicted
in Fig. 6 also indicate that it is possible to guarantee satisfactory
performance, without requiring the users to reveal their true locations
to the third-party AS. As long as the perturbation parameters are
adequately chosen, the performance degradation can be limited. For
example, we only observe a 5% loss whenp = 0.06 with hybrid
V-MDAV. This achieves a good balance between user privacy and
system performance.
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Fig. 5. Impact of Gaussian Perturbation on IL.

VI. CONCLUSION

In this paper, we have proposed hybrid V-MDAV for preserving
location privacy in participatory sensing. Hybrid V-MDAV combines
the positive aspects of tessellation and microaggregation, two popular
privacy-preserving concepts. Our evaluations based on real-world
data traces show that hybrid V-MDAV improves the percentageof
positive identifications made by the application server by up to 100%
and decreases the information loss by about 40%. Furthermore, our
studies show that perturbing user locations with random Gaussian
noise can provide users with an extra layer of protection with a
minimal impact on the performance.
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