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Abstract—The ubiquity of mobile devices has brought forth
the concept of participatory sensing whereby ordinary citizens
can now contribute and share information from the urban envi
ronment. However, such applications introduce a key reseah
challenge: preserving the location privacy of the individwals
contributing data. In this paper, we propose the use ofmicroag-
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user may reveal his/her location at a particular time. Furtiore,

it may be possible to link multiple reports from the same ueed
determine certain private information such as the locatibhis/her
office and residence. Simple techniques such as using psgudo
or anonymizing the reports may not always work. For exaripkmn
adversary has priori knowledge of the user's movement patterns,

gregation a concept used for protecting privacy in databases, as it is fairly trivial to deanonymize the reports. Note thahrgicipatory

a solution to this problem. We compare microaggregation wib
tessellation, the current state-of-the-art, and demonstte that
each technique has its advantage in certain mutually exclixse
situations. We propose a hybrid scheme calledilybrid Variable-
Size Maximum Distance to Average Vector (V-MDAVWwhich

sensing relies on the altruistic participation of users saccessful
operation. It is thus imperative that users are assuredthbatprivacy
will not be violated to encourage sufficient participation.

In recent years, a few methods have been proposed for sgcurin
location privacy in the context of participatory sensingrielius et

combines the positive aspects of both these techniques. Oural. have proposed AnonySense [10], a privacy-preserviokijtacture

evaluations based on real-world data traces show that hybd V-
MDAV improves the percentage of positive identifications mde

for realizing participatory sensing applications. Thegistem uses the
concept oftessellation [11] for protection the location privacy of

by the application server by up to 100% and decreases the contributing users. In tessellation, a point coordinatgdseralized

information loss by about 40%. Furthermore, our studies shav
that perturbing user locations with random Gaussian noise an
provide users with an extra layer of protection with very little
impact on the system performance.

I. INTRODUCTION

Over the past decade, we have witnessed an explosive grdvvtkmga

mobile devices that are capable of capturing, processimd,ti@ns-
mitting high fidelity multimedia content. Furthermore, thdvances
in positioning technologies and VLSI fabrication processaake
geo-localization an affordable feature in mobile devicHsese have
motivated the research community to explore an alternatdresing
paradigm referred to gmarticipatory sensing [2] or urban sensing [1],
that exploits the unique characteristics of these gedligeat, sensor-
equipped and computationally capable mobile devices. & bgstems
have led to the emergence of seveciizen sensing applications,
wherein, the mobile phones carried by ordinary citizengecbland
share information about the urban landscape.

CarTel [3] is a system that uses mobile sensors mounted
vehicles to collect information about traffic, quality of evute Wi-Fi
Access Points (APs), and potholes on the road. A similaesystas
been proposed in [4], which exploits sensor-rich smartpeararried
by passengers for monitoring road and traffic conditionshe®t
applications of participatory sensing include, collegtinformation
about urban air pollution [5], cyclist experience [6] anetdj7]. In
our earlier research, we have applied the concept of paatiaiy
sensing in sharing consumer pricing information in offlinarkets.
We have designed two systeni&trol\Watch [8] and MobiShop [9],

which use mobile camera phones to collect, process andedeli

pricing information from petrol stations and brick and naorshops
to potential buyers.

In a typical participatory sensing application, the segsdata
uploaded by the users is invariably tagged with the locafioio-

tained from the embedded GPS in the phone or using WiFi based

localization) and time when the reading was recorded, sthese
provide important contextual information. This can haveicses
implications on user privacy, since, the sensor reportaged by the

to a plane in space, which is referred to ala The sensor reports
uploaded by users contain the tile id rather than the alsddaation.
This genearlization is guided by the principle loBnonymity [12],
which ensures that at leaktusers are located within the same tile.
Hence, it is impossible for an adversary to distinguish leetwthek
users. In this paper, we argue that the generalization appradopted
tessellation may not be particularly suited to certaipliaptions
t require fine-grained location information. For exagnglonsider
an application that collects traffic information from thelsile phones
carried by vehicular passengers [4]. If tessellation is leygul, a
traffic report generated by a user at one particular intérsealong
a road will be annotated with the tile id (which encompass&sge
region), rather than the exact location of the intersectitthen this
report is received by the application server, the aggreghkteation
information represented by the tile is of little use, sinbe server
cannot ascertain which road is being referred to in the tepor

We suggest a simple modification to tessellation to overctmee
aforementioned problem. Next, we propose to adoptroaggre-
ation, a branch of statistical disclosure control techniques],[13

], for preserving location privacy. To protect the pdyaof
respondents, microaggregation creates a set of equielelasses
(ECs) such that, records are collectively represented byntlean
of the respective classes. These ECs can be generated based o
wide range of criteria, for example, minimum informatiorsdo The
ECS can also be made to conform witkanonymity, such that each
EC has at leask members. Since, the mean is a numerical value,
microaggregation is a natural choice for conserving the erical
properties of continuous variables [14]. Furthermoregsitocation
is often perceived as continuous data in most popular pogit

Yechnologies, it is therefore reasonable to expect that fidelity

and higher usability of data can be achieved with microaggien.
This paper makes the following specific contributions:

« We demonstrate the limitations of tessellation in prowgdin
contextual support for participatory sensing applicatio/e
then show how to eliminate these drawbacks by making modi-
fications to tessellation.

« We propose an alternative approach, microaggregationdto a



dress location privacy. We compare microaggregation with oV-MDAV [16], was later proposed to ameliorate this shortéom
modified version of tessellation and demonstrate that ea@he rightmost column in Table | shows the result of applying V
scheme has certain advantages in mutually exclusive isingat MDAV with the six location coordinates as inputs. The altfuriic
To combine the strengths of these two schemes, we proposdeacription of V-MDAV is presented in Section V.
hybrid approach called, hybrid M-DAV. Domingo-Ferrer proposed a novel protocol, which leveragés
« We use real-world user traces to evaluate the performanc@aggregation to address location privacy in Locatiosesha Ser-
of these privacy-enabling methods. We show that hybrid Mdces (LBS) [17]. Their solution assumes a peer-to-peetegsysA
DAV achieves twice the percentage of positive identifiaagio user distorts his own location by artificially adding Gaassvariable
as compared to the other schemes and a 40% improvemenbfrzero mean and standard deviatierio the latitude and longitude.
information loss. The distorted location coordinates are broadcast to ne@ighbours
« We also propose an enhancement, which perturbs the u§eg. peers) requesting for their Gaussian-perturbedilmcaeadings.
locations with random Gaussian noise, as an extra level dpon receiving the responses from its peers, the user sdleetl
protection. We demonstrate this this extension has vetig lit other users such that they collectively span a region digiry the
impact on the system performance. user's privacy requirement. The mean of the group formedHhay t
The rest of the paper is organised as follows. In Section Il w¢ser and itsk — 1 closest neighbours is then used in all messages
present a brief overview of the two central concepts useligpiaper: - Sent to the LBS server. However, this scheme cannot be yeadil
(i) tessellation and (i) microaggregation. Section llitlines the adopted in participatory sensing, since these systemeaifyiutilize
system model and assumptions. We introduce the proposeatpri @ client-server architecture. In this paper, we explore dke of
preserving techniques in Section IV. Section V presentslisefrom Microaggregation for preserving location privacy in thenteat of

our evaluations. Finally, Section VI concludes the paper. participatory sensing.
1. RELATED WORK [1l. SYSTEM MODEL AND OPEN PROBLEMS
Preserving the privacy of users’ locations in participatsensing In this section, we first present the system model and assomspt

is similar to safeguarding respondents’ privacy in databasvhich Next, we present an example application, which demonstrite

contain continuous-valued fields. Therefore, most of theepts and  [imitations of using tessellation in participatory semgin

methods related to database disclosure control can be taditen

applied to participatory sensing. In particular, the cgcef k- A, System Model and Assumptions

anonymity .[12]' IS \_N|dely used_for preserving privacy in alaases We leverage the AnonySense architecture [10] to providéigpar

as}zvell g.s |ntpz|irt|0|patorydsgnsmg SYIStethH . based ipatory sensing infrastructure support, but take a diffempproach
_Rapadia €t al. proposed/aanonymity lechnique based on geénéry, ,yqgress the issues of potential leakage of private lotatifor-

alization in [11], referred to as tessellation. Tessalatpartitions a mation. In particular, we focus on the privacy protectiomtéee

geographic area into cells. In their implementation, theslks corre- of Anon .

. — ySense. Recall that, AnonySense employs tesselldtr
spond o .the.Voron0| polygons ponstructed .arognd WI-Fi A-HE implementing location privacy. Tessellation requires ¢xéstence of
user distribution per cell is obtained from historical AR@sation an additionalMap Server (MS), which is responsible for generating
r?corlcljs andhlst#stet(:]to C“lletet.r cells mées Aft'le IS an arr:l?lga;r;atlr?n the tessellation map (i.e. dividing the entire geograghiegion in
or cells such that tne collective numpber of USers per tiece € to tiles). Users query the MS to obtain the tessellation mepch

p(lt\;]acyhrek?U|remenk. In oth:e;hwpr?s, a;.tlle |S_|t_hg|l0\:vef]t granulantyauows them to determine the appropriate tile location #faduld be
with which users represent their locations. Table | showsrapte reported with the sensor readings.

of a 3-anonymous location database based on tessellatinthef In our implementation, a similar system entity is neededveier,

details about the tessellation process are provided iricgevt in our case this entity is also able to execute various miggregation
algorithms (explained in Section 1V) and is referred to as th

gser ID '('f‘;atgog) I'Ie D 8""35; gi?? Anonymization Server (AS). The sequence of operations executed

> (4:5’ 4:0) 1 (4:33’ 5:17) when a user contributes data is as follows: a user collecta da

3 (4.5: 10)[ 1 (6.33: 1.33) demanded by.an application with its .mobl!e dewcg .and subhmit

a 65.20) 2 (6.33.1.33) reports when it has_ network connectivity (via 3G/WiFi). Thser

5 (7.0,55)] 2 (433, 5.17) consults. the AS prior to §ubm|ttlng the report. The AS rune th

6 (80,1.0)| 2 (6.33, 1.33) appropriate microaggregation algorithm and provides ther with
TABLE | an anonymized location, which is used to annotate the reptwe

application then processes and interprets the receivedusittg the
anonymized location.

Microaggregation [13] is an alternative approach, that been We make the following assumptions: 1) the AS is indepenglentl
used for implementing database disclosure control. Miggoegation ©0Wned by a third-praty and is isolated from attacks, 2) thede8s
does not generalize nor suppress the values of an attrifute 0not_co!lude with appllc_atlons and other system entitiesl ahuse_rs
database record. Instead, it replaces the values with thae miethe Periodically upload their whereabouts to the AS (or whely tgbmit
EC in which the record is found. An EC is a grouping of usershsudlueries) an_d trust the server with t_he_ confidentiality ofrttezations.
that the class members are as homogeneous (i.e. similagsaibfe. Note that, in practice it is unrealistic to demand that udeust a
The member similarities are often quantified by the Infoiomat single system entity with their accurate locations. Hemezpropose
Loss (IL) metric, which effectively measures the differeadetween @ Scheme to relax this assumption in Section IV-D.
records and their representations, i.e., mean of ECs. We thig L S
complete definition of IL and its implications in Section Vhdre are B- Motivating Application: PetrolWatch
many algorithms proposed to generate ECs with maximum mvithi \We now present an illustrative example to demonstrate the/-dr
class homogeneity [13], [15], [16]. Maximum Distance to fage backs of using tessellation for location privacy in papatory
Vector (MDAV) [13] is widely recognized as one of the most@#nt sensing. In our earlier work [8], we have proposed a noveligton,
heuristics to date. However, MDAV cannot be readily adapied PetrolWatch, which allows users to automatically collecmntribute
the distribution of users in the target area, because it isxedfi and share petrol price information using camera phonessuseunt
class size algorithm. The variable class size variant of MDJalled their camera-enabled mobile phones on the car dashboardugdth

ANONYMIZED LOCATION DATABASE



the use of GPS and GIS, our system knows when the vehiclewie propose a modification, wherein, user reports are aretbtaith

approaching a petrol station and triggers the camera aticatia
Pictures of the petrol price billboard are processed by apcoen
vision algorithm to extract the fuel price. The prices araaated
with the location coordinates and time and uploaded to tipdcgtion
server. Users can query the server to locate the cheapest station
in their vicinity.
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Fig. 1. Example Application: PetrolWatch

Fig. 1 illustrates a simple example of PetrolWatch assuntiirag
tessellation is employed to provide location privacy. Ehare six
users spread across a region of size 9kmkm (for simplicity we as-
sume a 2D coordinate system). This figure shows the locatibtise
users at a particular time instant. Assume that there isralpsation
co-located with the current location of each user (i.e. 8gbstations
in total). Now assume that user 2, is in the process of cartirip
petrol price information to the application server. A quaryirst sent
from the user to the AS requesting for the anonymized lonatiat
should be reported. Given the distribution of users, the ai&tructs
two tiles as shown in Fig. 1 (following the guidelines of t&ltation

the location coordinates of the center of the tile in which tser is
currently located. This requires a simple modification #® &8, such
that it includes the coordinates of each tile center withtéssellation
map. We illustrate the operation of this modified scheme biggus
the same example as in Section IlI-B. With the above modiioan
place, users 1, 2, and 3 would report their positions as 8, &hich
is the centre of tile 1. Similarly, users 4, 5 and 6 would repre
their locations as (7.25, 3.25), the centre of tile 2. Thidification
allows the application to better interpret the data reakivethe user
reports. For example, comparing the Euclidean distancsgeka the
anonymized location reported by user 2 and those of the sididate
petrol stations reveals that user 2 is most likely refertm¢he petrol
station in its vicinity.

We note here that computing Euclidean distances may not be
the best strategy for the application to analyse the dateived.
Nonetheless, it adequately demonstrates one of the adwentaf
this simple modification. In the rest of this paper, we wilfereto
this modified version of tessellation as MT.

B. Location Anonymization with Microaggregation

Even though the above modification to tessellation works fine
in most situations, it should be noted that depending on #er u
density, some tiles could be very large. In such cases, tingathe
center of the tile may actually cause the application to riremily
interpret the location contained in the report (this pomtfurther
elaborated in the evaluations in Section V). As an alteveative
propose the use of microaggregation for protecting locagigvacy
in participatory sensing. In particular, we adopt the Vblgasize
Maximum Distance to Average Vector (V-MDAV) heuristic peged
in [16]. The V-MDAV algorithm is recursive and involves two
principal successive operations: (i) Equivalence Cla&) (ieneration
and (ii) EC extension. The former step clusters users whabixh
high geographic similarities, which is determined by thedtative
Euclidean distances, in groups bf This ensures that-anonymity
is enforced. The latter step enables the algorithm to adefbtet user

in [11]) assuming the privacy requirement bf= 3 and advises the distribution by allowing geographically close users to berged with
user of its anonymized location, i.éle 1. Consequently, the user an existing EC, despite the fact that each EC already corsfavith

annotates the report witle 1 instead of the actual locatio@.5, 5).
When the report is submitted to the application, it needsstmeiate
the received report with one of the three petrol stationatkxt in tile
1. However, without additional information, the applicatiis unable
to determine that the petrol price included in the reportesponds
to the petrol station co-located with user 2. This simplenepia

the k-anonymity requirement.

We illustrate the operation of this heuristic using the saxample
depicted in Fig. 1. The AS generates two ECs: one encircless us
2, and 5 and the other includes users 3, 4, and 6. In this agiproa
user 2 represents its location as the mean of the EC to which
it belongs, i.e. (4.33, 5.17). This not only fulfils theanonymity

clearly illustrates the intrinsic limitation of tesseltat and serves as privacy requirement (the size of each EC is 3) but also esstiat

the primary motivation for our proposed schemes.

the anonymized location is in the point coordinate format.

It should be noted that Fig. 1 shows one possible arrangement

for clustering the users. It is likely that there could beesthiable
alternatives, which may potentially have a different intpan the
performance of tessellation. A set of general instructifmstile
construction are provided in [11], but there is no discusgia the
impact of varying the tile configuration.

IV. PRIVACY PROTECTIONAPPROACHES

C. Location Anonymization with Hybrid Microaggregation

We now present 2 simple examples to demonstrate that both MT
and V-MDAV have their advantages in certain mutually exivleis
situations. This observation motivates us to propose alhegknique
that combines the best of both these methods.

Let us first consider the same example in Fig. 1. Assume that
user 6 is in the process of uploading a petrol price reporth®o t

In this section, we first propose a simple modification to ékss application server. We assume that the server has some rbackiy

lation and demonstrate how it overcomes the limitationsitified
in Section Ill. Next, we present our proposed scherkeaonymity
with V-MDAV and hybrid V-MDAV. Lastly, Gaussian input pentu
bation is proposed to further improve location privacy.

A. Tessellation with Tile center Reporting

From the example in Section IlI-B, it is evident that the peob
with tessellation is that it reports an entire region as thengmized
location, instead of providing the location coordinatesagfoint. In

knowledge regarding the report, i.e., it knows that thisorepvould
not have referred to the petrol station in the immediatenitigiof
user 4. This is a valid assumption because reports can oftéhdred
by other attributes, for example, the brand of the petrdisia The
location data carried in the report can either be (7.25,)3f29T is
employed or (6.33, 1.33) in the case of V-MDAV. Assume that th
application server compares the Euclidean distances d aktrol
stations to the location contained in the report and corduthat
the report corresponds to the petrol station, which is sliose the

this regard, a natural modification to tessellation invelk&presenting reported location. In the case of MT, the server would inecty

each tile by the location coordinates of the centroid of ilee Hence,

interpret that this report originated from the petrol statco-located



of a user is(z,y), then the user reports its perturbed location
[+ P X N(pte,02),y+Px N(uy,oy)] to the AS. The perturbation
parameters, i.e.u and o, can be estimated from historical AP
visitation records.

Assume for now that we know the number of users in each of the
cells in Fig. 3 (we will explain how the details of Fig. 3 aretained
in Section V). Based on this information, we can place theuse
randomly selected locations within the cell. The mean aaddzrd
deviation of these random coordinates over all cells arel @S
and o estimates, respectively. Since the resultings of the same
order of magnitude as users’ coordinates, a fagtas introduced
L as a scaling variable so that the perturbed value does naatdev
significantly from a user’s true locatiop. usually takes on a small
fractional value (see evaluations in Section V).
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Fig. 2.  An example demonstrating the benefit of Hybrid V-MDAV V. EVALUATIONS

In this Section, we present results from a simulation stueht t
compares the performance of the three algorithms: MT, V-MDA
Let us now consider a different example as illustrated in Rig and hybid V-MDAV, discussed in Section IV. The simulationsres

Let us first focus on the MT algorithm. Observe that the cell ifionducted using real-world traces.
which users 2, 3, and 4 are located satiskes 3. Hence, this cell ;
forms a tile on its own. On the other hand, the cells in which thA' Goals, Methgdology and Metrics
remaining users are located need to be merged togetherdéug oo In our evaluations. we use the Dartmouth College campugsrac
the rules of tessellation. In a similar vein, with V-AMDAV, ers 1, that are publicly givgllable from [18]. The traces contaig Entries
2, and 3 constitute one EC, while the remaining users arepgebu collected from Wi-Fi APs deployed on the Dartmouth Collegene
into another EC. Now, assume that user 4 submits its repdw. TPUS- Similar traces were used in the evaluations presentfd]. In
user will anonymize his location using either (4, 1.75) ie ttase of Particular, the Syslog/05_06" trace under “syslog” traceset anelgfo-
MT or (7.17, 5.5) in the case of V-MDAV. Using Euclidean distas cgthnS’ .trace under “movement" traceset are us.ed to deduce user
for interpretation as in the previous example, the appbcaserver distributions and to plot Voronoi polygons, respe_ctl_\}el;'zach record
correctly associates the report submitted by user 4 withpeteol N the “syslog/05_06” trace represents an association, re-association
station located near user 4 for MT. However, V-MDAV resulisain  OF disassociation of a user device with an AP. Tlepl6cations’
incorrect association with the petrol station near user 5. trace contains a list of APs deployed across the Dartmouttpoa
The following observations can be made based on the above 8Rd provides information about thefr, y) coordinates as well as
amples: 1) V-MDAV enables the application to make betteigiess the floors on which they are located. S
when the user distribution across different areas is ctergisas in Ve consider a scenario wherein, a participatory sensinficapipn
Fig. 1 2) On the contrary, in areas with dense distributionssrs, as similar to PetrolWatch (dlsquss_,ed in Section I1I-B) hasrbdeployt_ed.
in Fig. 2, MT performs better. Given that the two schemes hiee \We assume that the application server generates tasksetpaite
advantages in contrasting situations, we propose, HybiMDAY,  USers to collect (_:ertaln_ c_ontextgal mfo_rmatlon from sonm@ni3
which attempts to combine the best of both these methodshyitiied ~ Of Interest (Pol) in their immediate vicinity. Users who egrto
scheme adaptively makes a decision on whether to use MT or Rarticipate in the application accept the tasks, collecisse data
MDAV. The operation of Hybrid V-MDAV is quite simple. If the and upload the sensor report to the server. P!’IOI’ to gengriﬂue
user is in a cell, which can form a tile by itself, i.e., if thember Sensor report, the user polls the AS, which provides the wihrthe
of users within the cell exceeds then MT is used. Otherwise, the @honymized location, depending on the location privacyoratigm
algorithm switches to V-MDAV. If Hybrid V-MDAV is applied to employed (MT, V-MDAV or Hybrid V-MDAV). The application
the example in Fig. 2, then users 2, 3 and 4 would employ the MPEIVer is aware of the true locations of all P(?I. Whep the ezerv
algorithm, whereas the other users would use V-MDAV. Thisildo eceives the sensor report, it computes the Euclideanndistaf each

with user 5. However, in the case of V-MDAV, a correct assioia
is made with the station located in the vicinity of user 6.

overcome the incorrect association explained earlier. Pol from the reported location. The report is associateti tie Pol
that has the smallest distance.
D. Gaussian Input Perturbation For implementing MT, it is necessary to generate a tesgmilat

. ) map of the entire geographical region, which is the univgisampus

All of the aforementioned methods assume the existence of\5ur scenario. In the following, we describe how this mapswa
trusted third-party server, which is aware of the true lowet of generated. There aré23 APs listed in the 4plocations’ trace.
the participating users (recall that the user queries theah8 |, order to simplify the analysis, we perform planarizatiand
provides its current location, each time he needs to uplo@bart). condensation similar to [11]. Specifically, the floor nunsbef APs
Clearly, this represents a single point of failure, sinééhis serveris 416 jgnored and all APs are assumed to be located on floor 0
compromised, the users’ privacy is at risk. Further, useag mot be p|anarization). Furthermore, APs located in the samedngl are
comfortat_ale with the idea of a server keeping track of thetations. grouped together and collectively represented by theirnmeay)
In fact, this may be a turn off for many users and hence, theybea .q_orginates (condensation). Fig. 3 depicts the result?®yAPs and
reluctant to participate. It is the_refore, imperative tmdg astrategy their associated Voronoi polygons. We also normalize thatlons
that does away with thls requirement, without incurringstebtial ¢ the APs so that they are confined to a region of unit squaa. ar
performance degradation. _ e _ For generation of the user distribution per cell, we havesit®red

We propose a simple perturbation scheme that artificiabiyodis - records between 12pm and 6pm over a one week period from the 1s
a user’s location prior to updating the AS. The artificialtdition
is induced bY gddlng a random GaUSSI.an noise with r,ryeaﬂnd. 1There are three separate files available for download urfuerdys-
standard deviatiow to the X and Y coordinates of a user’s locationegos_06” trace; each one of them corresponds to association redmds
(we assume that the GPS coordinates are converted to a plapigéo APs, Aruba APs, and the combination of Cisco and AruBs.A or
2D coordinate system). In other words, if the current lawati simplicity, we only considered the traces from the Cisco A®. fi



of September, 2005 to the 7th of September, 2005. The nunfberserver associates each report with a Pol using the shortetitEan

user associations per cell is a threshold value represgtittnnumber
of users that can be statistically expected to be presentcilldor

95% of the specified time intervals. In our evaluations, thterval

is assumed to be 30 minutes. There are 153 users whose disimn&
are marked by asterisks in Fig. 3. The coordinates of theslisea
cell are randomly generated, once the threshold value &dra#ll is
known. The cells are grouped to form tiles such tkanonymity is

distance. Figure. 4 represents the average value of bothcméitl
and positive identification percentage).

One can readily observe that the performance of all three-alg
rithms do no vary significantly with an increase in the numbér
users contributing data. Hybrid V-MDAV achieves a 40% reituc
in IL as compared to MT. The performance of the hybrid scheme
is marginally better than that of V-MDAV. We explain the infer

attained. We usé& = 10 in all our simulations. The tiles are shownperformance of MT by using til8 in Fig. 3 as an illustrative example.

as colored regions in Fig. 3

ilelD = 10
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Fig. 3. Tessellation Map of the Simulation Scenario

Recall that, the users annotate the sensor reports with th

anonymized locations. When the application server reseveeport,
it must determine the Pol that corresponds to the report. §fleal a
metric calledPositive Identification Percentagevhich measures the
accuracy of establishing this association. This metriefingéd as the
ratio of the total number of positive associations to thaltotimber of
reports submitted. All the privacy-preserving algorithbesng evalu-
ated transform a user’s true location to an anonymized mersience,
it is of interest to determine how much information is losttire
transformation process. We quantify this loss of informatby using

Observe that the center of tikedenoted by a circle is quite distant
from the actual locations of the users. Recall that, in MTersis
report the center of the tile as their anonymized location. tbe
contrary, with V-MDAV and hybrid V-MDAV the same set of users
would report a much closer coordinate, which is represeated
square, as their anonymized location. As a result, the SS&gsr
with MT as compared to the other two algorithms. Consequentl
MT achieves higher IL. One might argue that the performaree g
could be improved by shrinking the size of tilesuch that it only
includes those cells in which users are found. This is a @afdiment.
However, one must remember the following: 1) the tiles in Bigvere
constructed to fit all user distributions, which also acdofam the
Gaussian perturbation extension and 2) to the best of owrlkdge,
there do not yet exist any real-time algorithms that prodoggmal
tessellation maps, which can adapt to the user distribsition

L for modified tessellation
ML for V-MDAV

1L for hybrid V-MDAV |
[JPositive ID Percentage for modified tessellation
MPositive ID Percentage for V-MDAV
MlPositive ID Percentage for hybrid V-MDAV

IL/Positive ID Percentage (%)

80

0 100

&
Percentage of Users (%)

the Information Loss (IL) metric, which has been commonly used to

assess the performance of various microaggregation #igwi[13],

[16]. IL is formally defined as follows,
SSE
=551 @

where

)

(wi - x_j)27

hE

SSE =Y

g
j=114

Il
=

and
SST

= ®

(177 - 5)2,

o
gL

11
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—

J

where z; denotes thei-th record in groupj with each of theg

Fig. 4. Percentage of Positive Identifications and IL as atfan of the
percentage of users uploading reports.

Fig. 4 also suggests that there exists an inverse relatpnsh
between the two metrics, IL and percentage of positive itieations.
For example, MT, which has the highest IL results in the ldwes
positive identification percentage. Similarly, hybrid VEMV, which
achieves the highest positive identification percentagetha lowest
IL. Observe that, hybrid V-MDAV improves the positive iddita-
tions made by the server by more than 100%, in comparison with
MT. The significant improvement achieved by hybrid V-MDAV in
comparison with V-MDAV (about 50%) can be explained by an
illustrative example. Consider cdlb, which accommodate2) users.
According to the rules of hybrid V-MDAV, thes#) users replace their

groups containing: recordsx; andz represent the group mean andocations with the center of the cell. Since, the users areselg

the mean of the entire dataset, respectively. SSE and S3&se

concentrated near the centre of the cell, the applicatiovesean

the sum of squared errors with respect to the group mean and fhterpret the true locations with high accuracy. On the otend,

mean of the entire dataset, respectively. Note that, SSEunes

V-MDAV separates these users by grouping some of them widketh

the distances between the actual locations of the users faid tin cell 41 in an attempt to lower IL while keeping the size of EC in

anonymized locations.

B. Smulation Results

We conduct a set of simulations to evaluate the positivetifien
cation percentage and information loss achieved by MT, VAMD

check, i.e., between0 and 19. As a result, the reported location
is somewhere in between the cells, which is not close to hctua
users. Hence, the application server tends to make wrongiatsns,
which is reflected in the lower positive identification ratieshould

be noted that, even the best performing hybrid V-MDAV schemiy

and Hybrid V-MDAV. We assume that the Pol are co-located withchieves a moderate level of positive identifications. Thisecause
the users. We assume that a subset of the entire user populathe application server employs the simplistic Euclideatinegion

submits reports to the application server. We vary the meage of
users reporting data fror20% to 100% in increments 020%. The

technique for making the Pol associations. We intend tositigate
alternate techniques in our future work.



C. Impact of Gaussian Input Perturbation

Next, we study the impact of Gaussian input perturbationhan t
performance of the three algorithms. Recall, that in thisagicement,
the users do not report their true locations to the AS. Inktea
random Gaussian noise is added to the location reportedeté\#h
We repeat the previous set of simulations for different ealofp,
which range from0.02 to 0.2 in increments 0f0.02. Recall, that
p is the scaling factor used for perturbing the true locatiohshe
users (see Section IV-D). The larger the valugpofthe greater is the
deviation from the true location.

Figs. 5 and 6 illustrate the impact of Gaussian input pediinh on
the three algorithms when 40% and 80% of users report datae Si
the results exhibit some fluctuations, we fit them with polyials of
degree 1 to reveal the general trends. As in the previous|siioos,
the percentage of users submitting reports has negligitigact
on the performance. Furthermore, the additional inputupleation
degrades the performance of all three algorithms. The lefel
performance degradation is more substantial for largareglbfp.
These results are expected since, the users are incrgadisgirting
their locations that are reported to the AS. Fig. 6 reveais the
performance gain of hybrid V-MDAV gradually diminishes as
increases. Increasing the value wfimplies that the user distribu-
tion is more sparse, i.e., fewer cells are sufficient to mevihe
required level of anonymity on their own. Therefore, the \BRY
component of the hybrid algorithm tends to dominate. As altes
the performance of these two schemes converge. The resplisted
in Fig. 6 also indicate that it is possible to guarantee featisry
performance, without requiring the users to reveal theie tocations
to the third-party AS. As long as the perturbation paransetme
adequately chosen, the performance degradation can kedinfior
example, we only observe a 5% loss when= 0.06 with hybrid

Fig. 6.

(2]

(3]

(4]

(5]

(6]

V-MDAV. This achieves a good balance between user privaay an

system performance.
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Fig. 5. Impact of Gaussian Perturbation on IL.

VI. CONCLUSION

In this paper, we have proposed hybrid V-MDAV for preservin
location privacy in participatory sensing. Hybrid V-MDAbmbines
the positive aspects of tessellation and microaggregattiampopular
privacy-preserving concepts. Our evaluations based ohwwedd
data traces show that hybrid V-MDAV improves the percentafje
positive identifications made by the application server pyai100%
and decreases the information loss by about 40%. Furthernoor
studies show that perturbing user locations with randoms&ian
noise can provide users with an extra layer of protectiorh veit
minimal impact on the performance.
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