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Abstract—Accurate maps are increasingly important with the
growth of smart phones and the development of location-based
services. Several novel crowdsourcing based map generation
protocols have been proposed that rely on volunteers to provide
their traces. Although creative, those methods pose a significant
threat to the users’ privacy as traces imply user behavior patterns.
On the flip side, crowdsourcing-based map generation method
does need individual locations. To address this debacle, in this
work, we present a systematic participatory-sensing-based high-
quality map generation scheme, PMG, that meets the privacy
demand of individual users. In our approach, individual users
merely need to upload unorganized sparse location points which
greatly reduces the risk of exposing privacy, and the server
generates accurate maps with unorganized points instead of users’
traces. Experiments show that our solution is able to generate
a high-quality map for a real environment that is robust to
noisy data. The difference between the ground-truth map and the
map produced by this design is < 10m, even when the collected
locations are about 32m apart after clustering for the purpose
of removing noise.
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I. INTRODUCTION

During the last decade, portable smart devices have sig-
nificant improvements in computing performance, memory
size and the number of sensors embedded in them (e.g.,
GPS, accelerometer, gyroscope). These improvements allow
the devices to be adopted in more areas such as navigation,
location-based services, social networking and etc. Most of
those applications jointly exploit the integrated maps and
user’s current location to provide various kinds of service
to users. Therefore, it is fundamental and indispensable to
provide accurate and most-updated maps. Currently, digital
maps (e.g., Google Maps ), based on the culmination of
satellite imagery as well as street level information, are widely
used. They, however, can not precisely reflect the most up-to-
date map information, especially in the developing countries,
where cities are often undergoing constructions, renovations
and renewals, resulting in the integrated map far behind the
current state.

To reflect the map dynamics accurately and effectively,
several techniques have been proposed recently, among which
participatory sensing attracts the most attentions. In those
schemes, individual volunteers contribute their trace infor-
mation (with GPS data) to a central map generation server.
Despite of guaranteeing high quality map information, the
methods often have various limitations, like energy ineffi-
ciency, and privacy leakage. As most existing methods exploit
the traces contributed by each individual user, it raises a great
concern of leaking the user’s privacy. In this paper, we present
a privacy preserving map generation scheme, PMG. To protect
the user’s privacy, unlike previous methods, in our scheme,

each user selectively chooses, reshuffle, and upload a few
locations from their traces, instead of the entire trace. After
receiving these unorganized points cloud from a group of
users, the map generation server will generate the final map.

To provide high-quality map generation service, meanwhile
guaranteeing the privacy-preserving for each user, there are
three major challenges that we need to address: 1) quantify
the privacy leakage of data points provided by individual
users; 2) generate theoretically-proven map using the reported
unorganized points cloud; 3) design map generation scheme
that is robust to various discrepancies such as GPS error.

Indeed reporting traces is not a good choice for protecting
user’s privacy. In PMG, we let each individual volunteer select
a subset of points from his traces with respect to the privacy
protecting demand. In our scheme, a user protects his privacy
from two aspects. The first is to break the temporal relationship
among reported points. Observe that the temporal relationship
could be potentially exploited by the map generator to recover
user behavior patterns, e.g., Maskit [1] uses the Hidden Markov
Model to recover user patterns. In our scheme, the volunteer
shuffles the points from his trace and then report the shuffled
partial collection to the map generation server, for obscuring
the temporal relationship between original points. The second
aspect is to limit the number of points reported in a region
during a time-window. The challenge is to decide how many
points a user should select and report. In this work we focus on
the trace privacy: we say a trace is secure against the server
if the server cannot (uniquely or approximately) recover the
trace from reported points. We propose a mathematical formula
to quantify the relationship between the number of reported
locations and the degree of privacy leakage. We leave the
protection of other privacy as a future work.

As to the server, the fundamental task is to reconstruct
the underlying map from a group of unorganized location
points. Clearly, we can’t rely on the traditionally used trace-
based map generation method (e.g., CrowdAtlas [2]) that
sequentially connects the points according to the sampled time
label, since two adjacent points might not be consecutive in
any trace. Thus, under the framework of privacy-preserving,
it is not a trivial task to seek for an effective map generation
algorithm with theoretical performance guarantee. In this work,
we address the challenge of building a high-quality map from
a set of unorganized points by borrowing theoretically sound
curve reconstruction techniques from computational geometry.
Based on this, we can show that when the sampling (the set of
points reported by all volunteers) reaches a certain threshold,
the quality of the generated map is assured. Here the sampling
density required for high-quality map generation depends on
the medial axis and local feature size, two inherent features
of the map to be generated, We quantify the quality of the
generated map by leveraging the Lower Bound of Voronoi
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Angle (LBVA), a quantified metric describing the distance
between the estimated map and ground truth [3].

The third challenge is to design map generation algorithm
that is robust to the noisy data. Note that the collected GPS
locations are not error free but unreliable GPS [4][5]. Typically,
the GPS data will have an error at least 10m. The sparsity of
the sampled locations (for the purpose of privacy-protection),
the small local feature size at some portion of the map, and the
GPS error, will lead to inaccurate or even erroneous generated
map. We first apply a simple GPS data filtering procedure to
remove all potential unreliable data. By requesting sufficiently
dense samples and carefully clustering the reported sampling
points, we are able to show that our scheme is robust to GPS
errors.

There are also many subtle details need to be carefully
considered. For example, a critical component for the map
generator here is to decide where to query the crowd for
points that will produce the best possible map under certain
resource constraint. We show that such a problem is NP-
hard and propose a simple heuristic with theoretically proven
bound on the map quality, that is within a constant factor
of the optimum. We formulate our problem as the classical
location point selection with the goal of maximizing the LBVA
criterion, meanwhile satisfying the minimal requirement of
privacy protection. We tackle the problem of maximizing
LBVA (this will be referred to as MaxLBVA) for optimizing
locations selection with privacy-preserving consideration. Due
to the intractability of directly solving the MaxLBVA over
unknown/infinite locations set (no prior knowledge abut the
roads distribution, any point in the space could be candidate),
we alternatively propose an equivalent MaxLBVA over a
group of geography cells. We exploit the submodularity of
the objective function (e.g., LBVA) to develop an efficient
approximation greedy algorithm, which achieves at least a
constant fraction of the optimal solution.

We extensively evaluate this design on two real, high-
resolution, city-scale GPS trace data. Our results show that the
distance between the ground truth map and the map generated
by our scheme PMG is less than 10m. In our experiments, after
the filter-out by each user for privacy-protection, the sampled
points are about 7.5m apart on average. As these sampled
points are inherently noise due to GPS errors, we cluster
them to produce “smoothed” samples for map generation.
The smoothed sample points are actually about 32m apart on
average, sufficient for producing accurate map.

The rest of this paper is organized as follows. In Section II
we formally define the map generation problem with privacy-
protection, review the background of curve reconstruction, and
point out the challenges of applying such theory into our
context. Detailed solutions are presented in Section III. We
present our evaluation results in Section IV, review the related
work in Section V and conclude the paper in Section VI.

II. PROBLEM FORMULATION AND BACKGROUND

A. Problem Formulation

We assume that the participatory-sensing based map gener-
ation service is composed of one central data processing center
and a group of volunteers spread over a geographic region. The

center is in charge of collecting data (submitted voluntarily by
these users or queried by the center) and producing a high-
quality map from the set of locations collected (and possibly
a prior knowledge of the map). We omit the incentive issues
in this work as this is not the main scope of this paper. For
the map generation, we do not assume that the center has a
prior knowledge on the map, although such knowledge will
significantly improve the performance of our method. A group
of users travel in a geographic region and can collect a stream
of GPS locations trace using smartphones. Each user will
(voluntarily or based on the incentives provided by the center)
provide some transformed data of the traces to the center for
map reconstruction.

In this work, a map is mathematically defined as a geo-
metric graph G = (V,E) where V are the set of intersections
in the map and E is the set of road segments connecting
intersections. Consider one unobserved map F , a simple naive
solution of asking each user to report her/his traces directly
will result in individual location information disclosure. To
eliminate the possible risk of privacy exposure, one natural way
is to let the user report fewer locations information. However,
this will inevitably affect the quality of map generation service.
To address the debacle between map quality and user privacy,
in this work we will let each user update a subset of location
points (which are randomly shuffled to remove the temporal
ordering of points in the trace) to the server so as to minimize
a certain measure of map generation error. This approach can
assure that some constraints on individual location privacy
exposure are satisfied. If not specified otherwise, throughout
this paper the privacy we want to protect is the private location
trace associated with each user.

More formally, consider m users and let Ui(1 ≤ i ≤ m)
be the set of collected GPS location points by user i. To
avoid potential privacy exposure, each user will carefully
choose a subset of Ui, denoted as Pi, to report. Therefore, the
optimal map generation problem (P) with privacy-preserving
constraints is given as follows:

(P) ∪mi=1P
∗
i = arg min

∀i,Pi⊆Ui
Err (F , ζ(∪mi=1Pi))

subject to PEi(Pi) ≤ bi, 1 ≤ i ≤ m,

where ζ(·) returns the estimated map given reported GPS
location points sets from m users, Err() is a certain error
function measuring the distance between the real map F
and the estimated, PEi(·) is the privacy-exposure function
that reflects the degree of privacy leak of user i and bi is
the corresponding privacy leakage constraint (called privacy
budget sometimes) for publishing Pi.

A typically used error function is the mean-squared error,
defined as ‖F − ζ(∪mi=1Pi)‖2. To compute this metric, we
need to know the original map F beforehand, which is often
unavailable in practical setting. As an alternative, we will focus
on the “quality” of the set of points collected. We later will
show that, if the set of collected points meets certain sampling
quality condition, the reconstructed map will have a lower
bound on the quality between the ground-truth map F and
the reconstructed map. In fact, if we view the map of interest
as one polygonal curve in 2D plane and the location points set
∪mi=1Pi as samples with respective to that curve, the estimate
function ζ(·) will fall into the category of curve reconstruction
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[3] in computational geometry, which allow one to uniquely
determine the original curve from a subset of samplings that
satisfies some special condition. It is therefore particularly
attractive for our specific problem.

The degree of privacy disclosure highly depends on the data
that users publish. The foremost task here is to quantify the
privacy protection (or lack of) of the data submitted by each
user. A simple measure would be the number of points reported
by the user: more points mean worse privacy protection. So a
user may put a limit on the number of points reported, thus
PEi(Pi) is simply the cardinality of set Pi. Obviously, report a
large volume of data in a small time-window is not preferred.
Note that this naive cardinality constraint cannot quantify
the privacy protection level in other metrics. For example,
attacker may still be able to infer some privacy information
if Pi is a continuous subsegment in a trace. To quantify the
ability of protecting the trajectory information of each user,
we will introduce a novel privacy quantification scheme later
in Section III-B. Intuitively, our privacy quantification assures
that the attacker cannot recover the users’ trace when certain
conditions are met. Note that different privacy quantification
functions could be integrated into our scheme, e.g., we can
define a sophisticated privacy leakage quantification based on
the HMM model used in [1].

B. Curve Reconstruction

In this section we briefly review the background and
techniques for curve reconstruction, a theoretical foundation
of our map construction scheme.

Consider a unknown smooth curve F . Given a set of un-
organized points S sampled from F , the curve reconstruction
problem, is to construct a graph containing exactly those edges
that connect the adjacent points in F .

Extensive effective approaches ranging over minimum
spanning tree[6], r-regular shapes[7] to α-shapes[8] have been
proposed to find the solution of such problem, among which
[3] shows one geometric graph, Crust, coincides with F if
S satisfies some specific sampling conditions (more will be
discussed below). We next will focus on Crust due to its
simplicity, theoretical guarantees and good estimate quality.

The Crust induced by S is a graph such that any edge
is one element in Del(S ∪ Z), with only the points in S
as its endpoints, where Z is the vertices of the Voronoi
diagram induced by S and Del(S ∪ Z) returns the Delaunay
triangulation of S ∪ Z. Therefore, the Crust of S could be
generated in three phases: (1) compute the Voronoi diagram of
S; (2) calculate the Delaunay triangulation of S ∪Z, denoted
by D; (3) remove all the edges in D unless both of their
corresponding endpoints belong to S.

Due to the existence of advanced and elegant program for
Delaunay triangulation and Voronoi diagram[9], [10], comput-
ing Crust of one given finite set S is simple, easy to implement
and scalable to the cardinality of S. Most importantly, the
performance of Crust is theoretically guaranteed, i.e., Crust
provably solves the curve reconstruction problem under certain
conditions. Before giving such specific result, we would like
to cite some relative definitions in [3] at first.

Definition 1. [3] The Medial Axis of a curve F is closure of
the set of points which have two or more closet points in F .

LFS
(p)p
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1

s
2

Fig. 1: Medial axis (in red), LFS(p), and Voronoi Angle.

Definition 2. [3] The local feature size, LFS(p), of a point
p ∈ F is the Euclidean distance from p to the closest point on
the medial axis.

Definition 3. [3] A curve F is γ-sampled by points set S if,
∀p ∈ F , the closest sample s ∈ S satisfying D(p,s)

LFS(p) ≤ γ,
where D(p, s) represents the distance between p and s.

Definition 4. [3] A curve Voronoi disk is a maximal disk,
empty of the samples S inside, centered at a point of the curve.
A curve Voronoi vertex v is the center of a curve Voronoi disk.
The angle ∠s1vs2 is called Voronoi angle (e.g., ∠s1vs2 in Fig.
1 if v is a curve Voronoi vertex and s1, s2 are on the boundary
of curve Voronoi disk centered at v.

These definitions are graphically shown in Fig. 1. The
solid black curve represents the original smooth curve. And its
corresponding medial axis is showed as the dashed red curve.

Armed with these definitions, we will give two useful the-
oretical analysis in [3], denoted as the following two lemmas.

LEMMA 1. Let S be a γ-sample from a smooth curve F .
Then (i) if γ ≥ 1, F is un-reconstructible; (ii) if γ ≤ 0.252,
the Crust of S doesn’t contain any edge between nonadjacent
sample vertices on the original curve F .

Lemma 1 implies that given the sampled points S, the curve
reconstruction problem is unsolvable when γ ≥ 1. In other
words, there may not be a unique graph on S that connects
every pair of samples adjacent along that graph. In addition,
when γ ≤ 0.252, all the piece-wise-linearly-connected edges
in the Crust “belong” to the original curve F .

LEMMA 2. (LBVA) For a γ-sampled curve by S in the plane
with γ < 1, the Voronoi Angle (i.e., ∠s1vs2 in Fig. 1) formed
at a curve Voronoi vertex v between two adjacent samples
along F is at least π − 2 arcsin(γ2 ).

The Voronoi Angle physically represents the discrepancy
between the real curve and the recovered curve. And the higher
of this angle, the smaller of such discrepancy. Ideally, the
case of ∠s1vs2 = π means that the recovered curve precisely
matches the original one. We sketch a proof here. When
∠s1vs2 = π, in the original curve F should have a straight-
line connecting s1s2. Otherwise, it will have small local feature
size for some points between s1 and s2. Then the sampling
condition will imply that we should have additional sampling
points between s1 and s2, which contradicts the assumption
that s1 and s2 are consecutive samples.

Intuitively, the more of sample points, the better of curve
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reconstruction quality. However, the larger size of S generally
leads to the increase of sampling cost. Note that as the presence
of the strong dependence among the entries in S, the marginal
gains of LBVA might be significantly small and negligible as
the increase of S. Therefore, S must be chosen carefully: it is
desirable to have LBVA as high as possible to guarantee the
quality of estimated curve, and it is also desirable to minimize
the cost and privacy leakage caused by collecting more points.

C. Alternative Objectives and Challenges

According to Lemma 2, the quality of recovered curve
could be indirectly measured by the Lower Bound of Voronoi
angle. Therefore, problem P could be reformulated as

(P) ∪mi=1P
∗
i = arg max

∀i,Pi⊆Si
Γ (∪mi=1Pi)

subject to PEi(Pi) ≤ bi, 1 ≤ i ≤ m,

where Γ(·) returns the Lower Bound of Voronoi Angle(i.e.,
π−2 arcsin(γ2 )). Unless otherwise specified, this problem will
be referred to as MaxLBVA for simplicity purpose.

However, there are three major challenges in applying
Crust to our problem context. First, under the curve reconstruc-
tion framework the set of sampled points is exactly from the
original smooth curve. However, in the physical environment
each road has certain width which determines the distribution
of the reported GPS location points will be arbitrary within
that road, instead of along one smooth curve that we expect.
In particular, for a two-way road with four lines, the Crust
might infer the existence of one road between the points from
different lines even if they are indeed physically from the same
road. This makes it difficult to construct one high-quality map
via directly using Crust on the raw collected data.

A second challenge is that GPS location data is not error
free. A user can simply suppress the data if the error is more
than a predefined threshold. However, doing this might not
completely remove all potential error. This is because some
other factors such as local obstructions, weather and users’
movement pattern might also degrade the GPS performance.

At last, MaxLBVA is a combinatorial problem with linear
constraints, which has been shown in [11] to be NP-complete.
A simple greedy algorithm is often used instead. It has a O(1)
approximation ratio with a submodular objective. However,
compared with traditional combinatorial problem, on one hand,
for map reconstruction we do not have direct access to the
set of all sampled points collected at users’ sides; on the
other hand, solving this problem could only be finished in the
decentralized framework that involves in extra coordination
between the volunteering users and server. We show in sub-
sequent section how these challenges can be addressed in our
scheme such that we can implement this simple yet effective
heuristic in our specific participant sensing context.

III. PROPOSED SOLUTION

A. System Architecture

Fig. 2 shows the overall architecture of our solution. At the
network level, the system consists of a number of volunteering
users and a map generation server.

Fig. 2: The architecture of our scheme PMG

Volunteering Users: The volunteering users serve as the
GPS location provider. To provide certain diversity of uploaded
data, one finite local buffer is used to record the user’s trace.
One data report engine, called Location Selection, would
be activated by the location query from the remote server.
Once receiving such request packet, the users will look-up
their corresponding local buffer and reply the server with the
locations that match the request condition. More information
about the request packet will be discussed in Section III-C. To
avoid potential trace leakage, all the reported locations must
go through one privacy-assessment module. As a result, only
the “safe” data will be allowed to stream into the server.

Server: The essential function of the server is to provide
high-quality map generation service based on the collected
unorganized GPS locations from various volunteering users. To
guarantee the estimated map quality, all chosen GPS locations
will firstly enter into one data pre-processing block to remove
all possible unjustified data. Then, only the valid data will go
into the map generation module, which has implemented the
aforementioned Crust algorithm. The following module, called
Privacy Assessment, is then executed to examine the quality
of current generated map (i.e., the output of Crust). When
the predefined map quality metric is not met, the block (i.e.,
Location Selection) is further scheduled to estimate the optimal
location points that will provide maximal gains in estimating
the original map; server will broadcast these locations via
request packet to actively pull the useful information. One
practical optimal location selection will be introduced and
analyzed in Section III-C.

B. Privacy-preserving Scheme

In this subsection, we develop one advanced and elegant
privacy-preserving scheme based on the γ-sample condition,
which actually corresponds to the constraint in P.

Consider a time interval T, our concept is to provide a
group of unorganized locations, which might correspond to
various quite different routes. In other words, given the shared
locations, no algorithm could uniquely determine the real route
that the user has been passing. Mathematically, this curve
reconstruction problem is unsolvable. From Lemma 1, given a
set of points that form a γ-sample, the bigger value γ doesn’t
bode well for the success of Crust, especially when γ ≥ 1.

In order to protect the individual trace privacy, the user will
use another finite buffer to store all the points that have been
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reported within T . Once having another new reported location
point, the user will examine the γ-sample condition if adding
the point to the set of historical reported locations within T .
This new point is said to be safe (or qualified) if γ ≥ γ

′
,

where γ
′

is the user-defined privacy requirement.

C. Near-optimal Location Selection

In this subsection we mainly focus on how and where
to query users for locations so as to maximize LBVA. Due
to the hardness solving P directly, we reformulate it as one
equivalent maximization problem over a group of cells. We
then demonstrate that the new objective exhibits the property
of submodularity. One simple greedy algorithm within constant
(≈ 63%) of the optimum is proposed.

1) Proposed alternative formulation: Obviously, MaxL-
BVA remains the combinatorial optimization which is in-
tractable. At the very beginning, however, from sporadic col-
lected locations, the server could roughly infer that there might
be several roads existing in one physical region. Therefore,
the server might benefit most by choosing locations within
such region. To bridge the gap between server’s oblivious
to the set of locations currently collected by all users, and
server’s requiring the set of candidate locations to improve
map quality, we will partition the region into a group of cells.
Given historical knowledge and collected locations, the server
will estimate the marginal gain (i.e., the improvement of the
map quality if it asks for points from users) of each cell. It
picks the cell with the best marginal gain and ask users to
report locations inside this cell. Assume a region is divided
into w cells and use a complete set I = {1, 2, · · · , w} to
denote them. Instead of seeking for exact locations set, we
alternatively look for a subset of I , each cell possibly including
infinite location points. Therefore, we reformulate P as follow

(P) A∗ = arg max
A⊆I

R(A) = E[Γ(A)]− Γ(S0)

where E[·] denotes expectation operation, computed over all
locations uniformly distributed within the cells.

The function Γ(·) we defined is over the locations set,
rather than cells. Here we approximate Γ(A) as the expectation
of LBVA when we query points from a set of cells A. Since
we have no idea about the underlying road distribution and
users’ movement pattern, it is reasonable to assume that each
location within a cell will be uniformly reported. If A =
{a1, a2, · · · , a|A|}, then E[Γ(A)] is computed sequentially

E[Γ(A)] =

|A|∑
i=1,ai

∫
∀p∈ai

1

r2
Γ(Si−1 ∪ p), (1)

where r is the side length of a cell, p is a location in the cell
and Si is the locations collected by the server after choosing
the first i cells. Here S0 means the initial sporadic collected
locations by the server. When no cell is chosen (i.e., A =
∅), the expectation is only determined by S0. Thus we have
E[Γ(∅)] = Γ(S0) and R(∅)=0.

2) Properties of the objective: There are three important
properties of R(A). Firstly, as mentioned, we have R(∅) = 0.
Secondly, R(A) is nondecreasing. That is R(A) ≤ R(B)
for all cell subsets A ⊆ B ⊆ I . Clearly, adding more

cells means that more points will be chosen, thus incurring
the improvement of the LBVA and estimated map quality.
Therefore, choosing more cells will further incur the increase
of R(A). Last but most importantly, it exhibits diminishing
marginal returns. To be specific, adding a cell to a small subset
A, the reward that we can obtain would be at least as much as
if adding it to a larger one B ⊇ A, which is implied formally
by the following theorems. The proof can be found in our
online technical report[12].

Theorem 1. Consider a smooth curve F . Let V be the
universal points set. For all S1 ⊆ S2 ⊆ V and all points
p ∈ V \ S2, it holds that

γ(S1 ∪ p)− γ(S1) ≥ γ(S2 ∪ p)− γ(S2),

where the function γ(S1) returns the sample condition of S1

on F . A set function with this property is called sub-modular.

3) Proposed greedy algorithm: In general, maximizing
submodular function is NP-hard [11]. We instead use a heuris-
tic greedy algorithm to approximate the optimum. It operates
as follows: starting from A = ∅, iteratively adds a single
cell with the highest score, conditioned on the cells chosen in
previous steps until the map quality reaches a certain threshold.
More formally, at each step, the greedy algorithm adds the
element cell i such that

i∗ = arg max
i∈I\A

R(A ∪ i)−R(A). (2)

At each step, once the server computes the optimal cell so
far through Eq. (1) and (2). Then it broadcasts a query packet
containing the physical information (e.g., GPS coordinate for
the cell’s four corner points) of the chosen cell. Any user
hearing such query packet will examine whether their stored
location points falling in such cell. If the matched location
point set is nonempty, the privacy-preserving scheme is further
applied on them to remove all non-safe data that might lead
to private trace leakage. In response to the request packet,
eventually, the user will send the final chosen safe location
points back to the server.

We end this part by discussing the theoretical bound of
our proposed simple greedy algorithm. Since our quantified
objective is submodular, non-decreasing and with R(∅) = 0,
the below theorem turns out that our algorithm could achieve
a constant-factor ratio to the optimum.

Theorem 2. [11] Let Â be the chosen cells by the greedy
algorithm and A∗ = maxA⊂V Γ(A). Then

Γ(Â) ≥ (1− e−1)Γ(A∗).

D. Impact of GPS Sample Error and Road Width

Two critical issues must be addressed to make our protocol
practical: 1) GPS sample error (thus, samples not necessarily
from the real curve F), and 2) road width (thus, over-sampled
points will result in extra small segments). The curve recon-
struction problem assumes a smooth curve with zero thickness,
and the unorganized points precisely from the underlying
curve. While for our situation, even if the map could be
viewed as a smooth curve, the thickness of each edge could
not be zero. The map generation algorithm (i.e., Crust) might
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(a) Recovery without clustering (b) Recovery with clustering

Fig. 3: Impact of Road Width.

add extensive unnecessary roads/edges within the same road,
especially when the road width is very large (e.g. high way).
Fig. 3 illustrate an example.

We address these challenges using a one-stone-two-birds
solution: down-sample the reported data from users. For deal-
ing with GPS error, we first remove the data when such
accuracy is more than a threshold η. Even so, note that the
uploaded data is still noisy. For the goal of map generation, it
is reasonable to set η to be on the same order of the road width.
We then apply a simple clustering algorithm to the filtered GPS
data. To be specific, the collected points will be divided into
several clusters based on the locations’ geographical proximity.
And we use the cluster center to represent a sample from the
underlying map. We run the Crust algorithm using the cluster
centers rather than all collected raw data points.

Consider one location in the 2D plane with x0 as the GPS
ground truth. Let x1, x2, . . . , xn be the measured value by
n different users with xi in a small cluster, which could be
seen as the realization of a random variable X with mean
x0. Considering the Gaussian noise, X could be modeled as
X = x0 + N(0, σ2). We next theoretically show that as the
increase of the number of reported users, the empirical mean
will be close to the real value with higher probability (close
to 1). From the Hoeffding’s inequality, we have

Theorem 3. Given one location with n real measured noisy
value xi. If xi ∈ [−d2 + x0,

d
2 + x0], then we have

Pr(| 1
n

n∑
i=1

xi − x0| ≥ δ) ≤ 2exp(−n 1
3 ), (3)

which are valid for positive value of δ = d

n
1
3

.

Using the collected noisy GPS data, we examine the
performance of the Voronoi Angle (i.e., α in Fig. 4(a)) and
the maximal Euclidean distance between the real curve and
the estimated (i.e. h in Fig. 4(b)) using down-sampled data.
Consider two consecutive sample points p1 and p2 on a smooth
curve F , as shown by Fig. 4. Due to the noise in the physical
setting, their corresponding real measured GPS values are actu-
ally uniformly distributed within the two bigger dashed circles
with radius d

2 . From lemma 2, we have α = π − 2 arcsin γ
2

under the noise-free assumption.

From Theorem 3, we know that the sampled GPS data of
p1 and p2 will concentrate in the two smaller disks with radius
δ. Clearly, we can see that their corresponding α and h will fall
in the range of [α−δα, α+δα] and [h−δh, h+δh], respectively.
Based on the basic geography knowledge, the value of δα =
arcsin δγ

tan(arcsin γ
2 )Ds(p1,p2)

and δh = δ.

Clearly, these two metrics quantifying the quality of recov-
ered map will fluctuate within a very small range, determined
by δ. Similarly, as the number of samples increases, they
will approximate their corresponding ground truth with higher

d

a

a
d

(a) Voronoi Angle

d

h

d

a

(b) Max distance gap between the
real curve and the estimated

Fig. 4: The effect of GPS data error.

probability (close to 1). This means that our proposed map
generation scheme is robust against the inherent noises of GPS
data by clustering (sort of resampling by server).

IV. PERFORMANCE EVALUATION

We present in this section a series of experiments per-
formed on two group city-scale GPS trace data. We focus on
the impact of different parameters on the estimated map quality
and the overall effectiveness of PMG. We will use greedy
algorithm mentioned in section III-C to choose the optimal
locations. The map generator we use is Crust.

We will use two data sets. The first one, also referred to
as the Shanghai Data, is a group of GPS datasets published
on the CrowdAtlas website with 24 traces containing 954000
locations in total [13]. The area of this data set is about
149.09km2 and the total length of tracks is 111390m. A
second data set, also referred to as the Wuxi Data, was
collected at the Wuxi New district, in total 323120 locations.
And its total area and tracks are 36.45km2 and 29284m,
respectively.

Due to the lack of large scale participant sensing filed,
we reshuffle the two data sets and randomly assign these
data points into m different files to emulate the number of
volunteering users. This value (i.e. m) is set be 10 and 50
for the Wuxi data and Shanghai data, respectively. In addition,
each user defines his/her privacy protection level to be no trace
leakage within a day (i.e. T = 24h and γ

′
=1).

Denote the recovered segments set as Ê = {ei, 1 ≤ i ≤
|Ê|}, each segment with ni points. We next will use two
metrics to verify the effectiveness of PMG: a first one is
Deviation Metric(DM) denoting how far is the estimated map
from the ground truth, and the other is Gamma Metric(GM), an
indirect criterion measuring the estimated map quality. They
are given by

DM = (

|Ê|∑
i=1

DMi)/|Ê|, GM = (

|Ê|∑
i=1

GMi)/|Ê|

which DMi/GMi is also referred to as segment DM /GM ,
defined as DMi = (

∑ni

j=1 h
i
j)/n

i and GMi = (
∑ni

j=1 γ
i
j)/n

i.
Here, hij is the j-th point’s physical deviation from the true
value on ei and γij denotes this point’s sample condition on
segment ei.

A. Impact of different parameters

In this subsection, we observe the impact of different
parameters (i.e. cluster range and cell size) on the final
estimated map quality. We conducted our experiments on the
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Fig. 5: The impact of cluster range.
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Fig. 6: The impact of cell size

two datasets, the effect of which share similar trend. Due to
space limitation, we only report the results on Wuxi data, more
information could be found in [12].

1) Cluster range: Fig. 5 shows the performance of DM
and GM by adjusting the cluster range from 0m to 100m, with
increments of 2m. We run this experiment for 4 times using
four different side length of cell (i.e. r = 200, 300, 400, 500,
all in units of m).

Regardless of the cell size length r, we can clearly see that
both DM and GM behave a sharply downward trend at the
beginning, then decrease slowly between 15m and 25m and
increase gradually when the cluster range is more than 30m.
In addition, the quality of the generated map could achieve the
empirical optimum/minimum when the cluster range is around
20m, which is physically consistent with the real road width
(about 15m and 25m) where we collected data. Note that since
the bigger of the cluster range, the sparser of the collected
points. Thus, as the cluster range grows, the real input of our
map estimator (i.e. Crust) will fail to reflect the road features,
such as corner. This is the reason why the performance of DM
and GM degrades gradually when the cluster range is more
than 30m.

2) Cell size: We next examine the effect of cell size on
the generated map quality. Due to the performance similarity
between DM and GM , we only offer the performance of
GM under different cell size. In addition, since our locations
selection algorithm is cell-based, we also investigate the impact
of different cell size on the Number of Locations (NoL) (i.e.
the number of all real collected locations when the greedy
algorithm finishes). We did this experiment under different
number of request packets from the server. The results is shown
by Fig. 6.

(a) NoL=500 (b) NoL=1000 (c) NoL=1500

(d) NoL=2000 (e) NoL=2500 (f) Ground truth

Fig. 7: Wuxi data: generated maps at different NoL

(a) NoL=500 (b) NoL=1000 (c) NoL=5000 (d) Ground truth

Fig. 8: Shanghai data: generated maps at different NoL

From Fig. 6(a), we can see that as the increase of r,
NoL increases at first, achieves a peak when r = 400, then
begins to decrease. And GM behaves the opposite trend. The
result is reasonable. When cell size is small, each cell might
contain a few matched locations, so after hearing the request
packet, less users will response. As the increase of r, more
qualified locations might be contained in each cell, lending
to the increases of NoL. However, when r = 500, the cell
size will be very large. It is possible that the chosen cell
will contain many roadless areas, even such cell achieving
the highest marginal gains. This suggests that r = 400 is the
empirical optimal value.

Once the cell size is fixed, the NoL(GM) behaves monoton-
ically increasing(decreasing) with the increase of the number
of request packets. This is because that more request packets
mean more locations will be collected, thus leading to the
improvement of the final generated map quality (i.e. the
decrease of GM ). However, there is a small exception for
GM when r = 500 (see, Fig. 6(b)). Again this is due to that r
is too large, containing many areas without roads which might
lead to significantly small qualified location.

B. The quality of generated map

In this section, we will investigate the generated map
quality in various dimensions. Unless otherwise stated, we will
set the cluster range and size length of a cell r to be 20m and
400m in the next experiments.

1) Visual comparison: We first visually observe the gener-
ated map quality under different sampling points both in Wuxi
and Shanghai, as shown by Fig. 7 and 8. Here the red lines
mean the recovered segments; the blue points represent the
clustered sampling locations. For comparison purpose, we also
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Fig. 9: CDF observation with Wuxi data
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Fig. 10: CDF observation with Shanghai data

provide the ground truth in black, as shown by Fig. 7(f) and
8(d). As expected, the more of sampling locations, the better of
recovered map quality. In Wuxi experiment, Fig. 7 shows that
when NoL is equal to 2500, the recovered map could almost
capture the general tread of the original map. For the Shanghai
data, the performance improvement is very small if changing
the number of locations from 500 to 1000. Moreover, such
improvement will disappear when NoL > 1000.

2) Quantitative evaluation: To be more precise in quan-
titative comparison, we further observe the CDF of segment
DM and GM under different number of sampling locations, as
showed by Fig. 9 and 10. The results suggest that the estimated
map based on Wuxi data outperforms than Shanghai data.
For instance, when NoL=1500, about 90% of the recovered
segments are at most 10m apart from the ground truth, while
for Shanghai data, there are only 80% such segments even
NoL=3000.

More statistical information describing the recovered map
quality is presented in Table I. Here, NoLC means the number
of locations after clustering and Density represents the average
distance of consecutive clustered points. The recovered map
quality will improve as the increase of sampling locations.
Such improvement could also be verified by the increase of
Density, decrease of DM and Variances. Compared with Wuxi
data, the performance gains are not obvious for the Shanghai
data, especially for NoLC. There are only 12 new added
clustered points even if adjusting the NoL from 3000 to 5000.
This is because that the number of volunteering users (i.e. 50)
might be a little big for the cell with side length 400m. When
one request is sent, if too many users response, the sampling
locations are too denser which results in the less NoLC and the
slow growth of the quality. Therefore, it is highly necessary to

TABLE I: Map Generation Results with Two Data Sets

DataSet NoL NoLC DM Variance |Ê| Length Density

Wuxi

500 221 128.40m 421.18m 96 3776.9m 17.09
1000 230 38.44m 205.94m 157 4941.1m 21.48
1500 273 25.31m 178.13m 256 8153.9m 29.87
2000 432 6.04m 7.83m 416 13430m 31.09
2500 594 5.53m 4.26m 578 20186m 33.98

Shanghai

500 273 8.93m 15.92m 246 7041.3m 25.79
1000 304 8.01m 15.22m 277 6424.2m 21.13
2000 310 7.79m 15.05m 284 6335.6m 20.44
3000 320 7.43m 14.86m 292 7100.6m 22.19
4000 326 7.34m 14.73m 299 7893.0m 24.21
5000 332 7.38m 14.6m 307 7945.6m 23.93

(a) Wuxi user data (b) Shanghai user data

Fig. 11: Recovered individual trace by one user within one day

select appropriate parameters based on real situation, e.g. the
number of users, the cell side length and so on.

C. Evaluation of Privacy Protection

We examine the performance of privacy protection by
observing the individual recovered trace.

We set the privacy quality (i.e. γ
′
) to be one. For simplicity

purpose, each volunteering user exploits exactly same privacy
protection quality. We randomly choose a user’s reported
locations from Wuxi data and Shanghai data, then use Crust
to estimate their corresponding trace within a day. Fig. 11
illustrates the recovered individual trace. Clearly, these two
graphs contain many separated segments and points. This
suggests that even if the server can effectively and accurately
recover the unobserved map, it is impossible to infer each
volunteering user’s private trace.

V. RELATED WORK

Map Generation: Nowadays, many mapping projects with
the crowdsourcing activities have been successfully imple-
mented, e.g. OpenStreetMap [14] and Google Map Maker
[15]. Recently, Wang et al. develop an application named
CrowdAtlas [2] to automate outdoor map update based on user
traces, either individually or crowdsourced. Shen et al present
Walkie-Markie [16] to generated indoor map based on user
trajectories and use Wifi-Marks based on the RSS trend to
locate. None of these protects user privacy and theoretically
assures the map quality.

Curve Reconstruction: α-shape is one of the curve re-
construction methods to uniquely determine a polytope by a
finite point set and a parameter α. However, the parameter
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α must be chosen experimentally and is constant during the
recovery. γ-neighborhood graph [17] needs that the sampling
density should be the same in each part of the curve. Another
method β-Skeleton [18] is similar to γ-neighborhood graph
except that the radius of the forbidden region of two points in
β-Skeleton is the same. Furthermore, it is like α-shape that β-
Skeleton needs to choose an appropriate threshold β to ensure
the results of curve reconstruction.

Privacy: Prior work has considered preserving privacy by
four main strategies.

(1)Restrict access: Users can specify rules automatically to
decide whether to release data [19][20], e.g. MaskIt [1] defines
privacy with respect to sensitive contexts specified by users
and can be preserved by filtering releasable context stream.
However, malicious attackers can still intercept user data.

(2)Fabricate data: It makes users generate false data (e.g.
dummies [21]) to send to service providers, e.g. PMP [22]
protect privacy for iOS by providing a random or fake location
to prevent profiling. However, it compromises data authenticity
and could bring serious damage for some services.

(3)Anonymous location information: k-anonymity model
[23] removes some features such that each item is not dis-
tinguishable among other k items, but its data have huge
overhead. Mix zone model [24][25] assigns users in mix zones
different pseudonyms to hide their paths, but it still permits the
operation of many short term location aware. Furthermore, user
behavior patterns are still predictable with low user density and
most of them require a trusted middleware system.

(4)Cryptography: Secure multi-party computation [26], a
subfield of cryptography, is to created methods that enables
parties to jointly compute a function over their inputs, while
at the same time keeping these inputs private. However, it
consumes too many computing resources.

VI. CONCLUSION AND FUTURE WORK

In this paper, we jointly studied the high-quality map
generation and the policy of privacy-preserving in the context
of participant sensing. We viewed the map as a smooth curve
in the 2D plane and leveraged the process of constructing Crust
to be the map estimator. Based on the γ-sample condition
of the Crust, we designed, implemented, and evaluated PMG
for high-quality map generation with privacy-protection for
each volunteer. Our scheme meets the individual users privacy
demand and is robust to inherent noises of GPS data. The
effectiveness of our proposed algorithms is validated through
extensive numerical experiments over two real city-scale GPS
data traces. We showed that the server can generate a high-
quality map with error bounded by 10m with a noisy sample
point about every 7.5m.

There are many future directions to pursue. One is, if
we have certain prior knowledge about the road segments,
whether it is possible to design more efficient algorithm to
choose the locations with maximal gains in estimating the
underlying map. We also would like to design schemes that
can recover more detailed road conditions such as one-way
road or two-way road, the traffic load distributions of different
road segments.
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