
Efficient Algorithms for K-Anonymous Location

Privacy in Participatory Sensing

Khuong Vu and Rong Zheng Jie Gao

Department of Computer Science Department of Computer Science

University of Houston Stony Brook University

Houston, TX 77204 Stony Brook, NY 11794

E-mail: {khuong.vu, rzheng}@cs.uh.edu jgao@cs.stonybrook.edu

Abstract—Location privacy is an important concern in par-
ticipatory sensing applications, where users can both contribute
valuable information (data reporting) as well as retrieve (location-
dependent) information (query) regarding their surroundings.
K-anonymity is an important measure for privacy to prevent
the disclosure of personal data. In this paper, we propose a
mechanism based on locality-sensitive hashing (LSH) to partition
user locations into groups each containing at least K users
(called spatial cloaks). The mechanism is shown to preserve both
locality and K-anonymity. We then devise an efficient algorithm
to answer kNN queries for any point in the spatial cloaks of
arbitrary polygonal shape. Extensive simulation study shows
that both algorithms have superior performance with moderate
computation complexity.

I. INTRODUCTION

With the proliferation of mobile devices loaded with rich

sensory peripherals, participatory sensing – outsourcing sens-

ing tasks to a large group of mobile users (a crowd) – has

gained much attention in a variety of applications including,

real-time traffic and road monitoring, reporting spots of oil

spill, finding the best biking routes, and scoring 3G broadband

services, etc. In participatory sensing, a user can both con-

tribute valuable information (data reporting) as well as retrieve

(location-dependent) information (query). Privacy is an impor-

tant issue in data sharing. In participatory sensing, privacy con-

cerns arise from two aspects. The first is in the data reporting

process. It is often desirable to build an understanding/a model

of the sensed environment without the precise knowledge of

individual’s information. Many techniques have been proposed

in literature by transforming the data (e.g., adding noise [2],

fitting [3] etc.) The second is in the query process, where a user

sends location sensitive queries regarding his surroundings

(e.g., “where is the closest pub?”). Location privacy mainly

concerns with two objectives: hide user locations, and hide

user identities, which avoids association of users with their

activities (e.g., “who is requesting the nearest pub?”). Our

work deals with the latter.

K-anonymity is a measure of privacy first introduced by

Sweeney et al. [20] to prevent the disclosure of personal data.

A table satisfies K-anonymity if every record in the table

is indistinguishable from at least K − 1 other records with

respect to every set of quasi-identifier attributes. In the context

of location privacy, the location attribute can be viewed as a

quasi-identifier. K-anonymous location privacy thus implies

Fig. 1: Framework for K-anonymous location privacy. kNN stands
for the k-nearest neighbor query. NN stands for “nearest neighbor”.

that the user’s location is indistinguishable from at least K−1
other users. To achieve K-anonymous location privacy, one

common approach is to incorporate a trust server, called the

anonymizer who is responsible for removing the user’s ID and

selecting an anonymizing spatial region (ASR) containing the

user and at least K − 1 users in the vicinity (Figure 1(b)).

Another purpose of ASR is to reduce the commnication cost

between the anonymizer and the service provider, and the

processing time at service provider side. This process is also

called “cloaking” as it constructs a spatial cloak around the

user’s actual location. The anonymizer forwards the ASR

along with the query to the (untrusted) location based service

(LBS) (Figure 1(c)), which processes the query and returns to

the anonymizer a set of candidate point of interests (POIs)

(Figure 1(e)). The anonymizer removes the false hits and

forwards the actual result to the user (Figure 1(f)(g)).

As shown in Figure 1, in achieving K-anonymous location

privacy, it is crucial to devise quality spatial cloaks at the

anonymizer and efficient searching algorithms at the LBS.

Intuitively, the cloaks produced should be locality preserving

– close to the user location, and small in size since both

the computational complexity of the search algorithms and

the number of POIs returned increases with the size of the

cloak. In this paper, we make the following contributions

in K-anonymous location privacy for participatory sensing

applications:

• Locality-preserving cloaking: We utilize locality-

sensitive hashing (LSH) [5] to project the location data

to a high-dimension space, which is then partitioned into

cells that contain at least K users. LSH has the property

that location proximity is preserved during the mapping.

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2399

• Efficient and flexible search algorithm: We devise a

search algorithm for finding k-nearest POIs of simple

polygonal cloaks that takes O(log n + Kn + m) worst-

case running time where m is the number of vertices in

the polygonal cloak, n is the number of the POIs, and K
is the anonymity level. (In fact, the exact running time

is O(log n + e + m), where e << O(Kn), as shown

later.) Contrary to the general belief that complex cloak

shapes drastically increase the running time of the k-
nearest neighbor (kNN) search, the complexity of our

proposed algorithm depends only linearly on m.

The rest of the paper is organized as follows. In Section II,

we introduce the terminology used and the attacker model. The

LSH-based cloaking algorithm is described in Section III, and

the search algorithm is presented in Section IV. In Section V,

we present evaluation results. In Section VI we provide a

review of related work for spatial anonymization. Finally, we

conclude the paper in Section VII with the list of future work.

II. BACKGROUND

In this section, we first introduce necessary terminologies

used throughout the paper and the attacker model, then we

give an overview of Voronoi diagram (VD), which is used in

the proposed searching algorithm.

A. Attacker model

Similar to [11], we assume that an attacker can i) in-

tercept the ASR, ii) know the cloaking algorithm used by

the anonymizer, and iii) obtain the up-to-date locations of

all users. The first assumption implies that either the LBS

is not trusted, or the communication channel between the

anonymizer and the LBS is not secure. The second assumption

is common in the literature since the data security techniques

are typically public. The third assumption is motivated by the

fact that users often issue queries from the same locations

(home, office), which could be identified through physical

observation, triangulation, telephone catalogs, etc.

B. K-anonymity and reciprocity

We consider N users distributed on a 2-D bounded area

B. The set of user locations is denoted by S. The proposed

methodologies can be easily extended to higher-dimensional

space. We assume queries are one-time (or snapshot queries)

such that the attackers cannot utilize historical data to make

further inference. Privacy in publishing trajectory data has

been considered in [21] and is out of the scope of this paper.

K-anonymity is satisfied if the attacker can identify the user

that issues a query with probability not exceeding 1/K. Reci-

procity is introduced by Kalnis [11] as a sufficient condition

for K-anonymity as follows:

Definition 1: Consider a user U issuing a query with

anonymity degree K, and anonymizing spatial region ASR.

ASR satisfies reciprocity if (i) it contains U and at least K−1
additional users, and (ii) every user in ASR also generates the

same ASR for the given K.

(a) Order-1 VD. (b) Order-2 VD. Shaded is the
Voronoi cell corresponding to sites
p6 and p7.

Fig. 2: An example of high order VDs.

Reciprocity necessarily implies a fixed partition of B such

that every partition contains at least K users forming the cloak

of the associated users. Though reciprocity is not necessary to

ensure K-anonymity, it is easy to verify and has been widely

adopted in literature.

C. High-order point Voronoi diagrams

The order-1 VD of a set of points, also known as sites,

in the plane is a tessellation that divides the plane into non-

overlapping regions called Voronoi cells (or cells for short),

each corresponding to a site. A Voronoi cell is the locus of

points that are closer to the corresponding site than to the

others. Similarly, if we divide the plane into regions, each

being the locus of points closer to a set of k sites than to the

others, we have an order-k VD. Figure 2 gives examples of

order-1 and order-2 VDs of 7 sites. As shown in Figure 2b,

the shaded area is an order-2 Voronoi cell corresponding to

sites p6 and p7. The distance from any point p in this cell to

p6 and p7 is smaller than those to other sites. In other words,

d(p, p6) ≤ d(p, pi) and d(p, p7) ≤ d(p, pi), where pi 6= p6, p7,
and d(·, ·) is the Euclidean distance between two points.

Construction of high order VDs requires identifying groups

of sites, whose high order Voronoi cells are not empty. In the

example shown in Figure 2, there exists no point p such that

d(p, p2) ≤ d(p, pi) and d(p, p5) ≤ d(p, pi) for pi 6= p2, p5.
Therefore, the order-2 cell corresponding to {p2, p5} does not

exist. In his seminal paper [14], Lee proposed an incremental

approach to construct order-k VDs of n sites in O(k2n log n)
time. Due to its incremental nature, Lee’s algorithm in fact

constructs k diagrams from order-1 to order-k.

Order-k VDs can be used to answer kNN query efficiently.

Given a query point q, the k nearest neighbors correspond to

sites of the order-k Voronoi cell that contains q. Locating a

point in a Voronoi diagram of n sites takes O(log n) time by

various techniques [6], [13].

III. LSH BASED CLOAKING

As discussed in Section II, given a query from location q,
the anonymizer needs to construct a spatial cloak that contains

q and K − 1 other user locations. To achieve reciprocity,

2400

the anonymizer first partitions all user locations into non-

overlapping buckets each containing at least K users. Then,

user locations in the bucket containing q are enclosed in a

geometric shape that is locality-preserving. In this section,

we first show by an example that satisfying both locality-

preservation and K-anonymity is not trivial. Then, we propose

a LSH based approach for cloaking.

A. A naive approach to cloaking

In order-K VDs, each cell corresponds to a set of K sites

that are spatially close. Therefore, order-K VD cells appear

to be natural candidates for cloaking. Specifically, we first

construct an order-K VDs of all user locations S. A cloak

can then be formed from a set of sites H of a non-empty cell,

which is randomly chosen such that H contains the query

location. Consider the example shown in Figure 3. There are

11 user locations in the field. Assume user location p3 requires
2-anonymity. The order-2 VD of S is given in Figure 3. A cell

is randomly chosen whose sites contain p3. Without loss of

generality, let the resultant cell be H = {p6, p3}
1. H con-

stitutes a cloak for p3. Unfortunately, this approach does not

satisfy K-anonymity if the attacker knows all user locations

and the cloaking algorithm. In this case, the probability that

the attacker can correctly guess p3 can be derived using the

Bayes formula:

P (p3|H) =
P (H|p3)× P (p3)

P (H)

=
P (H|p3)× P (p3)

∑

pi∈S P (H|pi)× P (pi)

The numbers of cells whose sites contain p3 and p6
are 4 and 5, respectively. Therefore, P (H|p3) = 1/4 and

P (H|p6) = 1/5. Additionally, P (H|pi) = 0 for pi 6= p3, p6.
We further assume that each user has equal probability to issue

the query, and thus P (p3) = 1/11. Hence,

P (p3|H) =
1

4
× 1

11

1

11
× (1

4
+ 1

5
)

> 1/2

Clearly, 2-anonymity is violated. The main reason is that

different user locations may contribute to different numbers

of cells in the order-K VD. Thus, although the approach

is locality-preserving, it does not satisfy K-anonymity. This

motivates us to seek for a method that is both locality-

preserving and K-anonymous.

B. Locality-sensitive hashing based approach to reciprocity

A straightforward approach to reciprocity is to partition the

user locations into buckets of adjacent points. For instance,

given S, we randomly choose a point p and group it with

its (K − 1) nearest neighbors. The process continues until all

points are assigned to some buckets. This approach has two

disadvantages. First, it fragments the dataset and is not locality

1For the ease of presentation, we abuse the notation and use H to refer to
both the set of sites and the Voronoi cell.

p1

p2 p3
p4

p5 p6
p7 p8

p9 p11

{p6, p3}

{p6, p7}

{p6, p10}

{p6, p2}

{p6, p5}

p10

{p3, p7}

{p3, p2} {p3, p4}

Fig. 3: The order-2 Voronoi diagram of 11 locations. {·, ·} shows the
locations corresponding to a cell.

preserving. Points in the same bucket may be not neighbors in

the original dataset, especially for large K’s. This is illustrated

in Figure 4(a). In the example, K = 4 and point p is chosen

initially. Three neighbors of p then form a cloak, shown in the

rectangle. After the four points are removed from the dataset,

the cloak of the remaining points is large. In this example, the

partition as shown in Figure 4(b) is clearly more desirable.

Second, the time complexity is high. It is easy to see that the

method takes O(n
2

K
log(n

2

K
)) running time. We show shortly

an approach that achieves desirable partitions with lower time

complexity thanks to locality-sensitive hashing (LSH) [5].

�
�
�
�

��
��
��
��

����

��
��
��
��

�
�
�
�

��

���� ��

p

(a)

��
��
��
��

�
�
�
�

��

�
�
�
�

��
��
��
��

������

��

(b)

Fig. 4: Fragmentation in the naive nearest neighbor partition.

LSH hashes the input data so that similar points are mapped

to the same buckets with high probability. Formally, for a

domain S, a function family H = {h : S → U} is called

(r1, r2, p1, p2) sensitive with distance measure D if for any

v, q ∈ S: if d(v, q) < r1 then PH[h(q) = h(v)] ≥ p1; if
d(v, q) > r2 then PHh(q) = h(v) ≤ p2, where p1 > p2,
r1 < r2, and d(v, q) is the distance between v and q in

D. There are several LSH families. In this work, we use

the LSH family based on p-stable distributions [24] proposed

in [5]. The idea of the LSH scheme is as follows. Consider

two input vectors v1 and v2, and a vector a whose entries

are chosen independently from a p-stable distribution X. The

distance between their projections on a, (a · v1 − a · v2), is
distributed as ||v1 − v2||pX. By dividing the projected points

into equal-width buckets of size r, vector a gives rise to a

locality-sensitive hash function, where ha(q) = q ·a. However,
though similar points are hashed into the same bucket with

high probability, the reverse does not hold, i.e., a bucket may

contain faraway points. A solution to this problem is to use

multiple hash functions. That is, q is hashed by L functions

2401

gl(q) = 〈h1(q)〉, l = 1, 2, . . . , L.2 Multiple hash functions lead

to a better separation of the data points as illustrated in the

example in Figure 5. The projections of points p1, p2, p3, and
p4 in the plane onto line a are close, while those corresponding

to line b are more separate. The use of the two vectors a and b
maps p1 and p2 into the same bucket, and p3 and p4 to another

bucket. It has been shown in [5] that given an error rate ε, L
can be chosen such that r-near neighbor queries are answered

correctly with the error rate lower than ε.
LSH is useful in devising spatial cloaks due to its locality-

preserving property. Instead of finding r-near neighbors, the
canonical applications of LSH, we wish to partition the data

set into groups of at leastK elements. Since the partition using

a single hash function may contain many distant points, we

use L hash functions g1, g2, . . . , gL instead. The LSH-based

partitioning algorithm is summarized in Algorithm 1. We first

build sorted lists l1, . . . , lL of hashed values of S from the L
hash functions. Then, each list is partitioned into buckets each

containing K elements (the last one may contain more than K
elements). To avoid fragmentation, we always start from the

first available point q on l1. q’s (K− 1) nearest neighbors are
extracted from U(q) the union of the L buckets containing q in
the respective lists. Due to the properties of LSH, q’s nearest
neighbors are in U(q) with high probability, and, moreover,

the size of U(q) is not high. In our implementation, the 2-

stable Gaussian distribution proposed in [5] is adopted for

2-D location data.

��

����

��

��
��
��
��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

������
������
������
������
������
������

������
������
������
������
������
������

a

pb1

pb3
pb2

pb4

b
p1 p2

p3p4

pa2
pa3

pa4

pa1

Fig. 5: Hashing 4 points in the plane with 2 hash functions, a and b.

We now analyze Algorithm 1’s running time. Lines 1

to 3 sort the data set in L lists, which costs O(Ln log n),
where n = |S| is the cardinality of the dataset. Line 12

requires sorting elements from L buckets, which takes at

most O(Lk logLk). (Note that the exact number of distinct

elements is generally lower). While loop (lines 4 to 14)

executes ⌊n/k⌋ times. Therefore, the worst-case running time

complexity of Algorithm 1 is O(Ln log n). Since number

of distinct elements sorted in line 12 is low, Algorithm 1’s

running time is expected to be inversely proportional to

anonymity level K.

User locations produced by Algorithm 1 are then used to

form spatial cloaks. The search algorithm introduced in Sec-

tion IV allows simple polygon cloaks as input. Convex polyg-

onal cloaks are popular since they are locality-preserving, and

more importantly, the complexity of kNN queries of convex

2In the original LSH scheme, each hash function maps a data point in R
d

to the R
k . Here we choose k = 1.

Algorithm 1: LSH-based location partitioning

Data: A set of points S, K-anonymity
Result: T , a partition of S into groups of size K, except for

the last one
1 generate L hash functions, each is a vector whose entries are
chosen from a Gaussian distribution;

2 compute and maintain L sorted lists {l1, . . . , lL} of hash values
of S;

3 T ← ∅;
4 while sorted lists are not empty do
5 Partition li into buckets of size K, i = 1, . . . , L;
6 q ← the first element of l1 ;
7 Ω← ∅;
8 for i = 1 to L do
9 b← the bucket containing q in li;

10 Ω← Ω
⋃

b;
11 end
12 NNs← q

⋃
(K − 1) nearest neighbors of q in Ω;

13 T ← T
⋃

NNs;
14 remove elements of NNs from the L sorted lists ;
15 end
16 return T ;

polygonal cloaks is roughly proportional to the number of

edges. However, forming the convex cloak of k users takes

O(K logK) time, which only needs to be done one time as

long as the user locations do not changes. Alternatively, the

minimum bounding rectangle can be constructed in O(K) time

to form the spatial cloaks [22].

IV. K-NEAREST NEIGHBOR SEARCH FOR POLYGONAL

CLOAKS

In this section, we first give the necessary and sufficient

condition for determining the kNN of a polygonal cloak; and

then propose a kNN search algorithm. The algorithm can be

easily extended to circular cloaks and be omitted due to space

limit.

A. Necessary and sufficient conditions for the kNN set

A spatial region C is said to intersect with a cloak R if

there exists a point p that is interior to both R and C, and a

point p′ that is interior to C but exterior to R. In other words,

C intersects with R iff C 6⊂ R and R∩C 6= ∅. C is inside R
if C ⊂ R. We use the term overlap when C intersects with

R or lies completely inside R.

Given a cloak R, we search for the set P of POIs that

contains the set of k-nearest POIs of any location in the cloak,

i.e., P should be sufficient. Moreover, P should be necessary,

that is, any POI in P must be in the set of k nearest POIs of

some location in the cloak. By the definition of order-k VDs

(Section II), the set of sites associated with the Voronoi cells

that intersect with R must be in P . Next, we show formally it

is both necessary and sufficient to consider these order-k VD

cells.

Lemma 1: Consider a spatial cloak R of a query point q.
Let U be the set of POIs associated with the Voronoi cells

of the order-k VD of POIs that intersect with R. U uniquely

characterizes the candidate set for the k nearest POIs of q.

2402

Proof: To show that U is necessary, we prove by contra-

diction that no POI can be removed from U . Assume u ∈ U
can be removed from U . By the construction of U , there exists

a cell C of sites H such that u ∈ H and C ∩R 6= ∅. Choose
any point p ∈ C. Clearly, u is one of the k-nearest neighbor
of p, a contradiction.

To show that U is sufficient, consider a POI u 6∈ U and is

one of the k-nearest neighbor of some point p ∈ R. By the

definition of order-k VDs, there exists a cell C corresponding

to sites H such that u ∈ H and p ∈ C. Thus, we have a

contradiction.

B. Search algorithm

Lemma 1 establishes that to determine the kNN of a cloak

R, it suffices to identify the order-k cells that overlap with

R, and take the union of their corresponding POIs. Next, we

first give a straw-man approach that has high computation

complexity and then present a more efficient algorithm that

utilizes order-1 VDs.

To find the order-k cells overlapping with R, one can

start with one such cell, say, C and iteratively explores its

neighboring cells that overlap with R. The procedure stops

when no such neighboring cells can be found. To find C,

we choose an arbitrary point p in R and query the cell

that contains p. Given an order-k VD of n sites, this takes

O(log n). Testing the overlap of a cell with the cloak involves

checking the relative position of the cell’s edges with respect

to the cloak. Let T (m) be the running time of testing whether

an edge intersects with R, where m is the number of vertices

ofR. This procedure takes O(logn+ek ·T (m)+s), where ek is

the number of Voronoi edges of the order-k cells that overlap

with the cloak, and s is the number of POIs returned. Clearly,

ek increases as R gets larger. In Section V, we implement

this method (called naive search) as a baseline for comparison

purposes.

In our proposed approach, we reduce the complexity of the

above procedure by considering cells that intersect with R
and cells that are inside R separately. Furthermore, we show

that in the latter case, it suffices to examine order-1 cells,

which is generally k times less than the number of order-

k cells. To see so, let us consider an example in Figure 6,

which asks for the 2-nearest POIs of a rectangle cloak (in

green). Figures 6(a) and (b) show respectively order-2 and

order-1 Voronoi diagrams of 12 POIs, P = {p1, . . . , p12},
which are also the candidate POIs of the cloak. In Figure 6a,

the POIs given by the cells intersecting with the cloak (darker)

is U1 = S\{p8}, while the 11 cells inside R (white) only

contribute one additional POI, namely, p8. On the other hand,

the set of POIs associated with the two order-1 cells inside the

cloak is U1 = {p5, p8}. Obviously, U1

⋃

U2 gives all candidate

2-nearest POIs. However, we observe the number of order-1

cells inside the cloak is much smaller (and thus requires less

time to identify). We state the results formally as follows:

Lemma 2: Given a simple polygon cloak R and the order-k
VD of a set P of POIs, V k(P). Let I ⊂ P be the set of sites

whose order-1 cells are inside R. The following holds:

⋃

Ck
j

inside R

Hk
j ⊂ I ∪





⋃

Ck
i

intersectwith R

Hk
i





where Ck
i and Hk

i denote the order-k Voronoi cell i in V k(S),
and the set of associated sites, respectively.

Proof: We prove by induction on k. Clearly, the claim

is true when k = 1. Assume it holds when k = l. We prove

that it holds when k = l + 1. From [14], V l+1(S) can be

constructed from V l(S) by tessellating order-l cells Cl
i’s

using the sites associated with Cl
i’s neighbors. Thus, the

Voronoi cell Cl+1

i inside R must be created by tessellating

cells Cl
j’s inside R or intersecting with R with sites

corresponding to Cl
j’s neighbors, which are either inside R or

intersect with R. Therefore,
(

⋃

C
l+1

j
inside R

H l+1

j

)

⊂
(

⋃

Cm
l

inside R
H l

l ∪
⋃

Cl
i
intersect R

H l
i

)

⊂
(

I ∪
(

⋃

Cm
i

intersect R
H l

i

))

. The cells of order-(m + 1)

that intersect with R are created by tessellating order-

m cells that intersect with R or are inside R. Thus,
(

⋃

Cl
i
intersect R

H l
i

)

⊂
(

⋃

C
l+1

i
intersect R

H l+1

i

)

.

This implies that
(

⋃

C
l+1

j
inside R

H l+1

j

)

⊂
(

I ∪
(

⋃

C
l+1

i
intersect R

H l+1

i

))

.

p1
p2

p3

p6

p5

p4

p7

p9

p8

p10
p11

p12

{p1, p4}

{p1, p2}

{p2, p3}

{p2, p5}

{p3, p6}

{p9, p12}

{p11, p12}{p10, p11}
{p7, p10}

{p4, p7}

{p6, p9}

{p3, p5}

C1

C2
C3 C4

v3v4

v1 v2

C5

(a) Order-2 Voronoi diagram of 12
POIs. Cells intersecting with the cloak
is shown darker.

p1
p2

p3

p4

p5
p6

p7
p8

p9

p10
p11 p12

(b) The corresponding order-1
Voronoi diagram of the 12 POIs and
the cloak.

Fig. 6: Illustration of Lemma 2: finding 2-nearest POIs. The cloak is
presented by the green rectangle v1v2v3v4. {·, ·} presents the POIs
associated with a cell. C1, . . . , C4 show four of the order-2 cells
intersecting with the cloak.

Therefore, in determining the k-nearest POIs of cloak R,

we devise procedures to find POIs associated with order-k
cells intersecting with R and order-1 cells inside the cloak,

respectively.

Evaluating candidate k-nearest POIs from cells intersect-

ing with the cloak: First, we identify the cells intersecting

with the cloakR by tracingR’s boundary. W.l.o.g., we assume

that vertices v1, v2, . . . , vm of the cloak, and Voronoi vertices

of each cell are in a counter-clockwise order. We start from a

vertex v1 of R and find the Voronoi cell containing v1. Let it

2403

be C1. Note that, since Voronoi cells are convex, they intersect

with a line segment at most twice. A Voronoi cell that has less

than two intersections with a line segment must contain at least

one of its endpoints. As a result, we can test if v2 is in C1.

If yes, we conclude that the line segment v1v2 is in C1 and

continue to the next line segment v2v3. Otherwise, v1v2 must

intersect with one unique edge of C1, which is a bisector of

C1 and one of its neighboring Voronoi cell, say C2. C2 and C1

only differ in one site as given in the following lemma [14]:

Lemma 3: Let H1 and H2 be the sets of sites corresponding

to two adjacent cells C1 and C2 in an order-k Voronoi diagram.

Then, H1 = H
⋃

{s1} and H2 = H
⋃

{s2}. Furthermore, s1
and s2 construct the bisector that contains the edge of C1 and

C2.

In other words, as we move among neighboring cells

intersecting with the cloak, only one POI is added at a time.

The above procedure is repeated until the first vertex v1 is

encountered again. Let the resulting set of POIs be U . Consider

the example in Figure 6a. Assume we start from cell C1, POIs

p1 and p2 are included in U . As we traverse from v1 to v2,
we move to C2, which differs from C1 by p5. Similarly, C3

differs from C2 by p3, and so on.

���� ����
pin

ej
pout

ei C

ei+1 ei−1
R

Fig. 7: Evaluation of the position of edges of cells in B regarding
R. C denotes a cell in B.

Evaluating candidate k-nearest POIs from cells inside the

cloak: The next step is to retrieve the order-1 cells inside R
and compute the corresponding candidate POIs.

We discuss the generalized problem of identifying the order-

k cells I that are inside the cloak. The idea is to find the cells

B intersecting with R, which act as a boundary for the cells

inside R. We divide I into those that are adjacent to cells in

B (I1), and the rest, which are not (I2). The cells in I1 must

share edges with cells in B, and these edges must be inside

R. Identifying edges of cells in B that are inside R can be

done as follows. Consider a cell C that intersects with R. As

we move along R’s boundary in a counter-clockwise order,

we enter C at point pin and exit at point pout. Although C
may intersect with R at more than 2 points, we can always

identify such pairs (albeit multiple of them). Now, we observe

that, as one moves along C’s boundary from pout to pin in the

counter-clockwise direction, the edges of C encountered that

do not include pout or pin must be inside R. This allows us

to identify the cells of I1. An illustrative example is given in

Figure 7. Starting from point pout in edge ei where the cloak

R exits from C, we trace along C in the counter-clockwise

direction (arrow) until we reach point pin on edge ej where

R enters C. Edges ei+1, . . . , ej−1 are inside R.

To find I2, we simply iterate through the neighbors of cells

that are inside R until no new inner cells are encountered.

Consider the example shown in Figure 8. The cloak R is

given by the green polygon. We start at vertex v1 of R,

which lies in cell C1. Applying the procedure described in the

previous section, we can retrieve the shaded cells C1, . . . , C4

that intersect with the boundary of R. Next, cells inside R
that are adjacent to cells of B, I1, are identified, shown in

white cells. As shown in the figure, those cells are adjacent to

cells in B at the edges that lie completely inside R. Finally,

remaining cells inside R are identified by retrieving neighbors

of cells in I1, shown in red.

We summarize the procedure in Algorithm 2.

v1

C2

C4

v2

C1

R

C3

Fig. 8: Evaluation of the position of edges of cells in B regarding
R. C denotes a cell in B.

Algorithm 2: Computing the cloak’s candidate K nearest

POIs.
Data: A Voronoi diagram V , convex polygon cloak R
Result: The set U of K-nearest POIs associated with cells

overlapping R
/* POIs associated with order-k cells

intersecting with R */

1 B ← order-K cells intersecting with R;
2 U ← POIs associated with B;
/* POIs associated with order-1 cells

inside R */

3 B′ ← order-1 cells intersecting with R;
4 curr cells← order-1 cells next to B′ that are inside R;
5 U ′ ← POIs associated with curr cells ;
6 B′ ← B′ ∪ curr cells;
7 while curr cells 6= ∅ do
8 curr cells← curr cells’s neighbors inside R that are

not in B′ ;
9 U ′ ← POIs associated with curr cells ;

10 B′ ← B′ ∪ curr cells;
11 end

12 U ← U ∪ U ′;

Complexity analysis: We now analyze the running time of

Algorithm 2. Let m be the number of R’s vertices. Lines 1

and 3 compute the cells of order-k (B) and order-1 (B′)

intersecting with R. It first locates the cell containing a cloak’s

vertex, which costs O(log n). Then, it iterates through all line

2404

segments of the cloak R and all edges of the order-K and

order-1 cells intersecting with R, thus costs O(eK + e1+m),
where ek is the number of edges of order-k cells intersecting

with R. Line 4 computes order-1 cells I2 that are interior to

R and adjacent to B′, which iterates all edges of cells in B′.

Line 8 computes the other order-1 cells that are inside R,

which costs the number of their edges. Let C be the set of

order-k cells intersecting with R and order-1 cells overlapping

R Computing U (lines 2, 5, 9) takes O(s + c), where s is

the number of POIs returned by the algorithm, and c = |C|.
(Note that (eK+e1) is smaller than the number of C’s edges).

Therefore, Algorithm 2 costs O(log n + s + e + m) running

time, where e is the number of C’s edges. Since the number

of edges in an order-K Voronoi diagram is O(Kn) ([14]), e
is bounded by O(Kn). In practice, e << O(Kn) due to the

fact that the cloak is small and usually convex.

V. EVALUATION

Results of hashing-based cloaking and POI search algo-

rithms have been implemented in CGAL [1], a computational

geometry library. All simulations run on a Core2 Duo 1.7Ghz

Linux workstation.

A. Cloaking

In the first set of experiments, we compare the performance

of the proposed cloaking method with the Hilbert cloaking

method. In the simulations, n user locations are randomly

placed in a 1000× 1000 area.

Figure 9 compares the performance of the two methods with

respective to the level of K-anonymity where the number of

users where n fixed at 1000 and K fixed at 10, respectively.

The y-axis gives the size of the cloak as the percentage of the

size of the area. Also shown in the figures are the error bars

corresponding to the maximum and minimum cloak sizes. As

can be observed in Figures 9a and 9b, the LSH-based approach

is significantly better than the Hilbert curve-based method.

As K increases, the cloak size increases roughly linearly in

both methods. With more users, it is expected that the cloak

size decreases linearly. This trend is more prominent with the

proposed LSH-based method.

The hashing-based method is efficient computationally. Fig-

ure 10 plots the running time of the hashing-based cloaking

method when the number of users varies from 1000 to 10000.

As shown in the figure, the hashing-based method’s running

time is low even with a large number of users. Somehow,

counter-intuitively, the running time of the algorithm decreases

as the anonymity level K increases since it is inversely

proportional to the anonymity level as indicate in Section III.

To evaluate the impact of the number of hash functions

used, we randomly generate 1000 locations, and issue 10-

nearest POI and 20-nearest POI queries. The number of hash

functions, L, varies from 2 to 45. As shown in Figure 11, the

higher the number of hash functions, the smaller the cloak

areas produced. However, the cloak areas slightly decrease as

the number of hash functions increases from 10 to 45. Similar

to the results in Figure 9a, higher K implies large cloaks.

4 6 8 10 12 14 16
0

0.5

1

1.5

2

K

C
lo

a
k
 a

re
a
 p

e
rc

e
n
ta

g
e
 (

%
)

Hashing cloak

Hilbert cloak

(a) The number of hash functions L is
20. n is fixed at 1000. K varies from
5 to 15.

500 1000 1500 2000
0

0.5

1

1.5

2

n

C
lo

a
k
 a

re
a
 p

e
rc

e
n
ta

g
e
 (

%
)

Hashing cloak

Hilbert cloak

(b) The number of hash functions L

is 10. K is fixed at 10. n varies from
500 to 2000.

Fig. 9: Performance of Hilbert curve-based method and hashing-based
method on various levels of K-anonymity and number of users (n).

5 10 15
0

0.5

1

1.5

2

K

R
u

n
n

in
g

 t
im

e
 (

s
)

1000 user locations
5000 user locations
10000 user locations

Fig. 10: Running time of hashing-based cloaking method. The
number of hash functions L is 20.

We compare the resultant candidate POI set of the proposed

search algorithm corresponding to hashing and Hilbert cloaks.

We vary anonymity level K from 5 to 17 and make queries

with 500 and 1000 POIs. As shown in Figure 12, the number

of POIs corresponding to LSB-based cloaks is smaller than

that of Hilbert cloaks. Moreover, the difference between the

two methods increases as the number of POIs increases from

500 to 1000.

B. kNN Search

Next, we evaluate the performance of the proposed kNN
search algorithm. In the simulations, 1000 POIs are randomly

placed in a 1000 × 1000 area. We compare the running time

with different K-anonymity (also K nearest POIs) and cloak

areas (as the percentage of the total area). The results are

shown in Figure 13. As seen in the figure, the running time is

negligible. The running time increases only moderately as K
or the size of the cloak area increases, which is sharp contrast

with the results in [11].

Figure 14 shows the number of candidate k-nearest POIs.
We evaluate the number of candidate POIs with different cloak

areas and values of k. As shown in the figure, the number of

candidate k-nearest POIs increases approximately linearly as

the cloak area increases since POIs are evenly distributed.

Lastly, we compare the complexity of the proposed al-

gorithm with the naive search algorithm that scans order-k
Voronoi cells. We vary the cloak area and plot the number of

cells processed. As shown in Figure 15, the number of cells

2405

0 10 20 30 40 50
0

1

2

3

4

5

6

L

C
lo

a
k
 a

re
a

 p
e

rc
e

n
ta

g
e

 (
%

)

K=10

K=20

Fig. 11: Hashing-based cloaking performance with different number
of hash functions.

4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

K

N
u

m
b

e
r

o
f

P
O

Is

Hashing cloaking, 500 POIs

Hilbert cloaking, 500 POIs

Hashing cloaking, 1000 POIs

Hilbert cloaking, 1000 POIs

Fig. 12: Number of candidate POIs corresponding to Hilbert and
hashing cloaks.

0 5 10 15
−1

0

1

2

3

Cloak area percentage (%)

R
u

n
n

in
g

 t
im

e
 (

m
s
)

K=5

K=10

Fig. 13: Running time of the proposed search algorithm.

0 1 2 3 4 5 6
10

20

30

40

50

60

70

80

Cloak area percentage (%)

N
u

m
b

e
r

o
f

P
O

Is

4−nearest POIs

6−nearest POIs

16−nearest POIs

Fig. 14: Number of candidate k-nearest POIs.

processed in the proposed method is much lower. Furthermore,

as the cloak area increases, the number of cells processed

by our method increases much slower than that in the naive

search. Figure 15 corroborates the low running time of the

proposed algorithm in Figure 13.

0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

Cloak area percentage (%)

N
u

m
b

e
r

o
f

V
o

ro
n

o
i
c
e

lls

Proposed method

Naive method

Fig. 15: Number of cells processed by the proposed method VS. the
naive (only considers order-k cells).

VI. RELATED WORK

Location privacy in participatory sensing campaign is in-

tensively studied in literature ([4], [17], [18], [9], [19]). In

the scenario proposed in [12], users have access to a list

of data collection sites to and choose the site closest to

them. In the work, Kazemi et al. proposed PiRi, a privacy

framework that utilizes representative participants for range

queries independent of query issuers’ location. PiRi assumes

that participants can trust one another, and thus may subject

to insider attacks.

Privacy in location-based services has drawn much attention

in the database and data mining community in recent years.

An excellent survey can be found in [7]. Existing approaches

broadly fall into two categories: user-side approaches and

approaches that require a trusted server. In the first category,

users anonymize their location-based queries by adding noise

to the location attributes or generating multiple decoys at dif-

ferent locations. One such approach is called SpaceTwist [23].

In SpaceTwist, starting with a location different from the user’s

actual location, the nearest neighbors are retrieved incremen-

tally until the query is answered correctly. The uncertainty

of the user location is roughly the distance from the initial

location to the user’s actual location. SpaceTwist requires

implementation of incremental k-NN query on the server

sides. Furthermore, it does not guarantee K-anonymity if the

resulting uncertain area contains less than K − 1 other users.

With a trusted anonymizer, more sophisticated spatial

cloaking mechanisms can be devised. In Casper [15], the

anonymizer maintains the locations of the clients using a

pyramid data structure, similar to a Quad-tree. Upon reception

of a query, the anonymizer first hashes the user’s location to

the leaf node and then move up the tree if necessary until

enough neighbors are included. Hilbert cloaking [11] uses

the Hilbert space filling to map 2-D space into 1-D values.

These values are then indexed by an annotated B+-tree, which

2406

supports efficient search by value or by rank (i.e., position in

the 1-D sorted list). The algorithm partitions the 1-D sorted

list into groups of K users. Hilbert cloaks though achieving

K-anonymity does not always preserve locality, which leads to

large cloak size and high server-side complexity. Recognizing

that Casper does not provide K-anonymity, Ghinita et al.

proposed a framework for implementing reciprocal algorithms

using any existing spatial index on the user locations [8]. Once

the anonymous set (AS) is determined, the cloak region can

be represented by rectangles, disks or simply the AS itself.

Specialized (LBS-side) algorithms have been proposed for

identifying a candidate set that includes the k nearest neigh-

bors for any location in a convex m-vertex polygon [10].

The authors proposed a sweep-line-based algorithm with

O(mk2n log n) worst-case time complexity, which incurs a

higher complexity than the proposed Voronoi diagram based

approach. In [11], the authors proposed an algorithm for

circular cloaked region with worst-case exponential time com-

plexity. Different from aforementioned work, we propose a

search algorithm with any simple polygonal shape cloak with

improved running time complexity. The algorithm can be

easily extended to handle circular cloaks. Finally, crypto-

graphic approaches have been applied to location privacy,

where one-way hash functions are used to encode user and POI

locations [16]. Both exact and approximate nearest-neighbor

search can be supported at the expense of higher computation

complexity.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed computationally efficient al-

gorithms for constructing spatial cloaks and kNN search of

POIs with the dual objectives of locality preservation and

K-anonymity. We showed through extensive simulations that

the algorithms achieve superior performance with moderate

time complexity are scale well with large input size. The

proposed algorithms are central to protect identity privacy in

participatory sensing applications.

As part of the future work, we plan to devise efficient cloak-

ing algorithms that tighten the conditions for K-anonymity. In

particular, as discussed in Section II, reciprocity is a sufficient

but not necessary condition for K-anonymity. In fact, users

may be assigned to multiple cloaks as long as the probability

of each user in the same cloak is the same. Also of interest are

incremental algorithms that handle gracefully location updates.

VIII. ACKNOWLEDGEMENT

This work is funded by the National Science Foundation

(NSF) under award CNS-0832089.

REFERENCES

[1] CGAL - computational geometry algorithms library.

[2] Dakshi Agrawal and Charu C. Aggarwal. On the design and quan-
tification of privacy preserving data mining algorithms. In PODS

’01: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pages 247–255, New
York, NY, USA, 2001. ACM.

[3] Hossein Ahmadi, Nam Pham, Raghu Ganti, Tarek Abdelzaher, Suman
Nath, and Jiawei Han. Privacy-aware regression modeling of partici-
patory sensing data. In Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems, SenSys ’10, pages 99–112, New
York, NY, USA, November 2010. ACM.

[4] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava. Participatory sensing. In In: Workshop on World-

Sensor-Web (WSW06): Mobile Device Centric Sensor Networks and

Applications, pages 117–134, 2006.
[5] Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme based

on p-stable distributions. In In SCG 04: Proceedings of the twentieth

annual symposium on Computational geometry, pages 253–262. ACM
Press, 2004.

[6] Herbert Edelsbrunner, Lionidas J Guibas, and Jorge Stolfi. Optimal point
location in a monotone subdivision. SIAM J. Comput., 15:317–340, May
1986.

[7] Gabriel Ghinita. Private queries and trajectory anonymization: a dual
perspective on location privacy. Trans. Data Privacy, 2:3–19, April
2009.

[8] Gabriel Ghinita, Keliang Zhao, Dimitris Papadias, and Panos Kalnis. A
reciprocal framework for spatial k-anonymity. Inf. Syst., 35:299–314,
May 2010.

[9] Peter Gilbert, Landon P. Cox, Jaeyeon Jung, and David Wetherall.
Toward trustworthy mobile sensing. In Proceedings of the Eleventh

Workshop on Mobile Computing Systems and Applications, HotMobile
’10, pages 31–36, New York, NY, USA, 2010. ACM.

[10] Haibo Hu and Dik Lun Lee. Range nearest-neighbor query. IEEE Trans.

on Knowl. and Data Eng., 18:78–91, January 2006.
[11] Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Pa-

padias. Preventing location-based identity inference in anonymous
spatial queries. IEEE Trans. on Knowl. and Data Eng., 19:1719–1733,
December 2007.

[12] Leyla Kazemi and Cyrus Shahabi. Towards preserving privacy in
participatory sensing. In 2011 IEEE International Conference on Perva-

sive Computing and Communications Workshops (PerCom Workshops),
pages 328–331. IEEE, March 2011.

[13] David G. Kirkpatrick. Optimal search in planar subdivisions. Technical
report, Vancouver, BC, Canada, Canada, 1981.

[14] Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane.
IEEE Trans. Comput., 31(6):478–487, 1982.

[15] WG Aref MF Mokbel, CY Chow. The new casper: A privacy-
aware location-based database server. 2007 IEEE 23rd International

Conference on Data Engineering, pages 1499–1500, 2007.
[16] Arvind Narayanan, Narendran Thiagarajan, Michael Hamburg, Mugdha

Lakhani, and Dan Boneh. Location privacy via private proximity testing.
NDSS’10, 2011.

[17] Sasank Reddy, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani
Srivastava. A framework for data quality and feedback in participatory
sensing. In Proceedings of the 5th international conference on Embed-

ded networked sensor systems, SenSys ’07, pages 417–418, New York,
NY, USA, 2007. ACM.

[18] Sasank Reddy, Deborah Estrin, and Mani Srivastava. Recruitment
framework for participatory sensing data collections. In Patrik Floréen,
Antonio Krüger, and Mirjana Spasojevic, editors, Proceedings of the

8th International Conference on Pervasive Computing, pages 138–155,
Berlin, Heidelberg, May 2010. Springer Berlin Heidelberg.

[19] Jing Shi, Rui Zhang, Yunzhong Liu, and Yanchao Zhang. Prisense:
Privacy-preserving data aggregation in people-centric urban sensing
systems. In INFOCOM, pages 758–766, 2010.

[20] Latanya Sweeney. k-anonymity: a model for protecting privacy. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., 10:557–570, October 2002.

[21] Manolis Terrovitis and Nikos Mamoulis. Privacy preservation in the
publication of trajectories. In Proceedings of the The Ninth International

Conference on Mobile Data Management, pages 65–72, Washington,
DC, USA, 2008. IEEE Computer Society.

[22] Godfried T. Toussaint. Solving geometric problems with the rotating
calipers. In Proceedings of IEEE MELECON, 1983.

[23] Man Lung Yiu, Christian S. Jensen, Xuegang Huang, and Hua Lu.
Spacetwist: Managing the trade-offs among location privacy, query
performance, and query accuracy in mobile services. In In ICDE, 2008.

[24] V. M. Zolotarev. One-dimensional stable distributions. In Translations of

Mathematical Monographs, volume 65. American Mathematical Society,
1986.

2407

