MPSDataStore: A Sensor Data Repository System for
Mobile Participatory Sensing

Junya Niwa, Kazuya Okada, Takeshi Okuda, Suguru Yamaguchi
Graduate School of Information Science
Nara Institute of Science and Technology
Takayama 8916-5, Ikoma, Nara, Japan

niwa2jun@gmail.com, {kazuya-o, okuda, suguru}@is.naist.jp

ABSTRACT

The development of wireless technologies, such as 3G and
Wi-Fi, and the rapid growth of mobile devices equipped with
sensors have enabled the practical use of Mobile Participa-
tory Sensing (MPS). By gathering and utilizing sensor data
using mobile devices, the deployment cost of services can be
reduced. In the context of MPS, it is important to establish
a method of storing and locating sensor data collected by
millions of mobile devices.

In this paper, the development of a sensor data repository
system for a large-scale MPS platform is proposed. By stor-
ing sensor information in the mobile device’s storage, the
storage cost can be distributed. The proposed method of
tracking the acquisition locations of sensor data can reduce
management costs. In addition, a cache mechanism that can
minimize duplicate transmissions of sensor data from mobile
devices due to overlapping queries is introduced. Based on
a two-day simulation, the proposed method can reduce the
management cost of the acquisition locations by 80%. Fur-
thermore, the cache method can reduce the transmission of
duplicated sensor data on mobile devices.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems; H.3.4 [Information Storage and Retrieval]:
Systems and Software

General Terms

Algorithms, Design, Experimentation, Human Factors, Per-
formance

Keywords
Mobile Device, Participatory Sensing, Cloud Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MCC’13, August 12, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2180-8/13/08 ...$15.00.

1. INTRODUCTION

Due to the rapid growth of mobile devices equipped with
sensors, Participatory Sensing has received widespread at-
tention in the field of sensing. In Participatory Sensing,
services gather information by using mobile devices owned
by individuals. Service providers can reduce costs by using
resources owned and obtained by mobile device users. In ad-
dition, by combining the sensor information with geograph-
ical positions, the practical use of the sensor information by
searching with geographical locations is possible.

The storage cost of the concentrated central storage server
is problematic when the server collects sensor information on
a daily basis and for a long time. The rapid growth in the
sales volume of mobile devices is expected to reach 50% in
the year 2015 by the Japanese government [5]. We propose
Mobile Participatory Sensing Data Store (MPS-DataStore),
a distributed storage of mitigating the increase of storage
cost due to the growth of mobile device users.

MPSDataStore stores sensor information in the mobile de-
vices storage. When service providers send a query to get
the sensor information, MPSDataStore transfers the query
to the mobile devices which have stored the designated sen-
sor information. Thus, the proposed system can scale-out
storage by storing sensor information in mobile devices. In
addition, mobile devices send sensor information when and
only when service providers require the information. MPS-
DataStore can reduce the management cost of the acquisi-
tion locations while it enables geographical range searches
for retrieving sensor informaton. Furthermore, by using the
cache function, MPSDataStore can reduce the size of sensor
information transmitted by mobile devices.

The rest of this paper is organized as follows: The require-
ments and the related works are described in Section 2. We
then present the design of the MPSDataStore in Section 3.
In addition, the simulation experiments and results are de-
scribed in Section 4. And Section 5 concludes the paper.

2. RELATED WORK

In this secton, we summarize services that use participa-
tory sensing, and the requirements for realizing the services
for sensor information sharing systems. In addition, past
research on the sensor information gathering and storing
methods using mobile devices are presented.

2.1 Requirements

We focus on the services realized by using community
sensing. Community sensing is done by gathering sensor
information from a number of users and analyzing that infor-

mation. For example, Ear-Phone [7] uses the smartphone’s
mic for gathering noise pollution data and stores this data on
a central system implemented on a server. Compared with
using conventional fixed sensors, community sensing in this
case enables service providers to lower the cost of services.
In addition, users can obtain noise pollution information by
specifying only the geographical range and time. Ear-Phone
needs a wider geographical range and a higher frequency of
sensing. Therefore, MPS storage systems have to store as
much sensor data as possible. Moreover, the system has to
be able to retrieve the sensor data by range search.

OurMobilePlanet [2] has reported that the penetration
rate of smart phones in Japan was 20% in 2012 Q1, which is
equivalent to approximately 25 million smartphone users in
the country. When 25 million smart phones gather sensor in-
formation every minute and upload them to a concentrated
storage server, the server would require 3Gbps of bandwidth
and 1,350GB/h of storage. The storage size will be approxi-
mately 12PB per year. The management cost of sensor data
is calculated by multiplying the number of the locations one
mobile device sensed by the number of mobile devices. Ac-
cording to the calculation, 36 billion sensor data are needed
to be managed in one hour. The management cost will be
approximately 13 trillion sensor data in a year. As the rapid
growth of the penetration rate of smart phones is expected,
on-demand sensor information transmission and the reduc-
tion of the management cost are required.

Consequently, the requirements for sensor data storage
systems used by such services are as follows:

e Storing sensor data without compromising scalabillity.
e Tracking the data stored in mobile devices.
e On-demand sensor data transmission.

2.2 Sensor Data Storage Systems

Ear-Phone or other existing services typically use the con-
centrated data storage method. In the concentrated method,
mobile devices gather the necessary sensor information by
service providers and upload these to concentrated storages.
Using this method makes it easy for service providers to
manage data flow. However, they end up spending more
costs on storages due to the increase in the number of users
participating in the sensing.

To solve the problem, distributed sensor data sharing meth-
ods using peer-to-peer (P2P) networks have been proposed.
P2P network nodes manage routing tables evenly to share
the computation and communication cost. There are two
types of P2P networks for implementing a sensor data stor-
age system. One is constructing a P2P network among mo-
bile devices and storing sensor data in the network. For
example, LL-Net [3] constructed a P2P network among mo-
bile devices. LL-Net provided geographical range search ca-
pability. The other is constructing a P2P network between
PCs owned by users and storing sensor data in the network.
As an example, Mill [4] provides a range search to retrieve
sensor data taken within the range. The distributed method
can share the storage cost by storing sensor data in the P2P
network. On the other hand, the method LL-Net adopts
needs to consider the characteristics of mobile devices such
as network instability. When network connectivity is unsta-
ble, the management cost of the P2P network is undeniable.
Furthermore, the method employed by Mill requires mobile

MPSCloud
Search and
Cache
t\'_l Area
.1 Notification
MPSLocator
ArealD
Allocator o

ISensor Data
Mobile Devices

Storage and
Sensing

raiecto”y LON

Figure 1: The overview of the MPSDataStore.

devices to upload sensor data, therefore the on-demand sen-
sor data transmission is compromised.

3. MPS DATA STORE

We propose a sensor data repository system, MPSDataS-
tore that will collect and store sensor information through
users’ mobile devices. These mobile devices obtain informa-
tion every minute, and attach the time and location of where
and when the data is acquired. The mobile device stores all
sensor data and transmits these only upon receiving queries
from the service provider.

MPSCloud uses the IaaS cloud and enables geographical
range and time range search functions. MPSDataStore en-
ables on-demand sensor data transmission by separating the
search function and storage function between the MPSCloud
and the mobile devices.

As shown in Fig. 1, the mobile device travels along the
movement trajectory of the user and senses data every minute.
Immediately after sensing, the mobile device obtains the ge-
ographical location using GPS. Then, the mobile device con-
verts the longitude and latitude information into an ArealD
by using MPSLocator. An AreaNotification is the act of
notification of sensor data acquisition in the area. If the
mobile device has not sent an AreaNotification within the
perimeter, it will send this notification to the MPSCloud.
Mobile devices’ IP address and ArealDs have to be included
in an AreaNotification. It is then transferred to an MP-
SNode, which manages the particular area. An MPSNode
is a virtual machine dynamically created by the MPSCloud
and manages the Device Table. The Device Table includes
information on which mobile device has the sensor data and
in which area the information was acquired. The MPSCloud
and all of the mobile devices have an MPSLocator, and all
have the same scheme of ID allocation of areas and param-
eters. The MPSCloud will know, therefore, which mobile
device has the sensor data and in which area it was sensed
by using the MPSLocator.

3.1 Reducing Management Costs

Managing the equivalence of the mobile device and sen-
sor data acquisition location is needed to track sensor data
stored in mobile devices. However, tracking all sensor data
acquisition locations is not necessary as the management

cost of the locations have to be considered. Therefore, we
designed an MPSLocator which will reduce the amount of
sensor data acquisition locations managed by MPSCloud.

The MPSLocator divides the target region and allocates
an ID for each divided area using Z-ordering [6]. By this
method, it can convert multi-dimension values to a one-
dimension value at a low computational cost. In this case,
we used Z-ordering because mobile devices need to convert
the location to an ArealD every minute. We define ZBits
to specify the scale of each area. ZBits are assigned bits
converting longitude and latitude information to ArealDs.
Considering a binary representation of longitude and lat-
itude (z1x223%a%5 -+, Y1Y2y3yays ---) when ZBits=2 the
representation of the ArealD would be z1y1z2y2.

The range of the target area is given by the maximum
and minimum values of longitude and latitude. The MP-
SCloud and all mobile devices share the ranges and ZBits.
By sharing the information, mobile devices can voluntarily
send AreaNotifications to the MPSCloud.

3.2 Distributed Management of Device Tables

The MPSCloud manages the Device Table, which includes
the ArealD and mobile devices’ IP addresses. The maximum
cost of management is calculated by multiplying the number
of mobile devices by the number of areas, divided by the
MPSLocator. Therefore, the management cost of the Device
Table has to be distributed in situations where the number
of users increases.

The MPSCloud uses an laaS cloud to allocate computa-
tion resources dynamically. To understand the distributed
management of geographical location and geographical range
search, constructing a P2P network between virtual ma-
chines is needed. For example, Akiyama et al. [1] proposed a
distributed geographical data storage method that can bal-
ance the load of storage cost among the nodes. The method
uses Z-ordering to convert 2-d location information into 1-
d Z value. Then the Z value is used for SkipGraph’s key
space. The method enables geographical range search by
using Z-ordering, and load balancing among nodes by allo-
cating resources by properly considering the growth of the
geolocation data. However, the method does not balance
the load if there is too much geolocation data in a single
key. Therefore, we propose the MPSCloud Network that
can balance the load of managing the Device Table by allo-
cating more than one MPSNode in an area.

Fig. 2 shows the process of the Device Tables being man-
aged by an MPSNode in an MPSCloud Network. Three
mobile devices send an AreaNotification to ArealDs 0 to 7.
First, device A sends an AreaNotification to ArealDs 1, 5
and 6. Secondly, device B sends a notification to ArealDs 6
and 7 and finally, device C sends a notification to ArealD 4.
We name the MPSNode affiliated with the smaller ArealD
at the linked list of level 0, as the left neighbor. Let ArealD
be the joined ArealD in the SkipGraph, and ArealDy be
the joined ArealD for the left neighbor. Each MPSNode
manages mobile devices, which obtained the sensor data in
ArealDy, < Areal Dr < ArealD.

Now, we describe the method of joining new MPSNodes
in order to distribute the load in an area with concentrated
AreaNotification. The MPSCloud has a special virtual ma-
chine called a “Dispatcher”. When the MPSCloud boots,
the Dispatcher generates an initial MPSNode. The initial
MPSNode joins the ArealD = max(ArealD)/2. The Dis-

Mobile

Devices @

ArealD ‘ 0 ‘

Device Table
MPSNode (ID : 7)

Device Table
MPSNode (ID : 2)

ArealD : 1 Device_A ArealD : 6 Device_A
Device_B

ArealD : 7 Device_B

Figure 2: An example of the Device Table.

patcher and all the MPSNodes have a system parameter
MaxNotification, which is the maximum number of AreaN-
otifications an MPSNode manages. If an MPSNode receives
more notifications than the MaxNotification, the node sends
a DivideRequest to the Dispatcher. The DivideRequest in-
cludes a new ArealD at which the new MPSNode joins,
IP address and ArealD of the requested MPSNode. The
requested MPSNode computes the new ArealD where the
new MPSNode is affiliated. The new ArealD can be an
ArealD where the number of AreaNotifications managed by
the requested MPSNode is divided in half. If there are more
than one ArealD candidates, then an ArealD having the
most AreaNotifications managed by the new MPSNode is
selected. The insert operation used by the network is the
same as the one SkipGraph uses.

In this paragraph, we describe how the Device Table is
transferred to a new MPSNode. The process of dividing an
area can be classified in two types where each type uses a
different method to link to the network.

e Non-overlapping new ArealD
The ArealD that is not overlapped with the requested
MPSNode.

e Overlapping new ArealD
The ArealD that is overlapped with the requested MP-
SNode.

When the non-overlapping ArealD is selected, the new MP-
SNode performs the insert operation in a way that is similar
to SkipGraph, and the Device Table is then transferred from
the requested MPSNode. When the overlapping ArealD is
selected, more than one MPSNode manages similar areas.
In this case, multiple MPSNodes virtually join as one MP-
SNode. We call the MPSNode joined at the ArealD of ini-
tial interest, the master node, and consider the rest as slave
nodes. Moreover, slave nodes notify the master node of their
IP addresses, to join the network. The master node transfers
the queries to all slave nodes. Then, the new MPSNode re-
ceives a half or the closest number of AreaNotification from
the requested MPSNode in each area.

The division operation in the area of multiple nodes joined
can be classified as:

e New ArealD where the requested nodes joined.

(MaxNotification : 2)

Mobile
Devices

ArealD 0

New MPSNode :

Device Table
MPSNode (ID : 3)

Device Table
MPSNode (ID : 4)

w

ArealD : 3 Device_|
ArealD : 4 Device_|

w

Transfer Counter of ArealD’

ArealD : 3 Device_A 5

Device_B

Device Table
MPSNode (ID : 4)

Transfer

ArealD : 3 Device_A
ArealD : 4 Device_A

Figure 3: The procedure of the divide operation at
ArealD’.

e New ArealD where the requested nodes did not join.

The transfer operation when allocating the ArealD the re-
quested nodes joined at is done by using the same operation
as the overlapping ArealD. In contrast, the transfer opera-
tion when allocating an ArealD, which is not the same as
requested nodes’, needs to consider all of the slave nodes’
Device Tables. The master node needs to know the number
of the AreaNotifications managed by the nodes, to deter-
mine the new ArealD for sharing the Device Tables evenly.
Therefore, we add the count function to the master node.
Let ArealD’ be the ArealDs which are managed by an MP-
SNode except for the ArealD of joined. From this point,
the master node sends a divide request when the number of
AreaNotifications in ArealD’ exceeds half of the MaxNo-
tifications. Moreover, all MPSNodes at particular ArealDs
transfer DeviceTables to new MPSNodes. Fig. 3 shows the
procedure of the division operation at ArealD’. As shown
in the figure, two MPSNodes joined at ArealD 4 manage two
AreaNotifications in Areal D’ which excluded MaxNotifica-
tion/2. Therefore, the master node sends a Divide Request
and selects new ArealD 3 the next to master node. Then,
a new MPSNode requests a transfer of Device Table to the
master node. When a master node gets a transfer request in
Areal D', it will transfer the request to the slave nodes and
all MPSNodes sends the DeviceTable in ArealD’ to a new
MPSNode. Using this procedure, the new MPSNode then
receives two AreaNotifications in ArealD 3.

3.3 Design of MPSCache

To reduce the sensor data size transmitted from the mo-
bile devices, we designed a cache function called MPSCache.
MPSNodes use MPSCache to extract cached sensor data
upon receiving a query. An MPSNode stores a set of queries
and sensor data from mobile devices in the MPSCache. The
MPSCache stores sensor data by using the Least Recently
Used (LRU) method, when the free space of the cache stor-
age was lesser than the amount of the sensor data. If the

Table 1: An example of the information specified in
queries.

Query ID | ArealD List Target Time Sensor Type
A 1-5, 10-15 | From 8:00, 10 minutes | GPS and WiFi
B 4-8 | From 8:05, 10 minutes | GPS and WiFi
(@] 1-5, 10-15 | From 8:10, 10 minutes | GPS and WiFi

Table 2: An example of the queries made by MP-
SCache.

Query ID | ArealD List Target Time Sensor Type
D 6-8 | From 8:05, 10 minutes | GPS and WiFi
E 4-5 | From 8:10, 5 minutes | GPS and WiFi

sensor data size obtained by a query exceeded all cache stor-
age size allocated on an MPSCache, then the MPSCache
does not store the sensor data.

3.3.1 Read from Cache

The procedure of reading sensor data from MPSCache is
as follows:

1. Extract cached queries overlapping in both
target ArealDs and target time.

2. Extract cached sensor data overlapping in both
target ArealDs and target time.

3. Create new queries which include non-overlapping
ArealDs and target time.

The MPSCache confirms if the overlapping queries are cached
or not in the first procedure. If the overlapping queries are
not cached, the MPSNode sends the query to the mobile
device directly. If the overlapping queries are cached, the
MPSCache proceeds to the next operation. In the second
procedure, the MPSCache needs to extract cached sensor
data which overlaps in both target ArealDs and target time
with the query. The MPSCache, therefore, needs a database
capable of associating ArealDs and sensor data as well time
and sensor data. Table 1 shows an example of information
specified in a query. Query A targeted ArealDs from 1 to 5
and from 10 to 15.

At first, the MPSCache verifies the target ArealDs that
are overlapping or not in the first procedure. First, assume
that query A is cached in an MPSCache. Then, query B is
overlapping in ArealDs from 4 to 5 with query A. Addition-
ally, query C is overlapping in all ArealDs with query A.
Therefore, query B and C is overlapping in target ArealDs
with query A. Next, the MPSCache extracts queries over-
lapping in target time from the queries overlapping with
ArealDs. Query B is overlapping in the time from 8:05 to
8:09 with query A. In contrast, query C is not overlapping
with query A in terms of the time. Consequently, the MP-
SNode sends query C to mobile devices directly and does not
extract sensor data from the MPSCache. The MPSCache
continues to the second procedure because query B is also
overlapping in sensor types. In the second operation, the
MPSCache extracts cached sensor data. The MPSCache has
extracted overlapping cached queries, so in the next phase,
the MPSCache extracts an overlapping part with the query.

The MPSCache needs to issue some new queries for the
non-overlapping part of the cached query. Therefore, in the
last procedure, the MPSCache creates new queries, which
include the non-overlapping part of the cached query. The
procedure of creating new queries by using queries A and
B are described in Table 1. Assume query A is cached in
an MPSCache. Query B is overlapping with query A only
in ArealDs from 4 to 5, and time wise for 5 minutes, from
8:05 to 8:09. Therefore, the MPSCache creates new queries
which do not include the overlapping part of query B with
query A. Table 2 shows an example of the queries created by
the MPSCache. Query D includes ArealDs from 6 to 8 with
the non-overlapping range with query A. Query E includes
ArealDs from 4 to 5 and the 5 minutes, from 8:10 to 8:14,
which is not overlapping with query A.

3.3.2 Write in Cache

The MPSNode transfers the queries which do not collide
with cached queries. The mobile devices then reply to the
MPSNode with the sensor data matching the queries. The
MPSCache stores a pair of a query and sensor data received
from the MPSNode. The MPSCache obeys the following
rules for storing sensor data:

e The MPSCache does not store sensor data if the sensor
data size exceeded the allocated cache storage size.

e The MPSCache stores the sensor data by using the
LRU method if the sensor data size exceeded the free
space of the cache storage.

Therefore, the MPSCache stores sensor data at any cost,
except for that sensor data size exceeding allocated cache
storage size.

4. EVALUATION

In this section, we discuss the evaluation of the MPSData-
Store through experiments conducted via simulation.

Table 3 is the list of parameters we used in the exper-
iments. To confirm that the MPSLocator can reduce the
number of locations managed, we performed a two-day sim-
ulation. We simulated movements of the mobile devices and
the processes of gathering sensor data for the first day. As
for the second day, querying from the service provider was
simulated in addition to the movement simulation. We used
PFlow data[8] for the movements and the querying. Peo-
ple Flow project reconstructs and accumulates PFlow data
from person-trip data which is gathered by questionnaires
in Japan. The data includes ID of the person and the one
day trajectory data. Because we need 2 day trajectory data,
for the second day, we used the PFlow data which was not
included in the first day.

The target range of the MPSDataStore is a 96km x 116km
in Tokyo metropolitan area where 20 bits were used to rep-
resent longitude and latitude information. To confirm that
the MPSDataStore can distribute the load of managing lo-
cations, we used 30% of mobile devices for the MaxNotifi-
cation number. Moreover, we implemented ZBits ranging
from 1 to 13 bits with 1 bit difference, because the area size
becomes less than 10mx10m if more than 14bits is used.
Furthermore, the values will become too small considering
GPS data error. Consequently we assumed that the size of
data sensed by a mobile device is 1KB, and the unit of the
sensor data size taken by a query is 1KB as well. The target

Table 3: Parameters of the simulation.

Component variable value
Moving Time 1-1440 (1 day)
Quering Time 1441-2880 (1 day)
” . Target range | Tokyo metropolitan area (96kmx116km)
Simulation #bit for latitude 20
#bit for longitude 20

#Mobile Devices [2000,4000,6000,8000,10000]
MaxNotification 30% of #Mobile Devices
7ZBits From 1bit to 13bit

Frequency of quering 6 times in a day per 1 service user
Target time from 10 minutes ago to current time

Target range | 100mx100m with center current position

Sensor data amount 1KB per sensing
Service Users 4x #Mobile Devices

MPSDataStore

ServiceProvider

From the point of view of
B3 Areas

BS MPSNodes

3e4+06 —_—

2

2

e+06 =

406

The number of AreaNotifications
= P
g g

The number of AreaNotifications

I

e e S S A T e S A AN
12 3 45 6.7 8 91011 1213 12 3 45 6.7 8 91011 1213
ZBits ZBits

Figure 4: The number Figure 5: The variabil-
of the ArealNotifications lity of the AreaNotifi-
managed by MPSDataS- cations. (#MobileDe-
tore. (MaxNotification vices=10,000, MaxNoti-
= 30% of mobile devices) fication=3,000)

time range is set 10 minutes before the current time, as we
assumed the service requires the most recent sensor data.

4.1 Cost of Location Management

Fig. 4 shows the number of the AreaNotifications man-
aged by the MPSDataStore. When the ZBits value is low,
the number of AreaNotificatons managed by the MPSCloud
is fewer because the number of AreaNotifications sent by
each mobile device is fewer. On the other hand, when the
ZBits value is large, the growth of the number slows down.
This indicates that the biased distribution of the movement
of people lessened the growth of the AreaNotification that
needed to be managed. According to the simulation, the
number of sensor data collected in two days was 28.8 mil-
lion and the number of AreaNotifications managed was less
than 3.28 million. Hence, MPSLocator can reduce the loca-
tion information requiring management by at most 80%.

Fig. 5 shows the variability of the AreaNotification sent
by mobile devices and managed by the MPSCloud. In this
figure, the graph presents the number of AreaNotifications
sent to each ArealD, after the non-sensed area was removed.
Table. 4 shows the interquartile range of the AreaNotifica-
tion from the point of view of the areas and the MPSNodes.
Comparing the interquartile range with the areas and the
MPSNodes, the variability of AreaNotifications managed by
MPSNodes is less than the variability of the AreaNotifica-
tion sent to the areas except for when ZBits = 1. This
means that the MPSDataStore can smoothen the concen-
trated load of managing AreaNotifications and therefore,
balance the load of managing AreaNotifications.

Table 4: The variabillity of the AreaNotification.
(#MobileDevices=10,000, MaxNotification=3,000)

7Bits areas MPSNode
median | inter-quartile range | median | inter-quartile range
1 9993 6 2501 29
2 6313 2736 2452 235
3 4509 3253 2182 361
4 4514 2767 2194 275
5 3548 2003 1969 318
6 2733 1344 1957 344
7 2385 861 1898 386
8 2216 644 1874 383
9 2225 585 1885 358
10 2187 593 1873 357
11 2236 577 1908 384
12 2200 600 1895 353
13 2224 597 1896 366
llllll 100
60~ #VobileDevices 1.7 ? ‘? TiyEiT
« 2000 . e YA i 4 aaana
4 4000
mj6000 L L 44 A NIRRT SR SR SR AR AR A
+ 8000 41
40- 8 10000 s
S €5
"“ F + #MobileDevices
20- vy 1 ¥ A 4000
R R =1 : :Zggg
| ;] @8 g 8 g @ L hd 1 @ 10000
- s b E o-n & °

123 45 67 8 91011 1213 12 3 4 5 6.7 8 9 1011 1213
s

Figure 6: Reduction ra- Figure 7: Reduction ra-
tio of the sensor data tio of the sensor data
size transmitted by mo- size transmitted by mo-
bile devices. (Cache bile devices. (Cache
storage size = 100KB) storage size = 1MB)

4.2 The effect of MPSCache

Figures 6 and 7 show the reduction ratio of the sensor
data size transmitted by the mobile devices through the MP-
SCache. The reduction ratio R was calculated using Eq.1.

Transmitted size without MPSCache

R= Transmitted size with MPSCache 100 (1)
When the cache storage size per MPSNode is 1MB, up to ap-
proximately 1.6GB of cache storage was allocated in the MP-
SCloud. The size of the sensor data transmitted by 10,000
mobile devices was 180GB. By using the MPSCache, the
size of the sensor data transmitted by mobile devices was
reduced to approximately 12.6GB, meaning that approxi-
mately 18.4MB data transmitted by a mobile device is re-
duced to approximately 1.3MB on average. By allocating
approximately 1.6GB of cache storage, more than 60% of
the sensor data transmitted by mobile devices can be re-
duced. Consequently, using the MPSCache can reduce the
size of sensor data transmitted by mobile devices.

S. CONCLUSION

In this paper, we proposed a sensor data repository sys-
tem MPSDataStore. MPSDataStore can distribute the stor-
age cost by storing sensor data among mobile devices. The
MPSLocator can reduce the management cost of the sensor
data acquisition locations. In addition, the MPSCloud can
balance the load of managing location information by using

the TaaS cloud. Moreover, MPSCache can reduce the sensor
data amount transmitted by mobile devices. By conducting
a two-day simulation, we have shown that MPSDataStore
can fulfill the requirements.

For a long-term sensor data collection, MPSDataStore
needs to be improved by considering the character of the mo-
bile devices. Mobile devices that use 3G or WiFi networks
change IP addresses frequently. In the current implementa-
tion, MPSDataStore does not consider this changes in IP ad-
dresses. If a mobile device changed its IP address, the MP-
SCloud is not able to communicate with the device, and the
sensor information stored in the device can not be reached as
a consequence. Furthermore, users of smart phones change
their devices in a certain period of time. If a smart phone
stored important sensor data, that data eventually goes to
waste, therefore the continuity of the service can be com-
promised. We then need to consider a method to save the
sensor data stored in those devices.

6. REFERENCES

[1] A. Daisuke, K. Hosokawa, A. Kota, I. Hayato, and

M. Toshio. An efficient distributed management scheme

for 2d location information using z-curve. SIG

Technical Report, 2010-I0T-8(9):1-6, Feb. 2010.

Google. Our mobile planet.

http://www.thinkwithgoogle.com/mobileplanet/ja/.

[3] Y. Kaneko, K. Harumoto, S. Fukumura, S. Shimojo,

and S. Nishio. A location-based peer-to-peer network

for context-aware services in a ubiquitous environment.

International Symposium on Applications and the

Internet Workshops (SAINTW’06), 0:208-211, 2005.

S. MATSUURA, K. FUJIKAWA, and H. SUNAHARA.

Mill: A geographical location oriented overlay network

managing data of ubiquitous sensors. IEICE Trans.

Commun., 90(10):2720-2728, Oct 2007.

Ministry of Internal Affairs and Communications.

Information and Communications in Japan.

http://www.soumu.go. jp/johotsusintokei/

whitepaper/eng/WP2012/2012-index . .html.

[6] G. Morton. A Computer Oriented Geodetic Data Base
and a New Technique in File Sequencing. International
Business Machines Company, 1966.

[7] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and
W. Hu. Ear-phone: an end-to-end participatory urban
noise mapping system. In Proc. of IPSN, IPSN ’10,
pages 105-116, New York, NY, USA, 2010. ACM.

[8] Y. Sekimoto, R. Shibasaki, H. Kanasugi, T. Usui, and
Y. Shimazaki. Pflow: Reconstructing people flow
recycling large-scale social survey data. Pervasive
Computing, IEEFE, 10(4):27-35, 2011.

[2

4

[5

