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ABSTRACT
Participatory sensing is becoming a valuable paradigm, en-
abling a variety of novel applications built on mobile net-
works and smart devices. However, this trend brings several
challenges, including the need for software platforms to man-
age interactions between participants and applications, with
a number of constraints. One such critical requirement is
participant privacy. In this paper, we examine the problem
of privacy-preserving spatial task assignment in coordinated
participatory sensing when the participants do not share
their exact location due to privacy concerns. We investi-
gate methods for assigning participants to targets, efficiently
managing location uncertainty and resource constraints. We
formulate the problem as a two-stage optimization and pro-
pose greedy algorithms to approximate each stage. Simula-
tion results show that our methods achieve high target cov-
erage with low cost for applications while preserving privacy
of the participants.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Security

Keywords
Spatial Task Assignment, Coordinated Participatory Sens-
ing, Location Privacy, Spatial Uncertainty

1. INTRODUCTION
The widespread prevalence of smart devices has created an
established platform for mobile sensing applications. An
interesting and potentially valuable class of such applica-
tions is Participatory Sensing (PS) [14] in which devices
sample and contribute data. Examples of these systems

include instant news coverage, trail condition updates af-
ter storms [11], collection of photos of recycling behavior
at a university [17], and urban texture documentation [20].
In participatory sensing applications, the goal is to collect
data through the participants from specific targets which
could be objects, events, or phenomena during a time slice.
To achieve this goal effectively, an spatial task management
component might be used to distribute sensing tasks to the
participants based on their locations. Each task includes
application-based sensing requirements such as time frame
or location of sensing, type of sensors, and sampling fre-
quency [4]. The coordinated PS applications are sometimes
called campaigns [17].

Several projects have focused on the optimization of task as-
signment to improve the sensing process [17, 20]. However,
a major concern of participants in using a PS application is
their privacy. While they can conceal their identity by using
PS applications anonymously, their location is required in-
formation for effective spatial task assignment – which can
reveal their identity. One of the promising approaches to
preserve location privacy is spatial cloaking that has been
widely used in location-based services [9]. However, cloaking
in PS results in uncertain participant locations, challenging
the task assignment process.

In this paper, we consider a coordinated data sensing ap-
proach in which a tasking server is responsible for managing
and sharing sensing tasks among participants who do not
share their exact locations. Our goal can be summarized
as designing a spatial task assignment approach in PS to
select the best set of qualified participants and efficiently
assign sensing tasks to each selected participant based on
their cloaked locations. Moreover, our method fulfills the
PS application’s criteria and maximizes sensing coverage
with minimized cost. Since participant locations are not
disclosed, our method preserves their privacy against the
tasking server who is the adversary in our model. The adver-
sary is curious but not malicious, meaning that it follows the
protocols and does not provide tampered or misleading in-
formation to the participants, but it might use the observed
information from the participants to infer their identity or
their location.

Our main contributions are summarized below. First, we
propose a novel two-stage optimization approach for the
privacy-aware spatial task assignment problem. In the first



stage, a global optimization problem is solved at the task
server using cloaked locations. Our approach addresses loca-
tion uncertainty and can work with different spatial cloaking
methods. In the second stage, participants fine tune their
assignment using their exact locations. We formulate formal
optimization objectives for each stage and further show the
optimization problems at each stages are NP-hard. Second,
we propose efficient greedy algorithms to effectively solve
the optimization problem at each stage. Finally, we present
extensive experiments using real map and show the impact
of various parameters on our algorithms and demonstrate
the feasibility and benefit of our approach.

The remainder of this article is organized as follows. In sec-
tion 2 we give an account of previous work. In section 3
we present a comprehensive definition of the problem. This
also includes formal objectives for the problem and computa-
tional complexity analysis for each objective. Our proposed
methods and efficient algorithms to solve the problem are
presented in section 4. Our new findings and results are de-
scribed in section 5. Finally, section 6 gives the conclusions.

2. PREVIOUS WORK
2.1 Task Management in Participatory Sens-

ing
We categorize task management in PS into two major ap-
proaches: ( i) Autonomous task selection, and (ii) Coordi-
nated task assignment. In autonomous task selection, the
participants select their tasks autonomously from a set of
existing tasks received from a task distribution entity. They
might or might not inform the distributor of their selected
tasks. Since the selected tasks are not optimized globally,
these approaches might not be efficient with respect to sens-
ing cost or global utility. Examples of these approaches may
be found in [5, 19]. Coordinated task assignment aims at op-
timizing the process of data sensing by efficient assessment
of available sensing resources to meet the requirements of
applications. The criteria for optimization of PS task as-
signment include sensing costs, coverage of targets of inter-
est, quality, and credibility of sensed data. Examples of this
approach can be found in [17, 20, 18, 6].

Autonomous Task Selection
A survey of existing methods in which participants select a
task autonomously without revealing their identity or loca-
tion can be found in [4]. In [5] all tasks are downloaded by
users in public places, so the tasking server can not identify
them. Since this approach did not guarantee reliable and
efficient sensing, the authors suggested another approach in
which users connect to the server through an anonymizing
network to conceal their location while downloading tasks
from the tasking server [19]. Our approach is different from
these works since none of them guarantee the efficiency of
the selected tasks globally.

Coordinated Task Assignment
Reddy et al. [17] proposed a coverage-based task assessment
that finds the least costly subset of participants to achieve
the coverage goal. They also proposed a reputation-based
assessment that finds the best set of participants who max-
imize the overall performance based on their participation

history. Shirani-Mehr et al. [20] also proposed a coverage-
based task assignment method for assigning viewpoints to a
group of moving participants. We propose a coverage-based
task assignment, but our methods differ from the above-
mentioned projects which assume no location privacy re-
striction.

In [18], the authors propose a data acquisition framework
for PS applications that assessed sensing resources to an-
swer queries from different PS applications efficiently. Their
assignment criteria included sensing costs and quality of the
query answers evaluated by the query initiators. However,
their proposed model requires exact location of participants
to assign tasks effectively, hence they protect privacy by
adjusting the duration between consecutive location disclo-
sure. Another approach [6] proposes a push method to up-
load tasks on to mobile phones selectively. Since the tasking
server learns the locations of the participants during regis-
tration, the server is able to track the mobile phones for a
limited time [6]. Hence, participants are required to wait
for a random amount of time before registering again. Our
work differs from these approaches since we use cloaked lo-
cations of participants for assessment, thereby ensuring that
the server does not learn the exact location of the partici-
pants.

2.2 Location Privacy
To protect location privacy of individuals in location-based
services, location obfuscation methods have been studied
widely in the literature [7, 1, 15]. One major obfuscation
method is spatial cloaking which hides the user’s location
inside a cloaked region using spatial transformations [12], or
spatial k-anonymity [9, 16, 8, 3, 10]. Another method might
hide the exact location of a user among a set of dummy lo-
cations [13]. In our work, we assume that the location of
each participant is hidden in a cloaked spatial region with-
out considering other details of the underlying obfuscation
algorithm such as whether it satisfies k-anonymity or not.
Therefore, our method can work with any cloaking method
for location privacy.

3. TWO-STAGE OPTIMIZATION APPROACH
In this section, we first define the privacy-preserving spatial
task assignment problem in coordinated PS and then we
formulate it as a two-stage optimization problem.

3.1 Problem Definition
Figure 1 illustrates a high-level design for task management
in a PS architecture. In our work, we focus on three main
components of this architecture including participants, ap-
plications and the tasking server. The applications are con-
sumers of the data which are acquired via the sensors car-
ried/operated by participants. Our PS task management
service referred to as the tasking server recruits suitable par-
ticipants for PS applications. To this end, the applications
upload their required tasks to the tasking service. A task
includes a set of targets of interest and required sensing spec-
ifications such as type of sensing, required equipment, and
sampling frequencies. Similarly, participants who are regis-
tered to this service via a trusted third-party anonymizer,
provide their attributes including their capabilities such as
their smart-device specifications, their spatial availability as



cloaked areas, their temporal availability, and other restric-
tions such as their mobility limitations. In this section, we
provide a more formal description of the privacy-preserving
spatial task assignment problem for coordinated PS appli-
cations. The summary of notations is presented in Table 1.

Figure 1: Task Assignment in a PS architecture.

Table 1: Notations
pi Participant i
tj Target j
n Number of participants
m Number of targets
ri Sensing range of participant i
bi Sensing energy of participant i
li Location of the participant i
ai Cloaked area of participant i
kj Required coverage for target j
di,j Distance between the participant i and target j
uj Coverage of target j by one participant
x First stage assignment matrix
y Second stage assignment matrix

d̂ Expected distance matrix

Definition 1. (Participant) A participant is an anonymous-
ly registered user who is modeled as a classic sensor which
means she has a sensing range r and a limited energy budget
b. The participant shares this sensing information with the
tasking server as well as her cloaked area a (defined later in
this section) and her desired sensing time. The participant’s
location l is considered private and is not shared with the
server.

Definition 2. (Cloaked Area) A cloaked area for a partic-
ipant is a pair 〈a, f〉, where a is an spatial region and f is
the probability density function of the participant at each
point in a. For simplicity, we refer to the cloaked area as a
in this paper.

Definition 3. (Task) A task includes a set of targets for
data collection with several attributes including the location
of the target, the desired time of sensing, other data collec-
tion instruction/requirements, and the required amount of

coverage for each target (k) i.e. the required number of par-
ticipants to cover the target.

Definition 4. (Task Coverage) Coverage for a target is de-
fined as the number of participants assigned to it, normalized
by the required coverage of the target. Task coverage (TU)
is defined as the sum of coverage for all the targets in the
task.

Definition 5. (Task Cost) An assignment cost for a pair
of participant and target includes the sensing cost which is
calculated as the euclidean distance between the participant
and the assigned target. Task cost (TC) is defined as the
sum of all assignment costs for all targets in the task. Our
cost model can be substituted by any other distance-based
cost model without affecting the problem definition.

Definition 6. (PTA: Privacy-Aware Spatial Task Assign-
ment Problem) For a set of participants P and the set of
targets T in a task, task assignment problem aims to achieve
the maximum task coverage with minimum cost by assign-
ing targets to the qualified participants using their cloaked
areas instead of their exact location.

3.2 Formal Two-stage Optimization Objective
Suppose we have a set of participants P and targets T in an
area of interest. At each time snapshot, every participant
pi ∈ P submits a query to the server for possible tasks pro-
viding her cloaked area ai, her sensing range ri and sensing
energy budget bi. Since exact locations of the participants
are not provided to the server, the distance between targets
and participants described by a matrix d, used as the sens-
ing cost matrix, is unavailable to the tasking server. There-
fore the server is required to deal with location uncertainty
and estimate the values of d as d̂. Then, the server can
utilize the expected distances d̂ to perform the task assign-
ment. However, this uncertainty introduces inaccuracy in
distance estimations and subsequently in task assignments.
Hence, we propose a two-stage optimization solution to solve
the privacy-aware task assignment problem (PTA). The first
stage optimization problem which is solved in the tasking
server is a global task assignment problem (GPTA) is based
on uncertain locations, while the second is a local task as-
signment problem (LPTA) which is solved locally by each
participant. Dividing the assignment task into two sepa-
rate problems utilizes participant location data with privacy.
The goal of the second stage is to refine and optimize task
assignment results of the first stage by the participant in the
context of her exact location. In this section, we describe
each stage in detail and then propose a formal objective for
each problem.

3.2.1 GPTA : First stage optimization objective
The first stage deals with uncertain locations which leads to
uncertain distances for participant-target pairs. Assuming
we had exact locations, the first-stage optimization objective
would be as shown in Equation (1) with two objectives to



maximize coverage and minimize distance.

min
x

∑
i∈N

∑
j∈M

di,jxi,j (1)

max
x

∑
i∈N

∑
j∈M

ujxi,j

s.t. xi,jdi,j ≤ ri, i ∈ N, j ∈M∑
j∈M

xi,jdi,j ≤ bi

where N := {1, . . . , n} is a collection of row indexes (or
participants), M := {1, . . . ,m} is a collection of column
indexes (or targets), matrix x shows all the assignments (i.e.,
xi,j = 1 iff Target j is assigned to Participant i otherwise
0), d is the distance matrix of participants to targets, u is
the vector of coverage values which is calculated based on
the required coverage of targets k showing the portion of the
coverage that can be offered by any participant.

∀j ∈M : uj =
1

kj

Two constraints represent sensing range and energy limita-
tions based on the distance matrix. In absence of the exact
locations, we need to estimate distances d̂. We discuss the
estimation process with more details in section 4.1.

3.2.2 LPTA : Second stage optimization objective
Our second stage optimization runs in the participant’s de-
vice locally using the given assignment from the first stage.
Since new information is introduced in the second stage (i.e.,
exact locations available in each participant’s device) these
assignments can be adjusted and refined for more coverage
and/or less distance/cost. The reason is that after knowing
the exact distances of participant-target pairs: (i) Some tar-
gets might have been assigned to the participant, but they
are not actually within the sensing range of the participant;
(ii) Some targets are very close to the participant and can
be assigned with a very low distance cost, but have been es-
timated as being farther and not assigned. However, this
might cause over-coverage for some of the targets mean-
ing they might be covered more than required, therefore
we would like to keep the assignments of the first stage un-
changed as much as possible because they have been globally
optimized for the goals of the application. The suggested
objective of second stage assignment optimization of each
participant pi, i ∈ N is shown in (2).

min
y

∑
j∈M

di,jyi,j (2)

max
y

∑
j∈M

ujyi,j

min
y
|yi − xi|

s.t. yi,jdi,j ≤ ri∑
j∈M

yi,jdi,j ≤ bi

where for each participant pi, xi is the first stage assign-
ment vector, yi is the second stage assignment vector, di is
the distance vector, u is the utility vector, ri is the partic-
ipant’s sensing range, bi is the participant’s energy budget,

and |yi − xi| is the Hamming distance between two binary
vectors xi and yi.

3.3 Complexity Analysis
In this section we show that our global and local problems
are NP-hard, by reducing the minimum set cover problem
to the GPTA, and the GPTA to the LPTA. The minimum
set cover problem is a well studied NP-hard problem defined
as follows.

Definition 7. (Minimum Set Cover Problem [21]) Given
a universe W , a collection S of subsets of W , and a cost
function c : S → R+ find a minimum cost subcollection of S
that covers each element of W k times.

Theorem 3.1. The GPTA is an NP-hard optimization
problem.

Proof. To prove that GPTA is NP-hard we show a poly-
nomial reduction of the minimum set cover problem (Defi-
nition 7) to our problem.

LetW = {p1, . . . , pn, p∅, t1, . . . , tm, t∅} and S be a set of two-
element subsets of W , i.e., S = {{pi, tj} : pi ∈ W, tj ∈ W}.
Let k > 0 and c : S → R+ be a cost function such that
c({pi, tj}) = d̂i,j (pi 6= p∅ and tj 6= t∅) is an expected
distance between tj and pi. For remaining elements of S
the cost function is defined as follows: c({pi, t∅}) = 0 and
c({p∅, tj}) = D, where tj 6= t∅ andD >

∑
i∈N,j∈M c({pi, tj}).

We reduce such minimal set cover problem to the GPTA
problem as follows. Let P = {pi : i = 1, . . . , n} be a set of
participants and T = {tj : j = 1, . . . ,m} be a set of targets.
A distance between tj and pi is equal to di,j = c({pi, tj}).

The GPTA is a multi-objective optimization problem, there-
fore it has many Pareto-optimal solutions. Among them
we choose a solution xOPT with the maximal coverage, for
which we define SOPT ⊂ S as follows. If tj is assigned to
pi in xOPT , then {pi, tj} ∈ SOPT . If tj is not assigned to
any participant in xOPT , then {p∅, tj} ∈ SOPT . If pi has no
target assigned to it in xOPT , then {pi, t∅} ∈ SOPT . If all
targets have been assigned and each participant has at least
one target assigned to it in xOPT , then {p∅, t∅} ∈ SOPT .

We show by contradiction that SOPT covers k times the
set W with the minimal cost, i.e., any other Pareto-optimal
solution would not have lower cost. Let us assume by con-
tradiction that there is S′ that covers W k times with lower
cost. Elements of S′ can be interpreted as assignments of
participants to targets, therefore they define a solution x′ of
the GPTA problem. Note that all targets assigned to p∅ in
S′ are unassigned in x′. Such solution has lower task cost
than xOPT and its task coverage can be:

• equal to the task coverage of xOPT . Then, the solution
xOPT is not the minimal task cost solution, which is a
contradiction.

• greater than the task coverage of xOPT . Then, xOPT

could be improved (task coverage increased and task



cost decreased) and therefore is not a Pareto-optimal
solution, which is a contradiction.

• less than the task coverage of xOPT . Let qOPT be
a coverage of the solution xOPT , q′ be a coverage of
the solution x′, and k = maxj∈M kj be the maximum
number of participants requested to cover a single tar-
get. Then, q′ 6 qOPT − 1/k and from the definition of
D we have c(SOPT ) < (m− qOPT )D +D and c(S′) >
(m− q′)D. Therefore, c(SOPT ) < (m− qOPT + 1)D 6
(m−q′)D− k−1

k
D 6 c(S′) and c(SOPT ) < c(S′), which

contradicts our assumption that S′ has the cost lower
than SOPT .

Thus, SOPT is the minimal cost coverage of W , which com-
pletes the proof.

Theorem 3.2. The LPTA is an NP-hard optimization
problem.

Proof. To prove that LPTA is NP-hard we show a poly-
nomial reduction of the GPTA to the LPTA.

Let P = {p1, . . . , pn} be a set of participants, T = {t1, . . . , tm}
be a set of targets, and Y be a set of all possible assignments,
i.e., Y = P × T . Let d : Y → R+ be a distance between tj
and pi, such that di,j = d̂i,j . We use such GPTA to define
an LPTA with the initial solution Y0 = ∅. Note that for
such Y0 any final solution will not have any reassigned tar-
gets and value of the objective function related to reassigned
targets will be always equal to zero.

The set of all Pareto-optimal solutions YOPT of the LPTA is
also a set of solutions of the GPTA, i.e., XOPT = YOPT . We
show by contradiction that XOPT is also a set of all Pareto-
optimal solutions of the GPTA. Let us assume by contradic-
tion that X ′ are all Pareto-optimal solutions of GPTA and
X ′ 6= XOPT . Thus, Y ′ = X ′ are all Pareto-optimal solutions
of the LPTA and Y ′ 6= YOPT . Note that in the LPTA the
objective function related to reassigning targets is constant
and equals to 0, and all possible solutions have the same
value of this objective function. Therefore, YOPT is the set
of all Pareto-optimal solutions of the LPTA and Y ′ = YOPT ,
which is a contradiction that completes the proof.

4. PRIVACY-AWARE TASK ASSIGNMENT
ALGORITHMS

In this section, we propose efficient greedy algorithms to
approximate the optimization objectives for both GPTA and
LPTA.

4.1 First Stage: GPTA
In this section, we first present two methods to deal with
location uncertainty in the first stage, then we propose an
efficient greedy algorithm to approximate the optimization
objective for GPTA.

4.1.1 Distance Estimation
As mentioned earlier, we use a distance-based cost model in
our work which defines the cost of sensing as the Euclidean

distance between participants and targets. Therefore, our
tasking server is required to deal with the location uncer-
tainty of the participants to estimate distances. Knowing
the cloaked areas (as the pair of the area and the proba-
bilistic density function 〈a, f〉), we propose two methods to
calculate the expected distances.
i) Centroid-point: In this method, we calculate the centroid
of all points in the cloaked area z ∈ a as the expected loca-
tion of the participant and use it to calculate the expected
distances d̂.

d̂i,j = dist(

∫
z∈a

zf(z)dz, lj)

where lj is the location of the target j and the function dist
is the Euclidean distance between two points.
ii) Expected-probabilistic: In this method, for each pair 〈i, j〉
of participant-target, we first calculate the probability of the
target j being accessible by the participant i as ρi,j(i.e., the
probability that the target j is in the sensing range of the
participant i). To calculate this probability, we apply a sim-
ple pruning approach for each participant-target pair which
shrinks the cloaked area a to a′ which is the intersection area
of a circle centered in the target j with the radius of ri (i.e.,
the sensing range of the participant i) and the cloaked area.
Then, having the probability density function f , we calcu-
late the probability of the participant being in a′ which is
equal to the probability of the target j being in the sensing
range of participant i (ρi,j).

ρi,j =

∫
z∈a′

f(z)dz

Finally, we compute d̂i,j as the expected distance between
the target and the intersection area a′ with the probability
of ρi,j .

d̂i,j =

∫
z∈a′ dist(z, lj)f(z)dz∫

z∈a′ f(z)dz

Different cloaking methods can effect distance estimation.
However, without loss of generality, we assume each partic-
ipant’s location is cloaked in a circular region with uniform
probability distribution. Figure 2 illustrates the estimation
approaches.

Expected

Distance

Cloaking

Area

Target

(a) (b)

Figure 2: (a) Centroid-point method, (b) Expected-
probabilistic method.

4.1.2 Greedy Algorithm



Algorithm 1 represents the pseudocode for an efficient greedy
algorithm to approximate the solution of our first stage ob-
jective. It iteratively picks the most cost-effective partici-
pant and removes the covered portion of the targets it covers
from the remaining required coverage, until either all tar-
gets are covered or all energy budgets of participants are ex-
hausted. The algorithm stops when no more update is pos-
sible. Since both the number of targets to be assigned and
all energy budgets do not increase in time and have always
non-negative values, the number of updates is finite. Hence,
our algorithm eventually terminates. In each iteration, the
algorithm finds the most cost-effective pair of participant-
target and assigns them to each other. For a participant
pi, i ∈ N and target tj , j ∈ M , the cost-effectiveness of as-

signing them to each-other is calculated as φ
(1)
i,j .

φ
(1)
i,j =

ˆdi,j

min(1− u+
j , uj) + ε

which is the fraction of expected distance d̂i,j to the coverage
introduced by this participant. u+ is the vector of already
covered portions of the targets which is initially all zero. If a
target is fully covered, the corresponding value of this target
in u+ becomes 1. Finding the minimum in the denominator
aims at preventing over-coverage. The small positive value
ε is added to avoid overflow when the offered coverage by
the participant is zero. ε should be selected smaller than
the minimum value of vector u. Since one of our distance
estimation methods is probabilistic, Algorithm 1 is designed
to select the most cost-effective pair of participant-target
〈i, j〉 with the probability ρi,j . For Centroid-point method,
these probabilities are calculated as

ρi,j =

{
1 d̂i,j ≤ ri
0 d̂i,j > ri

}
while for the probabilistic method, ρi,j is calculated as de-
scribed in section 4.1.1. At the end of the first stage, the
covered portions of targets is calculated in u+ based on the
first stage assignments. Therefore, we refer to it as the ex-
pected coverage vector which is passed to the participant
along with her first stage assignment and the set of her ac-
cessible targets.

4.2 Second Stage: LPTA
The main pitfall in the second stage is over-coverage, i.e.
assigning more participants to targets than required. To
avoid over-coverage, the server provides the expected cover-
age vector, the final u+ at the end of GPTA to all partici-
pants. Hence, the u+ at the beginning of second stage opti-
mization is initialized with the given values from the server.
Algorithm 2 represents the pseudocode for our greedy ap-
proach to approximate the solution of our second stage ob-
jective.This algorithm runs locally on each participant’s de-
vice pi ∈ P , so it has access only to the corresponding partic-
ipant’s attributes including its exact location, and the infor-
mation provided by the server, the set of the nearest targets
τ , and the result of the first stage assignment for this par-
ticipant xi. The result of assignments in this algorithm is
stored in yi. The second line of the algorithm 2 recalculates
the u+ to access the covered portions of the targets without
consideration of this participant.

Similar to Algorithm 1, the second stage algorithm itera-

Algorithm 1: A greedy algorithm for the first stage task
assignment problem

Data: P (set of participants), T (set of targets), b (vector

of sensing energy budgets), d̂ (matrix of expected
distances), u vector of coverage values, ρ (matrix of
the access probabilities)

Result: x (matrix of task assignments), u+ (vector of
covered portion of targets)

1 All elements of x and u+ is initialized to 0;
2 while All targets are not covered do
3 Select the most cost-effective target-participant pair

from the remaining pairs, say indexed at i and j with
the probability ρi,j .

4 if A remaining pair exists then
5 Assign the selected target to participant as

xi,j ←− 1

6 u+
j ←− min(1− u+

j , uj) + u+
j

7 bi ←− bi− d̂i,j
8 if u+

j = 1 then
9 Mark tj as covered;

10 end

11 else
12 Break
13 end

14 end

tively picks the most cost-effective target and assigns it to
pi with some probability. One difference is, since we want
to minimize the difference between the assignments of two
stages for participants (as stated in the third line of (2)), we
penalize each new assignment which is different from xi,j .
Therefore, the cost-effectiveness of each assignment in this

stage is calculated as φ
(2)
i,j .

φ
(2)
i,j =

di,j
ri

+ |xi,j − 1|
min(1− u+

j , uj) + ε

which is the fraction of second stage cost (i.e., the normalized
sum of distance and change penalty) to the new portion of
coverage provided by this participant for the target tj ∈ τ .
The other difference of our second stage algorithm from the
first stage is the probabilities which are used to assign targets
to participants. For a target j, ρi,j is calculated as

ρi,j = 1−
φ
(2)
i,j

max {φ(2)}
Using this probability, we aim at avoiding over-coverage of
the targets, but at the same time giving smaller chance to
costly assignments. Without this probability, participants
would keep assigning targets until their energy budget is ex-
hausted. Completely expending the energy budget by all
participants can result in over-coverage. This effect can be
seen easily in the baseline method which is compared to our
methods in the experiments section. Using φ(2) in calcu-
lating this probability emphasizes the importance of a cost-
effective selection by giving it a higher probability.

5. EXPERIMENTAL RESULTS
In this section, we evaluate our task assignment methods ex-
perimentally to show their efficiency and effectiveness. First



Algorithm 2: A greedy algorithm for the second stage task
assignment problem

Data:
pi, i ∈ N (the participant), τ (set of nearest targets for pi),
xi (first stage assignments for pi), ri ( pi’s sensing range),
bi ( pi’s energy budget), u (vector of coverage), u+ (vector
of covered portions of targets)
Result: yi (vector of task assignments for pi)

1 All elements of yi are initialized to 0;
2 for all the targets in τ do
3 u+

j ←− u
+
j − uj × xi,j

4 end
5 for all the possible targets in τ sorted based on

cost-effectiveness do
6 Select the target j with the probability ρj
7 Assign the selected target to pi as yi,j ←− 1

8 u+
j ←− u

+
j + min(1− u+

j , uj)

9 bi ←− bi − di,j
10 if energy budget of the participant is exhausted then
11 Break
12 end

13 end

we discuss the details of our experiment settings, then we
analyze the results.

5.1 Settings
We use Brinkhoff’s Network-based Generator of Moving Ob-
jects [2] to create a set of moving objects in all of our ex-
periments. The map of the city of Oldenburg in Germany
is used as the input to the generator. In each time snap-
shot, the set of participants is chosen uniformly from the set
of generated moving objects in the map. In the same way,
targets are selected from the nodes of the road graph of the
map. The rest of the parameters are randomly simulated for
participants and targets. In our experiments, we study the
effect of different parameters such as the number of partic-
ipants/targets, crowd density, and cloaking size on the task
cost and coverage. We also analyze the performance of all
methods by studying their running time. Task cost (TC)
and coverage (TU) are calculated as described in section 3.
To combine these two values into one evaluation criterion we
add the task cost (TC) and uncovered portion of the task
(m − TC) and normalize the sum to the range of [0,1] us-
ing min-max method. We refer to this normalized value as
combined cost (CC):

CC =
(m− TU) + TC

m+
∑

i∈N
bi
ri

where the number of targets m represents the maximum
possible value for task coverage. The denominator is used for
normalization and is equal to the maximum possible value
for the sum of uncovered portion of the task and the task
cost. The smaller value of CC represents higher coverage
and lower cost which is a better result. A weighted version
of this evaluation criterion can also defined to compare the
results when high coverage or low cost is favored.

WCC =
(1− w)(m− TU) + w × TC

m+
∑

i∈N
bi
ri

where w is a real number in the range of [0,1].

Table 2 shows default settings of our simulations. In all ex-
periments, we select the sensing range of the participants
randomly in the range of [100-300]. Sensing energy of the
participants is always selected as a multiple of the sens-
ing range with a default value of one. For all participants,
we assume circular cloaking areas with uniform probabil-
ity distribution. The radius of the cloaking area is selected
randomly in the range of [500-1500] to match the range [1-
10] percentage of the map roughly. For all of our experi-
ments, we just use a part of the map of Oldenburg which
is specified in figure 3. The required coverage of the tar-
gets is selected randomly as an integer number between 1
and 5 with the default value of one. Our proposed meth-
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Figure 3: The map of Oldenburg, Germany gener-
ated by [2] . The employed section is framed.

ods are presented in four groups based on the distance es-
timation model of the GPTA (Centroid-point or Expected-
point) and the optimization stages (one-stage GPTA-only
or two-stage GPTA-LPTA combination). We refer to our
approaches as CPA1, CPA2, EPA1, EPA2 to represent the
one/two-stage Centroid-point, and one/two-stage Expected-
probabilistic approaches respectively. We use two approaches
to compare with our methods. We utilize our first stage op-
timization solution with zero level of privacy as an approach
with no privacy constraint (NPA). In this approach, we as-
sume the tasking server has access to exact locations of the
participants, therefore it runs only in the server. As another
approach we use an autonomous task selection method in
which participants select targets from a global set of tasks
locally while no globally optimized assignment is provided.
We refer to this method as our baseline approach (BSA)
which runs only on clients.

5.2 Results
We first examine the results of all methods for different den-
sities of participants and targets to compare our proposed
methods with each other and the other two methods BSA
and NPA. Then, we compare our superior methods (two-
stage methods) with BSA and NPA extensively to study
the impact of crowd density, cloaking sizes, and evaluation
weight on their combined cost and running time.

5.2.1 Impact of Numbers of Participants and Targets



Table 2: Default Settings

Parameter Value

Number of Participants 200 - 1000
(Default Value 1000)

Number of Targets 100 - 500
(Default Value 100)

Sensing range 100 - 300
Sensing energy [1-5] times sensing range

(Default value 1)
Required Coverage of Targets [1-5] (Default value 1)

Cloaking Size (Radius) 500 - 1500

In these experiments, we study the impact of increasing the
number of participants and targets on combined cost and
running time by: (a) varying the number of participants
while the number of targets is fixed; (b) varying the number
of targets while the number of participants is fixed; and (c)
varying both numbers of participants and targets simulta-
neously while maintaining their ratio.

Figure 4 shows the combined cost for increasing number of
participants with a fixed number of targets using the de-
fault settings. Increasing the number of participants in-
creases the task coverage resulting in lower combined costs
for all of the approaches. For all combinations of the par-
ticipants and targets, the expected-probabilistic approaches
perform better than their corresponding centroid-point ap-
proaches. The difference is more significant for CPA2 and
EPA2 for larger number of participants. On the other hand,
regardless of the distance estimation methods, both two-
stage methods outperform the one-stage methods. EPA2 im-
proves the results of EPA1 up to 1.4 times, while the CPA2
improves the results of CPA1 up to 1.2 times. The base-
line approach (BSA) outperforms our one-stage methods for
smaller participant/target ratios. However, as the number
of participants and subsequently the participant/target ra-
tio increases, both CPA1 and EPA1 outperform BSA sig-
nificantly. As for our two-stage methods, both CPA2 and
EPA2 outperform the baseline approach (BSA). Comparing
EPA2 and BSA, the difference of the results increases as
the the number of participants increases reaching up to 2.4
times lower combined cost for 1000 participants (i.e., 10 to
1 participant/target ratio). Our approach achieves compa-
rable cost to the NPA approach which is without privacy,
compared to the baseline approach BSA.

Figure 5 shows the running time for the same experiment.
EPA1 and EPA2 which benefit from the probabilistic solu-
tion, include a running time overhead for calculating accessi-
ble probabilities and expected distances. This time overhead
makes expected-probabilistic approaches more costly than
centroid-point methods regardless of the number of stages.
Moreover, the effect of the second stage on running time is
trivial for both methods, therefore we have presented them
together. Intuitively, since the second stage runs on clients
in a distributed setting with a small number of targets, its
running time is very small compared to the global optimiza-
tion in the first stage. The same reasoning explains the small
running time of the BSA approach. Increasing the number
of participants has a linear impact on the running time of
all methods.
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Figure 4: Combined cost for different number of
participants, and m = 100
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Figure 5: Running time for different number of par-
ticipants, and m = 100

Figure 6 shows the combined cost for different number of
targets and a fixed number of participants using the default
settings. Our one-stage approaches outperform the BSA for
most of the values of m, performing similar to it for larger
number of targets (i.e., smaller participant/target ratios).
For all numbers of targets, the EPA2 outperforms the CPA2
and BSA. The main difference between the figures 4 and 6
is how the combined cost decreases significantly by increas-
ing the number of participants in figure 4 while it increases
when adding more targets to the task in figure 6. The rea-
son is, by increasing the number of targets with constant
number of participants, the uncovered portion of the targets
increases, resulting in higher combined cost. Figure 7 shows
the running time for the same experiment. While the effect
of the number of participants was linear on the running time,
increasing the number of targets has a polynomial effect.

Since we observe that the two-stage approaches (EPA2 and
CPA2) both outperform their corresponding one-stage ap-
proaches (EPA1 and CPA1), we will only show EPA2 and
CPA2 for the remaining experiment results for better read-
ability of the graphs.

Figure 8 shows the combined cost for increasing numbers
of both participants and targets with a fixed ratio of two
to one using the other default settings. For all numbers of
participants and targets, our two-stage methods (CPA2 and
EPA2) outperform the baseline approach (BSA). The differ-
ence becomes more significant as the number of participants
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Figure 6: Combined cost for different number of
targets, and n = 1000
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Figure 7: Running time for different number of tar-
gets, and n = 1000

and targets increases. EPA2 outperforms BSA by 1.4 times
lower combined cost for 1000 participants and 500 targets.
Figure 9 shows the running time for the same experiment.
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Figure 8: Combined cost for different number of
targets and participants, and m/n = 0.5

5.2.2 Impact of Cloaking Size
Figure 10 shows the impact of cloaking size on combined cost
for the fixed number of participants and targets using the
default settings. The cloaking size is shown as the relative
percentage of the map. By increasing the cloaked size, EPA2
shows more robustness compared to CPA2. BSA and NPA
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Figure 9: Running time for different number of tar-
gets and participants, and m/n = 0.5

are not affected by the cloaking size. Figure 11 shows the
impact of cloaking size on running time for the same exper-
iment. Unlike the combined cost, the running time of EPA2
is more affected compared to CPA2 due to the overhead of
processing larger cloaked areas.
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Figure 10: Combined cost for different cloaking size,
m = 100, and n = 1000
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Figure 11: Running time for different cloaking size,
m = 100, and n = 1000

5.2.3 Weigted Evaluation Criteria
Figure 12 presents how the combined costs of all methods are
affected by different weights for evaluating task coverage and



cost. Both our methods show more robustness compared to
BSA as w varies. For smaller values of w, i.e. more weight
on coverage, BSA outperforms our methods. However, both
CPA2 and EPA2 outperform BSA for most values of w.
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Figure 12: Weighted combined cost for different
weights, m = 100, and n = 1000

6. CONCLUSIONS AND FUTURE WORK
In this paper we defined and formulated the problem of
privacy-preserving spatial task assignment in coordinated
Participatory Sensing (PS) as a novel two-stage optimiza-
tion problem which maximizes coverage and minimizes cost
for the tasks. We proved the problem to be NP-hard in each
stage, therefore we proposed efficient greedy algorithms to
approximate each stage of the optimization problem. We
studied the impact of all the parameters affecting our meth-
ods and showed their efficiency and robustness. As our next
step, we plan to evaluate our methods with real data by im-
plementing a real-world PS application which uses our task
assignment approach.
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