
PEPPeR: A querier’s Privacy Enhancing Protocol
for PaRticipatory sensing

Tassos Dimitriou
Athens Information Technology

19.5 km Markopoulo Ave., 19002, Peania
Athens, Greece

tdim@ait.edu.gr

Ioannis Krontiris and Ahmad Sabouri
Chair of Mobile Business & Multilateral Security

Goethe University Frankfurt
Frankfurt, Germany

{ioannis.krontiris, ahmad.sabouri}@m-chair.net

Abstract—In this work we study the problem of querier privacy
in the Participatory Sensing domain. While prior work has at-
tempted to protect the privacy of people contributing sensing data
from their mobile phones, little or no work has focused on the
problem of querier privacy. Motivated by a novel communication
model in which clients may directly query participatory sensing
networks operated by potentially untrusted adversaries, we
propose PEPPeR, a protocol for privacy-preserving access control
in participatory sensing applications that focuses on the privacy
of the querier. Contrary to past solutions, PEPPeR enables
queriers to have access to the data provided by participating
users without placing any trust in third parties or reducing the
scope of queries. Additionally, our approach naturally extends
the traditional pull/push models of participatory sensing and
integrates nicely with mobile social networks, a new breed of
sensing which combines mobile sensor devices with personal
sensing environments.

I. INTRODUCTION

The increasing availability of sensors on today’s smart-
phones and other everyday devices, carried around by mil-
lions of people, has already opened up new possibilities for
gathering sensed information from our environment. Currently
researchers experiment with these possibilities and share the
vision of a sensor data-sharing infrastructure, where people
and their mobile devices provide their collected data streams
in accessible ways to third parties interested in integrating and
remixing the data for a specific purpose. A popular example
is a noise mapping application which generates collective
noise maps by aggregating measurements provided by the
mobile phones of volunteers [1]. In other scenarios, people
may monitor air pollution [2], road and traffic conditions [3],
etc.

What is common in all the above applications, is that
sensing data are proactively collected by users in a centralized
server, where they are aggregated, processed and represented
through various interfaces (e.g. statistical data on a map) or
remain available for third parties to query and select data
of interest. While this serves a specific class of applications,
another approach is to enable the collection of sensing in-
formation only where and when it is needed. In that sense,
someone interested to obtain information from a specific
location and within a specific context, posts a task or query
to the platform and the mobile nodes satisfying the conditions
react by taking the measurements and sending back a response.

In this paradigm, the question becomes how these sensing
tasks can be distributed to the mobile phones. Two models
have been studied in the bibliography so far. In the push model
[4], the participating nodes (i.e. mobile phones) register with
the server and the server pushes only matching tasks, based
on appropriate context (e.g. location). In the pull model [5],
sensing tasks are posted on a server, which participating nodes
contact for possible download and execution of tasks.

In this work, we consider an extension to the participatory
sensing model, in which a user may decide to query a par-
ticipating node directly, without the mediation of the service
provider. Contrary to the traditional model, where reporting
of data is performed through a trusted report server (e.g.
Anonysense), this method maybe the only feasible solution
when it is impossible or even undesirable to maintain a
stable connection between a mobile user and the service
provider. It is also necessitated by the growing requirement
for protecting users’ data access privacy; a user may want to
keep confidential whether (and when) she accessed the sensed
data, the data types she was interested in, or from which nodes
she obtained the data, as the disclosure of such information
may be used against her interest. For example, information
about the noise level in a particular neighborhood may leak
information to the nearby home agency about Alice’s desire
to purchase a home in the area.

Additionally, the sensed data maybe of interest to numerous
users from both the public and private sectors, ranging from
individuals to business companies that may be competing of
each other. To capitalize on the data, application owners might
be using appropriate incentive mechanisms [6] to enable broad
user participation. It is reasonable, therefore, to expect that
queriers are willing to pay appropriate fees in order to obtain
measurements of interest.

Our method seems also to be a perfect fit for a new
breed of sensing, triggered by the ever increasing number
of online Social Network users and the imminent integration
of mobile sensor devices into personal sensing environments
[7], [8]. Such mobile social networks are distributed systems
that combine mobile, social, and sensing components, trying
to create a contextual picture surrounding a user or group
of users in order to enable new applications and services
based on this context. In this new model of P2P sensing, it is

thus straightforward to expect that users may ask other peers
directly for sensed data. In fact this may be the only way
to hide a querier’s interest on certain data since, with any
centralized service, a user’s interests and queries may leak
information about the user itself. Thus the goal of this work
is to describe a generic mechanism in which queriers may ask
directly for sensed data.

Contribution:: In this work, we present PEPPeR (Privacy
Enhancing Protocol for PaRticipatory sensing), that aims to
protect the privacy of queriers, by letting them obtain tokens
from the service provider (or application owner) in order
to have access to the data provided by participating users
(custodians of mobile phones). The difference from prior work
is in the decentralized character of our approach. The querier
may decide to spend the token with any producer (mobile
phone user) directly, who first has to validate the token and
then provide the querier with the proper amount of requested
data. Using appropriate cryptographic mechanisms, we show
how the validity of the token can be verified by any mobile
node, without, however, leaking the identity of the querier to
the node or to the application owner. At the heart of PEPPeR
lies a mechanism to detect double-spent tokens, which involves
the use of a witnesses service, a simple scheme that can attest
to the validity of the token or provide proof for token reuse.

II. RELATED WORK

Privacy preserving access control has been studied exten-
sively in traditional sensor networks ([9], [10], [11], [12]).
While the work in [9] is a centralized approach in which users
acquire data through one or more base stations, the rest take
advantage of the inherent redundancy in sensor networks to
either store and discover double-spent tokens ([10]) or forward
queries in a privacy-preserving manner ([11], [12]). However,
all proposed solutions are based on the multi-hop routing
communication model of sensor networks in which nodes
operate both as sensing devices and routers of information,
a model that cannot be adopted in participatory sensing.

In the participatory sensing domain, various centralized
solutions for distributing tasks or queries to sensor nodes have
been proposed. In PRISM [4], participating nodes (i.e. mobile
phones) register with the server and the server tracks the nodes
and pushes only matching tasks to them, based on their context
(e.g. location). For example, Alice may be assigned the task
“measure temperature in area X”, when she is entering this
area. However, this solution does not consider privacy for any
of the involved entities, queriers or mobile nodes.

A solution that offers a privacy-friendly way of task distri-
bution is AnonySense [5]. Sensing tasks are posted on a server
and the participating nodes download the tasks and match them
to their context to decide which one to execute. This approach
has the advantage that the nodes do not reveal anything about
their context to the service provider, in order to receive the
sensing task. Still, AnonySense does not consider privacy for
the entities posting the tasks.

Recently, PEPSI [13] was suggested as a system designed
with the privacy of the queriers in mind, queriers being entities

external to the platform, who are interested in some specific
sensing information. PEPSI is based on a centralized solution
and to protect the privacy of the queriers, it introduces a
Registration Authority, a trusted third party which collects
queries from the queriers and provides back the corresponding
cryptographic material. In that sense, the queries reach the
platform in an encrypted form. However, the problem is shifted
to the Registration Authority, where essentially all queries are
known in advance, along with the identities of the queriers,
leading to the assumption that this entity must be trusted.

PEPSI is designed to work in a different setting than the one
suggested in this paper. Due to the cryptographic mechanism
employed by the protocol, queries have to be composed out
of specific, predefined keywords. At the same time, mobile
nodes proactively sense and report data, including the same
keywords. At the end, following a centralized communication
paradigm, queries and sensing data are both collected by the
service provider, where they are matched against each other.

III. NETWORK MODEL AND SECURITY GOALS

The main goal of PEPPeR is to protect the privacy of the
parties posting sensing queries or tasks to mobile nodes. To
do this efficiently, we decouple the process of discovering the
nodes that are able to answer a query from the access control
mechanisms utilized in the system to contact these nodes.
This is due to the fact that each of these processes concerns
a different entity in the system. From a platform provider’s
point of view, no matter how a querier finds her desired
mobile nodes, it is critical to stop her from making benefit
of the platform’s services without getting permission from the
provider. How this permission can be obtained depends on the
business model of the platform provider. For example, it could
be that the querier has to pay for each “sensing quantum”.
On the other hand, from the querier’s perspective, no matter
what access control mechanism is employed in the system,
she should be able to communicate with any mobile node in a
privacy-respecting way, without disclosing her interest to the
provider.

Figure 1 depicts this setting and shows the focus of PEPPeR.
The role of the service provider is limited only to providing
the means for queriers to contact the mobile nodes. That
is, mobile nodes first register with the platform and through
a privacy-respecting mechanism (agnostic to this paper) the
service provider is able to offer the querier the contact details
(e.g. in anonymous or pseudonymous way) of the mobile nodes
currently in the geographic area of interest. For example, this
could be achieved through a distributed directory service for
looking up mobile nodes.

In addition, the querier anonymously purchases a crypto-
graphic token from the platform, which enables her to directly
contact the mobile nodes and forward the query to them. Due
to the cryptographic properties of this token, there is no need
to restrict the scope of the queries or introduce a trusted third
party, as in past works.

The privacy of the mobile nodes still needs to be protected
and our work at no means hinders protocols built for this

GPS

Time

Sensors

Querier

Sensor Registration

Mobile Nodes (MNs)

Query/
Response

This work

Other

..
.

Sensor
Subscription

Sensor
Discovery

Privacy
Manager

Other

Participatory Sensing Platform(s) – Prior Work

Token request

Token

Application
Provider

Fig. 1. Query privacy in the context of participatory sensing.

purpose. However this work is not about how to a) support
the discovery of sensor information, b) allow for sensor
subscription, and c) facilitate sensor task placement. These
topics have been covered, to some extend, by prior work [4],
[5], [7] and are not considered here. Here we address the
topic of querier privacy that can be of value to the various
denominations of participatory sensing networks.

Given the above setting, the following security and privacy
goals are required to be fulfilled by the access control mech-
anism:

• Untraceability: In order to preserve the querier’s privacy,
the access control mechanism should not leak any infor-
mation about the identity of the authorized querier, when
she contacts the service provider.

• Unlinkability: A single querier can use the platform as
many times as she is allowed to, in order to access and
query mobile nodes. It should not be possible to link
multiple accesses back to the same quierier, as long as
she is eligible and has the access credentials to use the
service.

• Misuse Resistance: The access control mechanism should
prohibit unauthorized users from using the system. In
addition, it should also prevent queriers from misusing
the service, according to the conditions agreed upon. For
example, if the querier acquired credentials for accessing
and querying the nodes only one-time, then she should
not be able to reuse them for a second time.

• Misuse Provability: The access control mechanism should
support providing evidence, in case of a misuse. For
example, if the querier is permitted to use the platform
only once and makes a second attempt, the access control
mechanism should be able to provide convincing proof
of the fact that this is the second time access. This will
enable mobile nodes to deny service, however the privacy
of the querier should still be respected.

IV. QUERIER PRIVACY PROTOCOL

In this section, we present the protocol behind PEPPeR that
satisfies the above requirements and offers a privacy-respecting
access control for querying mobile nodes of interest. Figure
2 shows a high-level overview of the steps, which we will
describe in detail in the following sections.

A querier Q wishes to access the participatory sensing
network for data. She first contacts the application owner S
and retrieves a token T which can spent with any producer P
(mobile phone user) of sensed data (Section IV-A). The token
reveals no information about either Q or the desire of Q to
spend it with any specific P . Once P retrieves the token, it
first has to verify its validity and then test whether the token is
an attempt of doublespending (Section IV-B). For that reason
it contacts an appropriate witness service W which can either
ascertain the coin’s freshness or provide proof that the coin has
been doublespent (Section IV-B). This service can have the
form of a bulletin board (a simple repository of used tokens)
in which nodes may consult for reused tokens. The evidence
provided by W again reveals nothing about the identity of the
querier Q, only the fact that the coin has been used before.
Finally, the producer P can redeem the token for credit or
additional services from S. These steps are shown in Figure
2 and are described in more detail below.

A. Purchasing a token

To make a request for sensor data, a querier Q must first
obtain a valid token from the application provider. In order to
make the token untraceable and protect the privacy of Q, the
token will not be associated with a particular querier, however
it should contain such information as date, expiration date
and amount of data to be retrieved as well as the signature
of the application provider S on it. This information is the
common part of the token which is necessary in order for the
mobile user (supplier of sensed data) to be able to provide a
commensurate amount of information and perform an initial

Querier

Witness ServiceApplication Provider

Step 1
Token request

Step 4
Is this token used

before ?

Step 3
Token Validation

(Is this a valid token?)

Step 6
Response

Producer

Step 5
Store Token or

provide proof that
token is double-

spent

Step 2
Contact mobile user for data

(Token submission)

Step 7
Redeem Token

Fig. 2. The protocol steps followed by PEPPeR.

test on the validity of the token (i.e. check expiration date and
signature of S).

As the token can be purchased by Q through an anonymous
channel using (say) a gift card or a trusted third party, the
common part of the coin, denoted by 〈CommonInfo〉, leaks
no information about the identity of Q. We need, however, to
provide a mechanism for detecting double spending, and this
mechanism has to be associated with identifying information,
denoted by 〈UniqueInfo〉, supplied by the querier Q. This
uniquely identifying piece of information is in no way related
to the identity of Q; its purpose is to deter double spending
but it could potentially be used by S to trace the token and
this is why it has to be blinded before it is signed by S.

Blind signatures provide perfect confidentiality to a mes-
sage and signature pair, however the signer must be assured
that the message contains valid information in order to pre-
vent abuse [14]. This valid information corresponds to the
〈CommonInfo〉 part. An elegant solution to cope with the
necessity of checking the correctness of messages contained
in blind signatures is to use the so-called partially blind
signatures introduced in [15]. In our scenario, the provider S
will sign messages made of two parts; the 〈CommonInfo〉
part which is visible by the signer and the 〈UniqueInfo〉 part
containing identifying information to detect double spending
which is invisible and blindly signed. An instantiation of this
process is described below.

Let k be the security parameter. Let p′ and q′ be two large
primes of size k/2 such that p = 2p′ + 1 and q = 2q′ + 1
are also prime. Let N = pq be an RSA modulus, (e,N) be
the public key of the application provider S and (d,N) its
corresponding private key in the RSA key generation process.
Following the general method outlined in [15], one way to
include common information to any message m is to embed
it in the signer’s key and generate new, per message signing
keys (in our case per token keys). So, let h() be a secure

cryptographic hash function such as SHA1. The new public
(and private) exponent eT (resp. dT) for token T , generated
from e, is obtained as follows:

Algorithm 1
Creating partial signature keys from (e,N)

h1 ← h(e, 〈CommonInfo〉)
eT ← h1 ‖ h(h1) ‖ 00000001
dT ← 1/eT mod φ(N)

The existence of the inverse, signing keys dT is due to the
following facts. Since N = (2p′+1)(2q′+1), we have φ(N) =
4p′q′. Both p′ and q′ are large primes (ca. 511 bits) while the
concatenation h1 ‖ h(h1) is 320 bits long. In addition, eT is
enforced to be an odd integer, hence it is not divisible by any
of {2, 4, p′, q′}. Thus eT is relatively prime to φ(N) and has
an inverse dT , which can be computed by S. Additionally, a
secure RSA setting requires the decryption key to be larger
than

√
N [16]. This is guaranteed by making eT around 320

bits long which ensures that dT will be longer than 512 bits in
case of 1024-bit modulus. (The proof of resistance to chosen
message attacks of signatures generated this way is shown in
the Appendix.)

A querier Q can ask the service provider to provide a
token by using the procedure shown in Protocol 1. Recall
that 〈UniqueInfo〉 is the part that has to be blinded and
contains identifying information to prevent double spending
(the exact format of this part will become clear in the
next section). Let also r be a random number in ZN and
m = h(〈UniqueInfo〉).

Protocol 1
Obtaining a blind signature from S

1) Q sends m∗ = mreT mod N to S by evaluating
the public key eT from public information available
(e.g. e and 〈CommonInfo〉).

2) The application owner S returns the signature σ∗ =
(m∗)dT mod N to Q.

3) Q computes σ = r−1σ∗ mod N , which is the
application owner’s signature on h(〈UniqueInfo〉).

Due to the blinding factor r, the network owner cannot
derive m and σ from m∗. In other words, given 〈m,σ〉,
the network owner cannot link it to Q. Additionally, since
the 〈CommonInfo〉 part is clear to the querier and is
negotiated at the beginning of (or before) the protocol, S
cannot include any information in it and hence trace the
querier. An implicit assumption here is that the parameters
in the common part do not contain any one-time elements
that may help distinguish the transaction and narrow down
the search such as for example a strange combination of
date and amount of data, and so on. If this is a concern,
users may depend on a trusted third party to purchase tokens
or use alternative schemes such as anonymous gift cards.
Once the signature σ is retrieved, the final token becomes
T = 〈CommonInfo, UniqueInfo,m, σ〉.

B. Spending and Redeeming a Token

Let P be the producer of data (mobile phone user) that Q
has decided to spend the token to. In order to provide the
required amount of sensed data, Q has to be able to tell if the
token T has been used before. For that reason, P will contact
the witness service W in order to attest on the validity of T
or provide proof that the token has been used before. Crucial
to the above is the structure of the 〈UniqueInfo〉 existing in
T . This element will allow P (as well as W) to provide the
necessary evidence for the token’s validity.

Let P and Q be primes such that Q|P−1 and g a generator
of order Q in the group Z∗P . Typically, P and Q will have
length 1024 bits and 160 bits, respectively. The querier Q
will select two secret values s, r ∈ ZP and compute v = g−s

mod P and x = gr mod P . The 〈UniqueInfo〉 element
will consist of the two values v and x, which will be signed
by S as explained in the previous section.

When the querier wishes to spend the token T , it will
first have to demonstrate the validity of the coin by proving
knowledge of the two secret values s, r using appropriate zero-
knowledge proofs. This protocol is based on the identification
scheme of Schnorr [17] (see also Okamoto [18] for a general-
ization and [19] for an instantiation on the e-cash setting) and
can be made non-interactive by making the challenge of the
verifier equal to the hash value of the token and committed
protocol parameters. The interaction between Q and P is
shown below.

Protocol 2
Checking the validity of a token T

1) Q sends P 〈T , y, date/time〉, where y = r + es
mod Q and e = h(〈T , y, date/time〉).

2) P verifies the signature of S on the token and checks
that x = gyve mod P .

If the tests in Step 2 of Protocol 2 succeed, P considers
the token valid. However, P still has to determine whether
the token is fresh or an attempt of doublespending. For that
reason it has to contact the witness service W that can attest
on the freshness of the token. The interaction between P and
a W is shown below:

Protocol 3
Checking for doublespending

1) P sends W the transcript of the interaction with Q,
i.e. 〈T , y, date/time〉.

2) W verifies the signature of S on T and checks that
x = gyve mod P . Then, based on the expiration
date of the token, searches its records for a token
containing the same 〈UniqueInfo〉 element. If no
match is found, the token is considered fresh and W
records the values 〈T , y, date/time〉.
If a match is found then W returns evidence that
the token has been used before. This evidence has
the form of the secret values s, r selected by Q
in forming the values v and x contained in the
〈UniqueInfo〉 element.

To see why W can provide evidence1 that a token has
been used before, notice that in this case it will have two
transcripts 〈T , y, date/time〉 and 〈T , y′, date′/time′〉 such
that x = gyve mod P and x = gy

′
ve

′
mod P . W can then

compute s = (y − y′)/(e− e′) mod Q by solving

y = r + es mod Q,

y′ = r + e′s mod Q.

In a similar manner W can obtain r. Notice that these values
are not connected with the ID of Q, hence they are not used
in identifying Q. They are only used to provide evidence that
a token has been double-spent. Hence the privacy of Q is
maintained even in this case.

Once P is convinced that the token is both valid and fresh,
it can provide the data requested by Q. Then it can go on
redeeming the token in exchange for other services or credit
provided by the application provider. A slight complication
might arise, however, if P redeems the token but denies to
offer Q the data she “paid” for. A solution to this problem
is for Q to ask for a signed commitment from P that it will
provide the data, assuming the token is both valid and fresh.

1Alternatively, W returns the previous transcript 〈T , y′, date′/time′〉 and
P can check itself if the coin is not used before.

This exchange can have the form shown below and should be
executed before Step 1 of Protocol 2.

Q → P : h(T), NQ

P → Q : SigP(h(T), NQ, “Commit to Serve”)

The signature on the second message is a commitment that P
agrees to serve the token that hashes to h(T). Once Q verifies
the signature, it proceeds with the remaining steps of Protocol
2.

V. SECURITY ANALYSIS

In this section, we demonstrate the security properties of
the protocol which match the goals set forth in Section III.
Some are new (Appendix) and some are inherited by the use
of appropriate cryptographic protocols used throughout.

Token Unforgeability

The process described in Section IV-A (Algorithm 1) of
embedding common information in the signer’s key has been
proven secure in the Appendix. This is another contribution of
this paper since in the work of [15], no concrete method has
been presented. Thus, a token obtained during token purchase
cannot be altered by a querier without affecting the validity
of the signature. In a similar manner, no querier can create
a valid token without knowledge of the secret signing keys.
Security is based on the hash-then-sign paradigm of RSA and
the strength of hash functions acting as random oracles.

Token Untraceability

Due to blindness, the only information learnt by S is
the 〈CommonInfo〉 element. Going back to Protocol 1, S
cannot derive h(〈UniqueInfo〉) and σ from m∗, without
knowing the blinding factor r. In other words, given the pair
(h(〈UniqueInfo〉), σ), the application owner cannot link it
to a querier Q. Thus when a token is redeemed by a producer
P , the application owner will not be able to tell which querier
requested the token.

An implicit assumption here is that the 〈CommonInfo〉
element used to create the signing key in Algorithm 1 does
not contain any information that can be used to identify this
particular transaction. If this is the case, Q may simply deny
to take part in the token generation process.

However, even if it’s difficult to associate tokens with the
identities of their holders, the application owner may still
narrow down the owner of a particular token to the queriers
who purchased tokens. This might be a concern if the number
of token buyers is limited. In such a case, users may rely on
trusted third parties to purchase tokens from S.

Double Spending Prevention

Resilience to double spending is due to the construction
of the 〈UniqueInfo〉 element. This element consists of the
two values v and x which are equal to v = g−s mod P and
x = gr mod P , respectively. When a querier Q sends the
value y to P (recall Protocol 2) essentially proves knowledge
of the values r and s that make up v and x.

One strategy, therefore, that Q can use to double spend a
token T is to come up with a different representation of the
values v and x. But that’s equivalent to computing discrete
logarithms [19], which is considered an intractable problem.
In a similar manner, no other querier will be able to double
spent this token as it would have to prove the token’s validity
(Protocol 2) first. But that would also require knowledge of the
values r and s, otherwise the NIZK protocol would fail. Thus,
we conclude that a token cannot be used more than once.

Finally, it is clear from Protocol 3 that if Q tries to double
spend a token T , then a producer can recover the secret values
making up v and x, thus providing evidence that a coin has
been double-spent.

Querier’s Privacy

PEPPeR preserves the querier’s privacy and fulfils all the
requirements of Section III. There are several potential points
where the querier’s privacy can get compromised. We briefly
discuss below, how our solution copes with these cases.

Token Purchase: Whenever a financial transaction is
involved in the scenario, there is a risk of linkability to
the real identity of the buyer (in our case the querier) if
the underlying payment methods are not privacy preserving.
PEPPeR is independent from the credit transfer mechanism,
so if it is done in a privacy friendly way, the whole operation
will not leak any identifying information about the querier.

Mobile Node Lookup: The access control mechanism is
designed to abstract away the mobile node lookup process. As
a result, the level of privacy achieved by the query delivery
method in the platform will stay unaffected by PEPPeR. For
example, a distributed directory service by the mobile nodes
can elevate the privacy level significantly, compared to the
existing query-task matching schemes by a centralized server
that can be found frequently in the literature (e.g. [13]).
Integrating PEPPeR to any such a privacy-friendly method will
not have any negative impact and will not introduce any new
risk to existing systems.

Token Spending: When a querier wants to retrieve data
from a Mobile Node and spend her access token, she cannot be
identified or linked to the purchase phase. The cryptography
used underneath enables us to break the connection between
these two steps and prevent any correlation between purchase
and spending phase. Therefore, even if the identity of the
querier was somehow revealed while purchasing the token,
she can ensure that the usage of the token will stay unlinkable
to her. The other important aspect of PEPPeR is that misuse
and double-spending cases can be detected and proved without
a need for disclosing querier’s identity information.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered the problem of query pri-
vacy in people-centric sensing networks, in which queriers do
not need to trust and rely on a service provider (or application
owner) S, in order to get access to the data produced by mobile
users. We have described PEPPeR, a generic protocol that

protects querier’s privacy, by letting a querier Q obtain tokens
from S, which reveal nothing about either the identity of Q or
its desire to spend the token with a specific supplier of sensed
data. Using appropriate cryptographic mechanisms to ensure
token validity, double-spending prevention, etc., PEPPeR does
not restrict the scope of queries or introduce trusted third
parties as in past solutions; the role of the service provider is
limited only to providing the means for queriers to contact the
mobile nodes, a service which can be agnostic to our protocol.

As part of a future work, we are planning to integrate our
protocol with traditional sensing platforms, even social ones,
in order to further demonstrate the applicability and viability
of our approach. An interesting point of research would also
be to eliminate entirely the witness service provided centrally
for double-spent tokens and replace it with one by which
mobile users themselves would be able to attest the validity
of tokens. While such methods have been considered in
traditional P2P systems (see for example the work in [20] in
the e-cash setting and the references therein), these methods
generally assume the presence of witnesses at all times. This
would be difficult to assume in the case of participatory/social
sensing, in which nodes are free to come and go as they like.
Additionally, these nodes may become single points of failure
or introduce collusion in the token spending process. Hence
more robust mechanisms are needed to ensure the validity of
such a (distributed) witness service in terms of persistence,
consistency as well as scalability.

VII. ACKNOWLEDGEMENTS

The first author would like to thank Angelos Kiayias for
useful discussions. This work has been funded by the European
Community’s FP7 project SafeCity (Grant Agreement no:
285556).

REFERENCES

[1] Maisonneuve, N., Stevens, M., Ochab, B.: Participatory noise pollution
monitoring using mobile phones. Information Policy 15 (2010) 51–71

[2] Honicky, R., Brewer, E.A., Paulos, E., White, R.: N-smarts: networked
suite of mobile atmospheric real-time sensors. In: Proceedings of the
2nd ACM SIGCOMM workshop on Networked systems for developing
regions (NSDR ’08). (2008) 25–30

[3] Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of
road and traffic conditions using mobile smartphones. In: Proceedings of
the 6th ACM conference on Embedded network sensor systems (SenSys
’08). (2008) 323–336

[4] Das, T., Mohan, P., Padmanabhan, V.N., Ramjee, R., Sharma, A.:
PRISM: platform for remote sensing using smartphones. In: Proceedings
of the 8th international conference on Mobile systems, applications, and
services (MobiSys ’10), San Francisco, California, USA (2010) 63–76

[5] Shin, M., Cornelius, C., Peebles, D., Kapadia, A., Kotz, D., Triandopou-
los, N.: AnonySense: A system for anonymous opportunistic sensing.
Journal of Pervasive and Mobile Computing (2010)

[6] Krontiris, I., Albers, A.: Monetary incentives in participatory sensing
using multi-attributive auctions. International Journal of Parallel, Emer-
gent and Distributed Systems (2012)

[7] Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S., Seada,
K.: Fusing mobile, sensor, and social data to fully enable context-aware
computing. In: Proceedings of the 11th Workshop on Mobile Computing
Systems & Applications (HotMobile ’10), Annapolis, Maryland (2010)
60–65

[8] Krontiris, I., Freiling, F.C.: Integrating people-centric sensing with
social networks: A privacy research agenda. In: Proceeding of the IEEE
International Workshop on Security and Social Networking (SESOC).
(2010)

[9] Carbunar, B., Yu, Y., Shi, W., Pearce, M., Vasudevan, V.: Query privacy
in wireless sensor networks. ACM Transactions on Sensor Networks
6(2) (2010)

[10] Zhang, R., Zhang, Y., Ren, K.: DP2AC: Distributed Privacy-Preserving
Access Control in Sensor Networks. In: Proceeding of the 28th
Conference on Computer Communications (INFOCOM ’09). (2009)

[11] De Cristofaro, E., Ding, X., Tsudik, G.: Privacy-preserving querying
in sensor networks. In: Proceeding of the International Conference on
Computer Communications and Networks (ICCCN ’09). (2009)

[12] Dimitriou, T., Sabouri, A.: Privacy preservation schemes for querying
wireless sensor networks. In: Proceedings of the 7th IEEE PerCom
International Workshop on Sensor Networks and Systems for Pervasive
Computing (PerSeNS 2011). (2011) 178–183

[13] De Cristofaro, E., Soriente, C.: Short paper: PEPSI – privacy-enhanced
participatory sensing infrastructure. In: Proceedings of the fourth ACM
conference on Wireless network security (WiSec ’11). (2011) 23–28

[14] Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO.
(1982) 199–203

[15] Abe, M., Fujisaki, E.: How to date blind signatures. In: ASIACRYPT’96.
(1996) 244–251

[16] Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices
of the American Mathematical Society (AMS) 46(2) (1999) 203–213

[17] Schnorr, C.P.: Efficient signature generation by smart cards. Journal of
Cryptology 4(3) (1991) 161–174

[18] Okamoto, T.: Provably secure and practical identification schemes and
corresponding signature schemes. In: CRYPTO. (1993) 31–53

[19] Brands, S.: Untraceable off-line cash in wallets with observers (extended
abstract). In: CRYPTO. (1993) 302–318

[20] Osipkov, I., Vasserman, E.Y., Hopper, N., Kim, Y.: Combating double-
spending using cooperative P2P systems. In: Proceedings of the 27th
International Conference on Distributed Computing Systems (ICDCS
’07). (2007)

[21] Bellare, M., Rogaway, P.: The exact security of digital signatures-how
to sign with RSA and rabin. In: EUROCRYPT. (1996) 399–416

[22] Coron, J.S.: On the exact security of full domain hash. In: CRYPTO.
(2000) 229–235

APPENDIX

In this section we prove the security of signatures against
chosen message attacks when multiple signing keys are gen-
erated from the same public/private key pair (Algorithm 1).
The reader is referred to [21], [22] for the various definitions.

More precisely, we define an extension to the Full Domain
Hash Signature scheme in which the key generation algo-
rithm on input 1k generates various public/private key pairs
(N, ei, di), as in Algorithm 1, and the signing/verification
algorithms have oracle access to a hash function HFDH :
{0, 1}∗ → Z∗N . We will now relate the security of this scheme
to the security of solving the RSA problem (i.e. recovering a
plaintext from an encrypted message).

Proof (high level): Let F be a forger that breaks the
extended FDH. Using F , we will build an inverter I that can
be used to break RSA. The goal of I is to find x = f−1(y)
for some key ei and a random y ∈ Z∗N , where f is the RSA
exponentiation function.

The inverter starts by running F . When F makes hash and
signing queries, I answer those itself. In particular, when F
makes a hash oracle query for M , the inverter increments a
counter i, sets Mi =M and picks a random ri ∈ Z∗N . It then
returns hi = re1e2···eki mod N with probability p and hi =
yre1e2···eki mod N with probability 1 − p. It also maintains

all re1e2···ek/eji values, 1 ≤ j ≤ k, for simulating the signing
oracle.

Eventually, F halts and outputs a forgery (M, s) for some
public key ei (wlog. assume this is e1). We also assume that
F has requested the hash of M before. If not, I goes ahead
and makes the hash query itself, so that in any case M =Mi

for some i.
Then, if hi = yre1e2···eki mod N we have s = hd1 =

yd1re2···eki mod N and I outputs yd1 (= s/re2···eki mod N)
as the inverse for y. Thus the intractability of the RSA problem
is reduced to the intractability of the extended FDH signing
algorithm. Also by tuning the probability p, we can make
the probability of forging a signature almost equally low
as inverting RSA (details omitted due to space restrictions,
refer to [21], [22] for similar arguments). This proves the
correctness of the signature generation process.

