Cost-sharing Models in Participatory Sensing

Georgios Birmpas!, Costas Courcoubetis' 2,
Ioannis Giotis', and Evangelos Markakis'

! Department of Informatics, Athens University of Economics and Business, Greece.
2 Singapore University of Technology and Design, Singapore.

Abstract. In Smart City and Participatory Sensing initiatives the key concept is
for user communities to contribute sensor information and form a body of knowl-
edge that can be exploited by innovative applications and data analytics services.
A key aspect in all such platforms is that sensor information is not free but comes
at a cost. As a result, these platforms may suffer due to insufficient sensor infor-
mation made publicly available if applications do not share efficiently the cost of
the sensor information they consume.

We explore the design of specialized market mechanisms that match demand to
supply while taking into account important positive demand externalities: sen-
sors are digital goods and their cost can be shared by applications. We focus
on the buyer side and define different demand models according to the flexibil-
ity in choosing sensor data for satisfying application needs. We then investigate
the properties of various cost-sharing mechanisms with respect to efficiency and
budget balance. In doing so, we also propose and study a new mechanism, which
although lacks strategyproofness, it exhibits important efficiency improvement
along with certain fairness properties.

1 Introduction

A remarkable incorporation of sensors has occurred in the last few years in a wide range
of devices. Starting from the inclusion of GPS receivers, accelerometers and barometers
in smartphones, lately we are seeing a wave of health related sensors being used in the
form of fitness bands and smartwatches. Aside from personal devices, home automation
and power management devices are distinctively on the rise and include a different
variety of sensor data.

Such sensor information can potentially be collected in more precise detail and
volume, opening up possibilities for research on unprecedented scales. Towards this,
participatory sensing initiatives form a natural and promising approach, replacing tra-
ditional sensor networks, where user communities can contribute sensor information,
that can later be exploited by innovative applications. There are already existing de-
ployments and platforms that support a variety of applications like environmental mon-
itoring (OpenSense), transportation (CrowdPark), fitness (BikeTastic), urban sensing
(PulsodelaCiudad), and medical research (Apple’s ResearchKit).

Unfortunately gathering this information from individually owned devices proved
to be not a straightforward task. Some of these platforms have suffered from insufficient
participation because users that voluntarily submit their sensing data found no interest



in remaining active in the system without being rewarded, or at least, have their cost
covered. These undesirable facts have already been observed in [4,9, 8], which focus
on incentive issues arising in the supplier’s side. Namely, suppliers may drop out unless
there is a positive Return on Investment, which depends on the total cost for collect-
ing data (battery consumption, device resources, privacy, etc). But potential buyers of
data may also be reluctant to participate in the market if for instance the prices are pro-
hibitively high, or if the underlying mechanisms do not aim at economic efficiency. How
should applications express their demand for sensor information in such an environment
and how should prices be determined? At the same time, one also needs mechanisms
for matching (elastic) demand with potential sensor providers, exploiting the fact that
once a sensor is turned on it can be used simultaneously by multiple applications.

Contribution. To begin with, we develop a framework for operating a large market of
sensor data in participatory sensing environments. On one side of the market, we have
buyers interested in obtaining data potentially from multiple sources and for different
types of sensors. The demand of the buyers can be elastic or inelastic in terms of the
number of sensors they require. On the other side of the market, the data suppliers
correspond to users or organizations owning sensors, and require a payment to cover
their costs. In this work, we are not concerned on how suppliers define their prices. We
focus on the buyers’ side and the design of mechanisms that match demand with supply
for the market environment described above. We assume a centralized platform that
is able to execute such pricing schemes, as well as collect and distribute the data and
payments. An important aspect of such a marketplace is that we can distribute the same
sensor data to multiple interested parties, at no extra cost, i.e., we can View sensors as
digital goods. This implies important positive externalities between buyers, since they
can profit from each other by sharing sensor costs where possible.

Within this framework, we introduce 2 simple cost-sharing settings regarding the
demand of the users, and study various mechanisms. The first scenario involves single-
minded buyers, interested in different subsets of sensor types. The second scenario
concerns bidders with multi-unit, elastic demand. In both scenarios, the two impor-
tant and conflicting objectives we care for are i) budget—balance: the market manage-
ment platform does not incur economic loss while operating the system, making it self-
sustainable, ii) economic efficiency, i.e., social welfare maximization: we would like to
satisfy more customer queries if this increases the net surplus in the system.

Given the strong impossibility results of [5, 12], we cannot achieve both at the same
time. We show for both scenarios how to achieve each one of these two objectives
separately, and with polynomial time complexity. For economic efficiency we prove
that the VCG mechanism can be implemented in polynomial time, whereas for budget
balance, we utilize and adapt ideas from the Moulin-Shenker mechanisms [10, 11].

For the second scenario, we also propose a natural hybrid mechanism that improves
efficiency under budget balance by relaxing strategyproofness. Despite the loss of strat-
egyproofness, our hybrid mechanism has its own merits. It is simple to implement, and
is based on a very natural approach for increasing the social welfare. We prove that this
mechanism achieves higher welfare than other established cost-sharing mechanisms.
Furthermore, our hybrid mechanism satisfies certain fairness properties, in the sense
that wealthier players contribute more to the total cost than poorer ones. Finally we also



study welfare properties at the equilibria of this mechanism and exhibit cases where
socially optimal equilibria exist.

1.1 Related Work

Regarding mechanism design for participatory sensing, in [9], a specialized reverse auc-
tion is proposed to incentivize suppliers to increase their participation. Another reverse
auction is also proposed in [8]. The work of [4] on the other hand is limited to using a
fixed price approach. An issue that is not covered by these works is the modeling of the
demand side of the market, which is what we mainly address in this paper.

We have recently performed experimental evaluations for some of the mechanisms
we study here, reported briefly in [14]. The main message from these simulations is that
certain altruistic versions of budget-balanced mechanisms, where some richer players
could contribute a higher payment, may have a practical appeal. The fact that buyers
here are able to share the same sensor, implies that in some occasions wealthy buyers
may have incentives to help out and contribute a higher cost-share so that the costs are
covered and they can still have access to sensors. No theoretical analysis is provided
though in [14]. The hybrid mechanism we propose in Section 4 is motivated by such
observations (though not implemented or suggested in [14]).

The works from the economics literature that are most relevant to ours are the cost-
sharing mechanisms of Moulin and Shenker [10, 11]. These mechanisms work for a
setting where each user is either granted the same identical service with all other users
or is declined. We also consider the Marginal Cost Pricing mechanism, see [10], which
is the adaptation of the VCG mechanism into the cost-sharing setting.

2 Definitions and Notation

In the models we study, we have a set N = {1,...,n} of potential buyers, who have
a demand for some sensor data (we use interchangeably the terms buyer or player, to
refer to any ¢ € N). Different types of demand (e.g., elastic vs inelastic, or single
tuple vs multiple tuples) are examined in Section 3 and Section 4. We also have a
set M = {1,...,m}, representing the different sensor basic types, e.g., accelerometer,
temperature, C'Oa, etc. Finally, we have a set of suppliers or providers who own sensor
data (via their mobile or any other device). Each suppliers may specify a price per
sensor type that he needs to be paid for in order to provide access to the value of the
sensor. Note also that a value provided by one supplier can be used by many buyers.
Suppliers do not all necessarily have the same set of sensor types available.

The main focus in our work will be on the following criteria, and especially on the
first two:

— Budget balance. A mechanism is budget-balanced if for every instance, the pay-
ments assigned to the buyers cover exactly the cost of the provider.

— Social welfare maximization. Following [10], the social welfare or surplus in a
cost-sharing setting is the sum of the buyers’ derived values minus the cost incurred
(the payments made by the buyers cancel out with what the providers receive). If x



denotes an outcome of a mechanism, the social welfare is ), v;(x) — C(x), where
v; is the valuation of buyer ¢ and C(x) is the cost incurred.

— No Positive Transfers (NPT): The cost shares are always nonnegative.

— Voluntary Participation (VP): The welfare level corresponding to not providing
service at no cost is guaranteed to each agent if they report truthfully.

3 Scenario 1: Single-minded buyers

We consider a simple scenario, in which each buyer ¢ € N is interested in a sub-
set P; C M of sensor types. For example P; could be of the form (speedometer, ac-
celerometer). Furthermore, he requests access to a single tuple with values from these
types of sensors, i.e., a tuple (z,y), where z is a value for speed and y a value for the
acceleration. These values do not necessarily need to come from the same provider (but
buyers can request that all the data come from providers within a certain geographical
region, e.g., the city center, in order to collect information about traffic; we omit such
implementation aspects from the description of the mechanisms). Hence, the request
specified by each buyer ¢ € N, is in the form (v;, P;), where v; is the value derived by ¢
for receiving this tuple, i.e., his willingness to pay. The demand is inelastic in the sense
that buyer ¢ is not deriving any utility if he receives only a strict subset of sensors from
P;. We call such buyers single-minded, in analogy to single-minded bidders in com-
binatorial auctions. Clearly such demands can come and go dynamically in the course
of time, but we are interested in a static snapshot, i.e., an instance of our problem may
correspond to the demands within a given time window during which the centralized
platform needs to make a decision on which users to serve.

The cost function C(S) for serving a set of customers S C N can be easily com-
puted for any S. For any sensor type j € M, let c; be the cost for the platform of
providing a single value for this type. The values of the sensors can be viewed as digital
goods, and since each bidder is interested in receiving a single tuple, we can use just
one actual sensor for each type requested, to satisfy all customers. Hence, the cost c;
could be taken to be the cheapest price specified by some supplier of type j (it is not
though important for the mechanism how c; is derived). Therefore, for a set S C N of
buyers, the cost C'(S) is the sum of the costs of all sensor types required by .S

c(s) = Z ¢;, where P(S) = U p;. (D

JEP(S) €S

3.1 Social Welfare Maximization

We first look at the objective of maximizing the social welfare. Let § = (61, ..., 6,,) be
the vector of the agents’ declared types. Under Scenario 1, 8; = (v;, P;). If a mechanism
chooses S C N as the set of buyers to be served, then the generated welfare from S is:
SW(S,0) =3 cqvi —C(5).

Let us denote by SWW*(N, 0) the optimal welfare that can be achieved by N, i.e.:

SW*(N,0) = glca];vq{z v; — C(S)}
- €S



Our main result in this section is the following:

Theorem 1. The problem of social welfare maximization under Scenario 1 can be
solved in polynomial time.

To prove Theorem 1, we need to avoid the exponential search over all subsets of
N. Note also that we do not have any monotonicity properties here (larger sets do not
necessarily produce higher welfare). To solve our problem, we resort to a linear pro-
gramming formulation, which turns out to yield a totally unimodular constraint matrix.

Proof of Theorem 1: We begin by writing down an ILP for our problem. For this,
we use an integer variable x; for each buyer ¢« € IV and an integer variable y; for each
sensor type 5 € M. The rationale is clearly that when x; = 1, agent ¢ receives his
requested tuple ;. When y; = 1, this means that the sensor of type j is allocated. Note
that determining the set of players who receive service, also determines the set of sensor
types that will be set to 1. We claim that the following is an ILP describing our problem.

maximize: Z Vil; — Z CjyY;
iEN JEM

subject to: x; < y; , Vi € N,Vj € P,
z; €{0,1}, Vie N
y; €{0,1}, VjeM

To see why this suffices, let us see the relation between the variables x; and y; for
each j € F;. If x; = 0, then the variable y; could be either 0 or 1, depending on other
buyers’ demand sets. If 2; = 1 however, then we must have that y; = 1. Hence, the
only constraint beyond integrality that we need is that z; < y; for j € F;. It is easy to
see now that every solution to our problem corresponds to a feasible solution of the ILP
(there are also some feasible solutions in which we can have y; = 1 without allocating
the sensor to anybody but these are clearly not optimal solutions).

We relax the ILP to get an LP relaxation, by setting that z;,y; € [0, 1]. So now
we have a linear program, which we can write in the form {maxz wT z | Az < b,z >
0}. The rest of the proof is devoted to showing that our constraint matrix A is totally
unimodular, which implies that the LP always has an integral optimal solution.

Lemma 1. The constraint matrix A of the LP relaxation is totally unimodular.

The proof of Lemma 1 is in Appendix A. Therefore, we can solve the Social Welfare
maximization problem in polynomial time, and the proof of Theorem 1 is complete. [

Theorem 1, implies that we can have strategyproof and efficient mechanisms imple-
mented in polynomial time. For example, we can utilize the VCG mechanism, which
we briefly recall for the sake of completeness. The VCG mechanism first computes a
set S* C N, where optimal welfare is attained. Then, if the declared type vector is
0 = (64, ...,0,), the payment for every player i € S*, can be written in the form:

pi = bi — (SW*(N,8) — SW*(N\ {i},6_,)). @)

Here b; is the value declared by player ¢ to the mechanism. Agents not picked in the
optimal set do not pay anything. This is also known as the pivotal mechanism [3], and



also referred to in the cost-sharing context, as the Marginal Cost (MC) mechanism in
[11]. Hence, we can conclude with the following:

Corollary 1. Under scenario 1, the VCG mechanism is strategyproof, satisfies NPT
and VP, and can be implemented in polynomial time.

More generally, we can have a family of strategyproof mechanisms by replacing
SW*(N\ {i},0_;) in (2) with any function of the form h;(6_;).

Since VCG is efficient, the impossibility results of [5, 12] imply that it cannot be
budget-balanced. In fact, we cannot even hope to be “approximately” budget-balanced,
since in the cases where no player is pivotal, the VCG payments are all 0.

3.2 Budget-balanced mechanisms

We now focus on the design of budget-balanced mechanisms. The mechanism we con-
sider is derived directly from the pioneering work of Moulin and Shenker [10, 11]. Their
work concerns a setting that differs from ours in 2 respects: first, their model is simpler
in terms of the service requested. Namely, they have a binary setup, where there is a
single provider, offering the same identical service to everyone, and each agent will be
either granted or declined the service. In our case the buyers are interested in different
subsets, and hence in a different type of service each. Second, in our model, the cost
function is simpler due to the fact that sensors correspond to digital goods and can be
shared. This implies that for instances where a set S of buyers requests the same set of
sensors, then in our setting C(S) is the same as C'(T') for any T C S with T # 0. In
their work C'(-) is an arbitrary submodular set function.

We can easily adapt the approach of Moulin and Shenker for Scenario 1. To do this,
we need to define first an underlying cost-sharing method. A cost-sharing method is
a function £(+, ) such that £(4, R) determines the cost-share of agent i, when R is the
set to be served by the mechanism. We demand that a cost-sharing method satisfies
> ieré(i,R) = C(R) forall R C N,i.e., the sum of the payments balance the cost.

We mainly focus on the egalitarian cost-sharing method, since this may have more
appeal in practice due to its simplicity. To define the share £(é, R) for a given set R to
be served, we split the cost of each used sensor equally among the people who want
it. Let y; be the number of buyers who have j in their demand set. Egalitarian cost
sharing means that each customer ¢ contributes a share c; /y; towards the cost of sensor
7. Hence for a buyer ¢, with demand set P;, his total cost-share is:

(iR =Y 9. 3)
jep ¥
It is obvious that we have: ) ;. &(i, R) = C(R), for any R C N. Given now
any cost-sharing method &, one can define parametrically the mechanism below for
determining who receives service along with the cost-shares. In the description below,
we let b = (b, ..., by,) be the agents’ declared values for their demand sets.

The Mechanism MS(¢) (Moulin-Shenker mechanism under £(-, -)):
— Start by trying to serve all agents, with cost-share £(¢, V). Remove any agent who

cannot cover his share, i.e., anyone for which b; < £(¢, V). If no one is removed in
this step, stop here, otherwise let R! be the set of remaining agents.



— Check if we can serve R! with a cost-share of £(i, R!) for every i € R'. Again
remove those who cannot afford this price.

— Continue like this and in every round obtain the set R®*! = {i € R : b; >
£(i, R)).

— Stop either when we reach the empty set, or when we reach a set in which all agents
can afford to pay their cost-share.

This family of mechanisms turns out to have nice properties if the cost function
C(+) and the cost-sharing method &(+, -) satisfy certain conditions. Regarding £(-, ), the
following is an important and desirable property, which simply says that the cost-share
of an agent should not become higher when more people receive service.

Definition 1. A cost-sharing method is cross-monotonic if for any T C N,
&(i, R) > &(i,T) forany RC T andi € R. 4)
Claim 2 The egalitarian cost-sharing method described by (3) is cross-monotonic.

We also need submodularity of our cost function, which is easy to establish.
Given Claim 2 , the following theorem is a straightforward extension of the results
from [10, 11] to our setting.

Theorem 3. Given any cross-monotonic cost-sharing method & for single-minded bid-
ders, the Mechanism M S(£) is budget-balanced, group-strategyproof and satisfies NPT
and VP. In particular, if £ is the egalitarian cost-sharing according to (3), M S(§) sat-
isfies these properties and can also be implemented in polynomial time.

The obvious question is how do these mechanisms perform with respect to social
welfare. Unfortunately, they are far from being efficient. Example 1 in Appendix A ex-
hibits instances where the efficiency loss can be made arbitrarily large. The mechanism
generates zero welfare, whereas the optimal social welfare is far from zero.

Our discussion in Sections 3.1 and 3.2 highlights the tradeoff between achieving
efficiency and budget-balance. In the next section, we will see a way of achieving better
trade-offs in a scenario of multi-unit elastic demand (but not applicable to Scenario 1).

4 Scenario 2: Multiple units and Elastic Demand

At this orthogonal scenario all players have the same type of demand, i.e., the set P; is
the same for every player (for example, this could involve buyers who are all interested
in the same type of information about the city center, or the same type of environmental
sensors in a region). What differentiates the players is that each player ¢ specifies an
additional amount d;, representing the maximum number of tuples that he is interested
in acquiring. The demand d; is elastic, so that player ¢ does not mind receiving less than
d; tuples. Each player also specifies his per-tuple willingness to pay v;. This encodes an
additive? valuation up to d; tuples. We assume that there is a sufficient supply of tuples

3 Our results also can be adapted for general submodular valuations in the form v; =
(vi(1), ..,v:(d;)), where v;(7) is the value for the j-th tuple. We prefer the current exposi-
tion, due to its simplicity and more practical appeal for participatory sensing applications.



from the providers, i.e., there are at least d,,,, of them with d,,,, = maxd;. Each
tuple has some cost ¢ so that we can sort them from the cheapest to the most expensive
one,say ¢y < ca--- < cq, .- Itis not important for our mechanisms how ¢, is derived.

We start with showing that maximizing the social welfare can be solved in polyno-
mial time. The important property is that once we decide for allocating a tuple, we do
not lose in welfare by giving the tuple to all customers who have demand for it, since
we are only adding more value to the current welfare. Hence, if @ = (64, ..., 6,,) is the
type vector, with 6; = (v;, d;), the optimization problem for the social welfare becomes

1<k<dmax

k
SW*(N,0) = max [Z’Uz -min{k, d;} — ch} ®)
iEN J=1

We can solve (5) simply by trying all values for k. Hence we have:

Theorem 4. Under Scenario 2, we can have polynomial time, strategyproof, and effi-
cient cost-sharing mechanisms, that also satisfy NPT and VP.

4.1 Budget balance: Sequential Moulin-Shenker Mechanisms

The application of Moulin-Shenker mechanisms is not any more straightforward in the
case of buyers with multi-unit demand. Each customer ¢ corresponds now to a set of
potential service levels, ranging from O to d; tuples. Hence, we cannot just run an analog
of MS(€) from Section 3. One could consider all combinations of service levels to
customers, and run M S(§) for each such combination (and then choose the one that is
more efficient). But this has prohibitively high complexity to be run in practice.
Instead, one can utilize the Moulin-Shenker approach in a sequential manner.

The Mechanism SMS(¢) (Sequential Moulin-Shenker):

— Sort the d;,q, cheapest tuples sothatc; < cy--- < c¢q4, .. Let Al = N be the set
of active players before the first round (initially all are active).
— Atround r (with r ranging from 1 to d,,,4,.):

o If A" is the set of currently active players, run the mechanism MS(£) from
Section 3 on A", to determine who receives the r-th cheapest tuple, along with
their cost shares for that round.

e Remove from A" all customers who were not selected to be served. Remove
also any customer with d; = r.

o Let A" be the set of surviving customers after the previous step. Continue
with the next round in the same manner, unless A1 = ().

— The total cost-share of a player is the sum of the cost-shares from all rounds.

For the remainder of the paper, we fix again £ to be the egalitarian cost sharing
method and denote the mechanism as SMS, rather than SMS(). Since everybody is
interested in the same tuple, if there are say k active players in a certain run of SMS at
a round 7, the cost share is defined as ¢, /k. The SMS mechanism is (group) strategy
proof by using the same arguments as in Theorem 3 (since the cost shares do not depend
on what players declare). Hence:



Theorem 5. Under Scenario 2, the SMS mechanism with egalitarian cost-shares runs
in polynomial time, is budget-balanced, group-strategyproof and satisfies NPT and VP.

However, as in the previous Section, we can easily construct instances where we
have a great loss of efficiency, even with 2 players and 1 round.

4.2 Budget-balance with Better Social Welfare: A Hybrid Mechanism

Motivated by the fact that the Moulin-Shenker mechanisms do not yield high social
welfare, we propose in this section a different mechanism, as an attempt to maintain
budget-balance but achieve higher welfare. Our mechanism is quite intuitive and uses
a very natural approach in order to achieve better welfare. It also proceeds in rounds,
but in each round, we start by running the VCG mechanism for sharing the tuple of
that round. In order to achieve budget-balance, we also complement the VCG payments
with an egalitarian cost-share for the remaining cost. If this results in high costs for
some players, we reject them and repeat for the remaining players.

Assume that the input to the mechanismis @ = (04, - - ,0,,) with ; = (b;, d;). We
define first the per-round VCG mechanism, which is quite simple in this setting. If we
run VCG only for the tuple at round r, the tuple is allocated if ;bj = cr. Aplayer i
is pivotal if Zj b; > ¢, and Zﬁéi b; < ¢, i.e., player ¢ has an impact on having the
tuple allocated. The only players that pay under VCG are the pivotal players, according
to (2). Hence, if A" is the set of active players at round r, and if ZjeAr b; > c,, the
VCG payments are:

VG ¢r — >,z by, if player i is pivotal ©)
) 0, if player ¢ is not pivotal

Our mechanism runs as follows:
The Hybrid Mechanism

1. Again sort the tuples so that ¢; < ¢ -+ < cq,...Let AL = N.
2. Atround r (with r ranging from 1 to d,,44):
(a) Checkif ), 4. bi > ¢, where A" is the set of currently active players during
round r. If not, the mechanism stops.
(b) Run the VCG mechanism on A", for the tuple of round r, and let inCG be the
VCG payment for each i € A", as defined in (6).
(c) Let c,’ be the reduced cost after the VCG payments: ¢,” = ¢, — > car piV
(d) Split the cost ¢/, equally among A", i.e. let p¥ = ¢/. /| A"|. Define the candidate
cost shares as pZ-H = inCG + pE.
(e) If there are players with b; < p™, then pick the one with the lowest bid, set
A" = A"\ {i}, and go to step 2a to repeat the process for round 7.
(f) Otherwise, if b; > p™, for each i € A", set A" = A"\ {i : d; = r}, and
continue to round 7 + 1, unless A™t! = .
3. The total payment of each player is the sum of payments over all rounds.

CG

Remark 1. (i) Note that at step 2e, we remove only one player, even if there can be
more players with b; < p. This turns out to be crucial regarding the total welfare
achieved. See Example 2 in Appendix B for more details on this.



(ii) Example 3 in Appendix B shows that an analog of the Hybrid mechanism in Sce-
nario 1 does not necessarily produce better social welfare than M S(€).

On the positive side, we will prove that the hybrid mechanism can attain much
higher social welfare than SMS. On the negative side, this is not a strategyproof mech-
anism (see Claim 11 and Example 4 in Appendix B). We do not view the lack of strate-
gyproofness as a prohibitive disadvantage for such mechanisms. In the recent literature
there have been several studies analyzing simple and non-strategyproof mechanisms
that have practical appeal. In the context of auctions for example, see e.g., [1,2, 7].

Apart from achieving better welfare, the Hybrid mechanism has other merits as
well. First, it maintains low complexity like SMS, since the VCG step is very easy to
run. Second, we consider it a very natural approach towards increasing the welfare of
budget-balanced mechanisms and can be applicable to other settings too. Third, it also
satisfies certain fairness properties, in the sense that wealthier players contribute more
to the total cost than poorer ones, see Claim 6 below. During the VCG step in each
round, the set of players who pay are the richer ones, according to (6). The remaining
cost is then an egalitarian cost share for all active players. Hence, the mechanism helps
the poorer players to satisfy their demand. But in addition to that, the wealthier players
are also rewarded, since as we will see in Lemma 2, a positive payment at the VCG step
for player 7, ensures that ¢ is never removed during the execution and he will be able to
get the desired tuples (as long as the cost of a tuple is covered by the sum of bids).

Claim 6 In the Hybrid mechanism, if b; > b; then p > ij .

The main positive result for the Hybrid mechanism is that it dominates the SMS
mechanism as follows:

Theorem 7. For any type vector 0, if we run both the Hybrid and the SMS mechanism
on input 0, then the Hybrid mechanism always achieves at least as good social welfare
as the SMS mechanism, w.r.t. 0.

Proof. The proof is based on two auxiliary lemmas stated below, the proofs of which
are in Appendix C. The following lemma shows that players who are asked to pay
something from the VCG run of a certain round cannot be rejected at that step of the
mechanism (in fact this implies that they will not be rejected from any future round
where the sum of bids covers the cost).

Lemma 2. Consider a round r in the Hybrid mechanism and let A™ be the set of active
players just before an execution of step 2b within round r. If > jear b; > ¢y, then for
every player i € A" for which p;"“% > 0, the mechanism cannot remove i from A"
during that step, i.e., b; > p; in the execution of that iteration.

Using Lemma 2, we can now prove the following fact.

Lemma 3. Consider a run of the SMS and the Hybrid mechanism on the same instance.
At every round r of each mechanism, let N? and N be the set of players who receive
the r-th tuple by the SMS mechanism and by the Hybrid mechanism respectively. Then
N2 C NH, for every r.



Lemma 3 implies that the Hybrid mechanism produces at least as good social wel-
fare as the SMS mechanism in each round. Hence, this completes our proof. a

In the case of 2 players, we can even guarantee optimal welfare by the Hybrid
mechanism (see Theorem 12 in Appendix C).
Equilibria under the Hybrid mechanism: An obvious question is whether we can
have a price of anarchy analysis in the cost-sharing setting as well. Do all the Nash
equilibria of the Hybrid mechanism achieve good social welfare? The answer is neg-
ative as there exist many “unreasonable” equilibria. E.g., the profile where everybody
declares 0 is an equilibrium and this is inherent in most cost-sharing mechanisms, since
no player would be willing to cover the cost of a service on his own. Nevertheless, these
are equilibria that will not be attained in practice.

Given the high price of anarchy, the next step is to investigate the existence of equi-
libria with better guarantees.The Hybrid mechanism is promising in that direction. We
briefly mention some results here for the existence of socially optimal pure equilibria.

Theorem 8. Consider a set of players with the same demand d; = d for i € N. Then,
there is a Nash equilibrium producing optimal social welfare when d = 1 or when all
the tuples have the same cost, c1 = ... = cq. In fact, in both cases, if the optimal welfare
is positive (i.e., Y v; > c1), then every vector b with Z?’:l b; = c1 and b; < v, is
a Nash equilibrium which produces optimal social welfare (w.rt. the true valuation
vector).

The proof is presented in Appendix C. As we see, there can be a plethora of optimal
equilibria in the above cases. Next, we identify some more conditions that enable the
existence of socially optimal equilibria. For simplicity, we stick to the case where all
players have the same demand d and the optimal welfare is achieved by allocating all
d tuples. Note then, that at an equilibirum of the hybrid mechanism, we need to have
> b;j = cq, i.e., if the bids exceed the cost of the last round, then there are incentives
for people to deviate. Second, to enforce an efficient equilibrium, we also need some
relation between the values v;, the parameter d, and possibly the marginal cost increase
between rounds. The following conditions that we have identified say that as long as
we do not have very poor players (otherwise again some people will have incentives to
shade their bids), socially optimal equilibria do exist.

Theorem 9. Consider an instance with players having the same demand d as before
and let 6 = max;{c; — ¢;_1 }. If the following 2 conditions hold, there exists a socially
optimal equilibrium.

1 v > 2(d — 1)3,
2. ¢g € [n(d—1)0,),v; —n(d —1)d].

5 Concluding Remarks

To our knowledge, a market-place tailored to the specificities of participatory applica-
tions, is missing today. We conjecture that with the wider adoption of devices contain-
ing sensors and new types of micro-payments, a market-place for data originating from
individually owned devices will be developed.



The implementation details can be very significant and potentially critical in the suc-
cess of the entire scheme. As an example, on the keyword auctions area, the widely used
approach was based on a second-price mechanism, although a VCG mechanism would
offer clear theoretical advantages such as strategyproofness. However, the second-price
auction was easier to explain and understand which could had played a more important
factor towards the success of the model.

There are still many directions and mechanisms that one can explore in the con-
text of sensor-data markets by focusing on the optimization of different criteria. For
example, similarly to keyword auctions, is there a very simple mechanism with good
properties? We underline that, like in this work, the focus could be on properties with
much more practical appeal like budget-balance perhaps at the expense of theoretical
guarantees and worst-case scenarios.
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A Missing material from Section 3

Proof of Lemma 1:  First, we will use the following auxiliary fact.
Fact 10 If A is a totally unimodular matrix then A” is also totally unimodular.

We now apply the above fact to the conditions for total unimodularity as established
by [6], see also [13][page 276], which imply the following sufficient condition for total
unimodularity:

Proposition 1. Consider a matrix A, and suppose we are given a partition of its col-
umns into two disjoint sets B and C, such that the following conditions hold.

(i) Everyentryin Ais0, +1, or —1, and every row of A contains at most two non-zero
entries.
(ii) Ifthere are two non-zero entries in a row of A with the same sign, then the columns
corresponding to these entries do not belong to the same class (one is in B, and
the other is in C).
(iii) If there are two non-zero entries in a row of A with opposite signs, then the
columns corresponding to these entries both are in B, or both in C.

Then A is totally unimodular.

In our case, we have the following LP.
maximize: Z ViT; — Z CjY;
iEN jeM
subjectto: x; <y;, Vi€ N,Vje P
z;, <1, Yo e N
yj S 1 5 V] eM
z;>20,y; >0, VieN,jeM
If we take the variable vector to be z = (21,...,%n,Y1,---,Ym)", then our con-
straint matrix A will have the form:

rto---0--- =10 ---0
10---0--- 0 =1---0

00---1--- 0 =1---0
10---0--- 0 ---
0l1---0--- 0 0 ---0

o
o

[00---0--- 0 0 -1

where the first n columns correspond to the x; variables and the remaining m columns

correspond to the y; variables. The last n + m rows of A have exactly one +1 entry
and the rest are 0 (representing the inequalities z; < 1,y; < 1). The first rows, above



the last n 4+ m ones, which are ) ", | P;| in total, have exactly one +1 and one —1 entry,
representing the inequalities x; — y; < 0, for j € P;.

To proceed, we consider a partition of the columns of A into two disjoint sets B, C
where we take B to contain all the rows of A and set C' = (). We check each of the 3
properties of Proposition 1.

(i) Every entry in A is 0, +1, or —1. Also, every row of A contains at most two non-
Zero entries.

(ii) There is no row in matrix A with elements of the same sign. Hence, we have nothing
to check here.

(iii) Rows in A containing entries with opposite signs correspond to constraints of the
form z; — y; < 0. Hence, in all such rows there is exactly one +1 and one —1
entry. Thus, having all the columns of A in set B, and setting C' = () suffices. Note
that the crucial point here is that as we previously saw, there is no row of A having
entries of the same sign, and this allows us to leave C' empty.

Since all the sufficient conditions hold, the matrix A is totally unimodular. O

Proof of Claim2: LetT C N and R C T.If £(4, R) is the cost share of 4 under
R, then adding more buyers to the set R cannot increase the cost share of 7. For each
J € P, the cost share for 7 towards c; can only decrease when more buyers are added.
Hence, £(i, R) < £(i,T). O

Proof of submodularity of cost function : Consider any two sets S, 7 C N,
with S C T. We claim that adding one more buyer ¢ to each of these sets has a
smaller marginal cost in 7. This is because the marginal cost C(T' U i) — C(T) =
> jep\p(r) - And since, P(S) C P(T'), we have

C(TUi)—C(T)<C(SUi)—C(S)
This completes the proof. O

We next present an example showing that the loss in social welfare by the Moulin-
Shenker mechanisms under Scenario 1, can be arbitrarily large. We show this both for
the egalitarian cost-sharing method and also for the Shapley value. But these negative
examples do not hold just for these two cost-sharing methods, one can have such bad
examples for any other cost-sharing method.

Example 1. Suppose we have two players N = {1,2}, and two sensor types, say t;
and to.
Players: Player 1 has a value of vy = 2M for some number M > 3 and he requests
the set P, = {t1,t2}. Player 2 has a value of v = 2M — 1 and he requests the set
P, = {t;}.
Sensors: The cost for the sensor of type ¢; is ¢; = 2M and the cost for the sensor of
type toisco = M + 1.

We can see now that the costs for serving the 4 different subsets of the 2 players
are as follows: C(0) = 0, C(N) = C({1,2}) = ¢1 + 2 = 3M + 1, C({1}) =
ZjePl ¢j=c1+co=3M+1,and C({2}) = ZjEPz ¢; =c1 =2M.



Let us consider the egalitarian cost-sharing formula as defined by (3). In the first
round of the mechanism M (£), the cost shares will be:

1 1
f(l,N):icl—FCQ:QM—Fl, f(Q,N):icle (7)

But this implies that player 1 will be kicked out since v; < 2M + 1 and player 2 will
continue to the second round since vo > M. In the second round of M (¢), player 2
has now to cover the cost for the sensor he wants on his own. But since v, < 2M, he
cannot afford to do so and he is rejected as well. This means that M () produces zero
social welfare. In contrast, the optimal social welfare is achieved when we serve both
players and it is SW* = v; + vy — (¢1 + ¢2) = M — 2 > 0. Clearly, we can make this
arbitrarily large, as M becomes bigger.

Sticking to the same instance, let us consider now a different cost-sharing method,
namely the Shapley Value, which is one of the usual alternatives in the literature.
One of the reasons that this method has been attractive is that among the family of
Moulin-Shenker mechanisms, it achieves the minimal (additive) worst-case efficiency
loss, see [11]. A negative aspect of this method however is that computing the cost
shares cannot be done in polynomial time. We exhibit that even for this method, the
efficiency loss can be arbitrarily large.

For S C N and i € .5, the cost share under Shapley value is defined as follows:

i,9) = S =D er by — o)

|
TCS—i |S|

If we run now the Moulin-Shenker mechanism, in the first round we need to compute
&(1,N) and (2, N), which turn out to be:

£(1,N) = ZTC{Q}WMTUU C(T)] = 3(C(N) — C({2}) +
3(CH{1Y) —CO) = 5(c1+ca— 1) + (01+62)=%1+02
- €(2,N) = ZTC{H.W[O(TW C(T)] = 3(C(N) = C({1})) +
HC{2D) - C0) = 3er + 2 — 1 — 2) + 31 = Sen

We see that these are identical to the cost shares defined by the egalitarian cost-sharing
method in (7). Hence, the mechanism will run in the same manner as before, and it will
result in zero welfare again. a

B Illustrative examples regarding the Hybrid mechanism

In this part of the Appendix we provide some illustrative examples, referenced in Sec-
tion 4.

The example below shows why we remove only one player at a time at step 2e, and
do not remove all together the players for which b; < pH.

Example 2. Suppose that we have five players with

Players|1(2|13 |4 |5
Bids |2|2]1.8]1.1]1.1

[




and the cost of the first round is ¢; = 6. The sum of these bids is higher than the
total cost and it is easy to see that p¥'““ = 0 for all of them (for every player i we
have 3., b; > c¢1). So ¢ = c1 and for every i, the final payment is p; = 6/5 = 1.2.
Players 4 and 5 can not pay their payments, we exclude both of them, thus they stop
to participate. However the rest players are now not capable to cover the cost since
b1 + ba + b3 = 5.8 < 0, so the procedure stops and no player gets his demanded tuple.
Let us run the same example but instead of putting both players 4 and 5 out, we will
choose the one with the lowest bid (say arbitarilly player 5 since players 4 and 5 have
a tie) and exclude only him. Now we have four players and the procedure continues as
follows,

Players|1(2|3 |4
Bids  |2|2]1.8]1.1

their new VCG payments are now,

Players|l 2 3 |4
py €¢ 11.1]1.1]0.9(0.2

which gives p¥ = 2.7/4 = 0.675 for every 4. Thus the final results are

by =2>p =1.1+0.675=1.775
by =2 > pil =1.140.675 = 1.775
by = 1.8 > pif =0.940.675 = 1.575
by =1.1>pl =0.2+0.675 =0.875

So a non zero social welfare is produced and we achieve a great improvement in total
(we note here that SMS mechanism also produces a zero social welfare at this exam-
ple). a

The next example shows that we cannot hope to have an analog of the Hybrid mech-
anism in Scenario 1 and always beat the Moulin-Shenker mechanisms with respect to
social welfare.

Example 3. In order to define an analog of the Hybrid mechanism for Scenario 1, we
need first to see how to divide the remaining cost after the VCG step to the players.
This is not uniquely defined, because players now have different type of demands. So
suppose that a player ¢ demands k out of m sensors and after the VCG step he ends up
with a payment p;V¢“. This amount is divided by k and extracted by the costs of his
demanded sensors.

We show now that the mechanism M (€) from Section 3 with the Egalitarian cost
sharing formula can produce a better social welfare from Hybrid mechanism at Sce-
nario 1. Suppose that we have five players with

Players|l |2 |3|4]5
Bids  |25{10|5(9(8

and four sensors with the following costs



Sensors|l |2 |3|4
Costs ]20|10|7|5

Now lets take a look at the demand of each player:

Players|1 2(3|4(5
Sensors|1,2,3,4(1|2|3|4

If we run the SMS mechanism with the Egalitarian cost sharing formula, the payment
for each player is defined as follows:

p1=20/2+10/2+7/2+5/2 =21

P2 =20/2=10
p1=7/2=35
ps=5/2=25

Thus for every player ¢ we have that b; > p; so all players participate in the game. The
social welfare which is produced by this procedure is also the optimal one, S wMS —
254+10+54+9+8—-20—-10—7—5 = 57 — 42 = 15. Let us now proceed with
Hybrid mechanism:

VCG
VCG

—(9+8—7-5)—(10+54+9+8—-20—10—7—5)=5+10=15

= (25+5+9+8-20—10—7—5)—(25+5+9+8—-20—10—7—5) =
ngG:(25+1o+9+8—20—10—7 5)—(254+10+9+8-20—10—7—5) =
XCG:(25+10+5+8—20—10—7 5)—(254+10+5+8-20—10—7—5) =

= (254+10+54+9—-20—10—7—5)—(254+10+5+9—-20—10—7—5) =

So the only player who pays is player 1 and his payment is divided by 4, in order
to reduce the cost of the sensors that he demands. Thus we have 15/4 = 3.75 and the
new costs are:

c1 =20—-3.75=16.25
cg =10—-3.75 =6.25
c3=T7—-375=325
c4=5—-37=125

Lets examine now the final payment of player 1:

pif = pY 9% + pf = 15+ (16.25/2 + 6.25/2 + 3.25/2 + 1.25/2) = 15 + 13 =
28 > 25 = by

This kicks out player 1 as well as players 2 and 3 who now can not cover the cost
of their demanded sensors (since player 1 is out he does not pay anything at the VCG
step, in addition b, = 10 < 20 = ¢; and b3 = 5 < 10 = ¢»). Finally player 4 gets his
demanded sensor at p; = 7 and player 5 also gets his demanded sensor for p; = 5. The



new social welfare is SW? =9 +8 —7—-5=15 < 15 = SW M5 This concludes
our proof. a

Claim 11 The Hybrid mechanism is not strategyproof.
The proof is by the following example.

Example 4. Suppose that we have 3 players with v1 = 4, vo = 3, v3 = 2 who demand
only one tuple with cost ¢ = 7. If these players declare their true values then,
pVOC =7 (342)=2
pVCC =T (4+2)=1
psVOG =7—(443)=0
So we compute the new cost, ¢ = 7 — (24 1 + 0) = 4 and we proceed with splitting
equally the remaining cost. Now every player has to pay an additional amount of p” =
4/3 = 1.33. So the final payments are,

H=24+1.33=3.33

H=1+4+133=2233

H=0+1.33=1.33

Thus, all the players get the tuple under the Hybrid mechanism. Observe here is that

if we run the SMS mechanism, no player gets any service, leading to a social welfare
of zero while here we get the maximum possible social welfare of (4 +3+2) — 7 = 2.
Now let us take a look at player 3 for example. When player 3 declares his true value,
he has a utility of ug = 2 — 1.33 = 0.67. However, if he declares b3 = 0, then we have
bigger VCG payments for the rest of the players and no payment for him. In more detail,

PV =7-(3+0)=4
PV =7—(440)=3
psVCC=T7—(4+3)=0

The new remaining cost is now ¢ = 7 — (4 + 3 4+ 0) = 0 and hence, pl = p}¢¢
Thus, all players get again the demanded tuple, but player 3 has now a utility of us =
2 —0 =2 > 0.67. We conclude that our mechanism is not strategy proof. a

C Missing proofs from Section 4

Proof of Claim 6 :  As we stated p;"7 = p;Y¢ + pP. Since p¥ is the same for all
players, we only have to show that p;V¢¢ > ijCG. But this however holds trivially
by how the per-round VCG payments are defined in our setting. (|

Proof of Lemma 2 : Consider the set A” of currently active players just before we
run the VCG mechanism at step 2b within round r. Let |A”| = k, and let T be the set
of players with p}’ CG > 0 at that step Suppose that |T'| = ¢ with ¢t < k. We will prove
that b; > p; . We analyze first p/ for players with p) ©¢ > 0:

H \'gelel E _ Z pVCG
P =pl 9 g pf =, =Y by Tl ®)
J#i



A DU CA I [ 9 3) o

P ter 7t
=3 +1 (Zij—(t—l)c,«) (10)
VE) LeT j#L

We can now continue with what we want to establish as follows:

bi > pi = kb > (=t )e, — kY b+ > Y b

j#i CET j#¢L
= kb > (k—t+ e, — (k=1 b+ Y > b
J#i LET\i j#L
= (h—t+ Db > (k—t+ e, —(k-1> b+ > > b
J#i 0ET\i j#L,i
= (h—t+ Db > (k—t+ e, — Y bi—(k—t)) b
JET\i JFi
= (k=t) > b+ > bi>(k—t+1)c

JEAT JET

Note that if & = ¢, i.e., A" = T, the inequality holds trivially, since we have
assumed that ZjeAT > c¢,. Suppose t < k. Define b, = max ;e a4\ b;. We can now
rewrite the last equivalence above as:

k=) bi+ (k= t)bg+ > by > (k—t)ey + ¢,
J#q jJET

The final statement is true because, first:

k—t)Y b > (k—t)er

Jj#q
This is because k > t and 3, bj > ¢, since py ©“ = 0. Finally, we also have that
er <X jear by < (k—1)bg + > cq bj. This concludes our proof. O

Proof of Lemma 3: The proof is by induction on the number of rounds.
Induction basis: Consider the first round. Suppose that N7 # () and let i € N{. We
will show that i € N{. We have:

i€ NZ=b;>c/|NY|

Let us examine the Hybrid mechanism now. Recall that each round of the Hybrid mech-
anism is divided into iterations and at most one player can be removed per iteration. We
claim that 7 cannot be rejected by the Hybrid mechanism during the first n — |N?| it-
erations. To see this, consider one such iteration. If pVCG > 0, then ¢ is protected and
cannot be removed by Lemma 2. Suppose then that ¢ did not pay during the VCG step.
Then, his cost-share will be ¢} /n’, where n’ is the number of people being active during
the iteration. But ¢, < ¢; and n’ > |N{|, since we are within the first n — | N’| itera-
tions. Thus, p = ¢} /n’ < ¢;/|N{| < b;, thus i is not removed. Therefore, either the



first round of the Hybrid mechanism ends before n — |N?| iterations and Ny C N{Z,
or the mechanism executes exactly n — | N7'| iterations and after that precisely the set
Ny has survived. But by the same arguments again, all these players can afford their
cost share in the next iteration and the mechanism will stop by allocating the tuple to
them, in which case Ni° N{!. This completes the basis.

Induction step: Suppose now that at round r — 1 we have N | C N ;. When round
r starts, we possibly exclude players with d; = r — 1, but these are excluded from both
sets. Hence at the beginning of round r, the Hybrid mechanism has a superset of active
players with respect to SMS. Let now N and N7 be the players who survived round
7 in the two mechanisms respectively. Suppose that N¥ # (), and consider i € N7 .
We can now use very similar arguments as in the induction basis to prove thati € N
Again the idea is that during each iteration within round r, either p} ““ > 0 and hence
1 is not rejected, or otherwise, we can show that b; is at least as big as the cost share in
the first n — |N?| iterations. Therefore i € N and N7 C N2, O

Theorem 12. The Hybrid mechanism always achieves optimal social welfare when we
have only n = 2 players.

Proof of Theorem 12 :  We have to prove that if b; + by > ¢, for some round-tuple r,
then both players get the tuple. In other words we must show that if b; + by > ¢, then
by > pif and by > po ! for that round. So suppose that b; + by > ¢, for a round r,
then we have four possible cases that depend on the possible p; ¥ ““, p,V' ¢ that might
occur:

1. p1VCG = pQVCG = 0: This means that both by,by > ¢. > ¢./2. So cr/ = ¢,
and p1 1 = po™ = ¢, /2 < by, by. Thus both players get the tuple since their bid is
bigger than the final price.

2. p1VCG = 0 and pQVCG = ¢, — by: This means that b > ¢,. So cr/ = ¢ —

(¢j —b1) = by, p1 = b1/2and p,! = ¢, — by +b1/2 = ¢, — by /2. However

by —pott = by — ¢, +b1/2 > by — ¢, > 0and by — p1fT = b1 /2 > 0. Thus both

players get the tuple since their bid is bigger than the final price.

pQVCG = (0 and p1VCG = ¢, — by: Similarly, as in Case 2.

4. pVCee = ¢, — by and poV¢Y = ¢, — by (remember that by + by > ¢,): So
¢ = cr—[(cr—b1)+(cr—b2)] = b1+ba—crop1 T = ¢ —bo+ (b1 +ba—c,)/2 =
(cq+by—bg)/2and po = ¢, —by+ (by+bzy —¢,)/2 = (¢, +by —b1) /2. However
by 7p1H = b — (CT + by — bg)/Q = (bl + by 7Cr)/2 > 0 and by 7p2H =
by — (¢ + b2 —b1)/2 = (b1 + b2 — ¢,-)/2 > 0. Thus both players get the tuple
since their bid is bigger than the final price.

w

For d; # d, the statement holds trivially beyond the round defined by the lower de-
mand. This concludes our proof. a
O

Proof of Lemma 8 :  Suppose that Z?Zl b; = c;. Initially notice that for every i we
have that b; = ¢1 — ), b; so it is easy to see that p,# = p;V % +p,f = b, +0 =1,



thus all players get their demanded tuple. Now if player ¢ bids a lower amount, then
the sum of bids becomes smaller from the total cost and no player (including ) gets
the tuple. If player ¢ bids a higher amount, say b; + a > b;, notice that his payment at
the VCG step does not change but the VCG payments of the rest players are decreased.
This, according to the structure of Hybrid mechanism, produces a higher egalitarian
cost and thus a higher egalitarian payment for all players. So player i now pays p; 7 =
p:VCC + p, B = b; + p; ¥ where p;¥ > 0, something that leads to a lower utility. Our
proof is complete.

The statement for (ii) is proved by using the same arguments. (]

Proof of Theorem 9 :  The proof of the Theorem is based on the following useful
lemma, telling us what are the properties needed by an equilibrium profile.

Lemma 4. Consider a set of n players with the same demand d, in addition 2?21 v; >
¢, where v < d is the maximum round that this condition holds and let § = max{c; —
ci—1} fori € [1,7]. If there exist bids so that for every player i we have v; — (r — 1) >
b; > (r—1)é and in addition ", b; = ¢, then this vector of bids produces a NE that
achieves the optimal social welfare.

Proof. We have to prove that under this hypothesis, no player is excluded up to round
r and in addition no player is motivated either to overbid or to underbid.

— No player is excluded up to round 7: Basically if b, > (r — 1)d and >_" ; b; = ¢,
then player 7 is pivotal at all rounds. We will proceed with induction.

Induction basis: At round 1 an arbitary player i pays at the VCG step, p;V¢¢ =
€1 — Zj;ﬁi bj =cr— 22:2(02 —Csm1) — Zj;&i bj > cr—(r—1)5 - Zj;&i bj =
b; — (r — 1)6 > 0. Thus every player i is pivotal in round 1, so none of them is
excluded.

Induction step: Suppose that no player has been excluded up to round & — 1. As
a consequence round k starts with all n players and an arbitary player ¢ pays at the
VCG step, p;" ¢ = ¢ — Zj;&i bj = ¢ — ZZ:I@H(% — 1) — Zj;ﬁi by >
¢ —(r— k)6 — 3 ,4;b; = bi — (r — k)d > 0. Thus every player i is pivotal in
round &, so none of them is excluded.

The induction is complete and we can conclude that all players are pivotal at all
rounds so no player is excluded up to round r.

— No player is motivated to either overbid or underbid: Inially, notice that as with the
previous Theorem, when a player ¢ overbids he has no gain since he will pay more
at all rounds. His only chance to increase his total utility is to bid something higher
from his value in order to gain access to round r 4 1. However in such a case he will
increase his payment at all rounds up to  and in addition he will pay something
higher from his value at round r + 1. Thus there is no motivation in overbidding.
Now if a player ¢ underbids, he actually has a chance to decrease his per round
payments but he also decreases the number of rounds that he participates (at least
one round since Ef:l b; = ¢,). So if player ¢ bids an amount b; —a < b; and under



his new bid can participate in z = r — k rounds, then since the rest players are
pivotal due to our hypothesis (and remain pivotal as the new bid of player ¢ actually
increase their VCG payments) the total gain that he has at all the » —k rounds that he
participates is (r —k)[a(n—1)/n] < (r—k)a < (r—k) >0 _ . 4(c. —czo1) <
(r — k)ko. So we have to prove that,

r—1

r—k
ul >uf = mi—ij—bi > (r—k)vi—Zp;»
J=1 j=1

Notice that (r — k)v; — Z;;]f pi+ (r—k)ks > (r —k)v;, — Z;;]fp; o we can
proceed instead to,

r—1 r—k
TU; — ij —bi = (r—Fk)v; — ij + (r — k)ké
j=1 j=1

r—1
= kvi— > pi—bi=(r—kkd
j=r—k+1

In addition we have that kv; — Z;;}»—kﬂ pj — by > kv — Z;;i—k-&-l bi —b; =
k(v; — b;) thus we can prove instead,

k‘(vi—bi)2<’l“—k‘>k(5 < ’Ui—biZ(’I“—k’)(S 1 Ui—(T‘—k‘)(SZbi

Something that is true by our hypothesis (notice that minimum %k = 1).
O

We now use the Lemma to prove the theorem. By the first condition of the theorem,
we have thatv; > 2(d—1)0 = v;—(d—1)§ > (d—1)6 = I; € ((d—1),v;—(d—1)].
Adding the respective inequallities of all players, we have that >._ b; € (n(d —
1)d,> ", vi — n(d — 1)é]. By the second condition, we have that ¢4 can be realized as a
sum of appropriate bids by the players.

O

D Other interesting remarks

The next lemma highlights an important differentiation between the Hybrid and the
SMS mechanism, and also yields some insight as to why the Hybrid mechanism can
produce higher social welfare.

Lemma 5. Let A" be the initial set of active players at the beginning of an arbitrary
round r. If > jear bj > c;, then the Hybrid mechanism will always allocate the tuple
of this round to some players (i.e., not all players are rejected during this round), unlike
the SMS mechanism.

Proof. The statement of this lemma implies that we can extract nonzero social welfare
from such a round, unless it is the case that ) j b; = ¢, for the surviving players in that



round. In contrast, there are instances where the SMS mechanism can reject all players
even when they can collectively cover the cost.

Before stating the formal proof, we first provide some intuition: First, note what we
have from Lemma 2. If for a player i we have p) ““ > 0, then we know he is protected
during that step and will not be rejected. Hence, we need only worry about players for
which pY % = 0. But the second important observation now is that if the players can
collectively cover the cost, and yet a player ¢ pays zero at the VCG step, this means that
the rest of the players can still cover the cost of ¢, after excluding ¢. In fact even more
players may become pivotal after excluding ¢, increasing in that manner the “protected”
players.

The formal proof is by induction. At each round r, the Hybrid mechanism may run
several iterations, where by an iteration, we refer to an execution of steps 2a till 2e. We
prove by induction on the number of iterations, the following statement:

Consider a round r, where initially jear bj > c,. Then at the end of each iteration
within round r,

— either we have b; > pi for every active player i,
— or there is at least one player i, with b; < pZ?, and after applying step 2e and setting
A" = A7\ {i}, westill have A" # Qand 7, 4. bj > ¢;.

Induction basis: Suppose there is a player such that at the end of the first iteration,
b; < pH and that this is the player rejected from the mechanism. By Lemma 2, we
know that pz‘-/CG = 0. But this implies that ZjeAT\{i} b; > c,. Since, the new set A"
at the end of the first iteration is precisely A" \ {i}, this means the remaining players
can still cover the cost. This completes the basis.

Induction step: Suppose that the induction hypothesis holds up until iteration k£ and
consider the next iteration within round 7. The proof is exactly by the same argument
as for the induction basis. To see also why A" can never become the empty set, suppose
that as the algorithm keeps removing players, we reach a point where |A"| = 2, con-
sisting say of players 1 and 2, and that we still have > jear = cp. If at this point the
mechanism removes one more player, say player 2, then since py ©“ = 0, this means
that by > ¢,, implying that in the next iteration player 1 will cover the cost and will not
be rejected.

Remark 2. Note that in the description of the Hybrid mechanism, at step 2e, we remove
only one player, even if there can be more players with b; < pH. This turns out to be
crucial for the properties we have established. Namely, in the proof of Lemma 5, we
used the fact that when a player pays zero at the VCG step, this means that the rest of
the players can still cover the cost of the round. If we remove more than one player at a
time, the lemma does not hold any more.



