Publications
Journal Papers
- Araujo, I. F., Park, D. K., Petruccione, F., & da Silva, A. J. (2021). A divide-and-conquer algorithm for quantum state preparation. Scientific Reports, 11(1), 1-12.
- Gamboa, J. C. R., da Silva, A. J., Araujo, I. C., Albarracin, E., & Duran C. (2021). Validation of the rapid detection approach for enhancing the electronic nose systems performance, using different deep learning models and support vector machines. Sensors and Actuators B: Chemical, 327, 128921. Paper also available here.
- Veras, T. M., De Araujo, I. C., Park, K. D., & Dasilva, A. J. (2020). Circuit-based quantum random access memory for classical data with continuous amplitudes. IEEE Transactions on Computers. Paper also available here
- Sousa, R. S., dos Santos, P. G., Veras, T. M., de Oliveira, W. R., & da Silva, A. J. (2020). Parametric Probabilistic Quantum Memory. Neurocomputing. Paper also available here
- Sousa, R. S., dos Santos, P. G., Veras, T. M., de Oliveira, W. R., & da Silva, A. J. (2020). Parametric Probabilistic Quantum Memory. Neurocomputing. Paper also available here
- de Paula Neto, F. M., Ludermir, T. B., de Oliveira, W. R., & da Silva, A. J. (2019). Implementing Any Nonlinear Quantum Neuron. IEEE Transactions on Neural Networks and Learning Systems.
- Gamboa, Juan C. Rodriguez, Adenilton J. da Silva, and Tiago AE Ferreira. "Electronic nose dataset for detection of wine spoilage thresholds." Data in brief 25 (2019): 104202.
- Gamboa, J.C.R., da Silva, A.J., de Andrade Lima, L.L. and Ferreira, T.A., 2019. Wine quality rapid detection using a compact electronic nose system: Application focused on spoilage thresholds by acetic acid. LWT - Food Science and Technology, 108, pp.377-384. Paper also available here
- de Paula Neto, F.M., da Silva, A.J., de Oliveira, W.R. and Ludermir, T.B., 2019. Quantum probabilistic associative memory architecture. Neurocomputing, 351, pp.101-110.
- dos Santos, P.G., Sousa, R.S., Araujo, I.C. and da Silva, A.J., 2018. Quantum enhanced cross-validation for near-optimal neural networks architecture selection. International Journal of Quantum Information, 16(08), p.1840005. Paper also available here
- de Paula Neto, F.M., de Oliveira, W.R., Ludermir, T.B. and da Silva, A.J., 2017. Chaos in a quantum neuron: An open system approach. Neurocomputing, 246, pp.3-11.
- da Silva, A.J., Ludermir, T.B. and de Oliveira, W.R., 2016. Quantum perceptron over a field and neural network architecture selection in a quantum computer. Neural Networks, 76, pp.55-64. Paper also available here
- da Silva, A.J., de Oliveira, W.R. and Ludermir, T.B., 2016. Weightless neural network parameters and architecture selection in a quantum computer. Neurocomputing, 183, pp.13-22. Paper also available here
- da Silva, A.J. and de Oliveira, W.R., 2016. Comments on “quantum artificial neural networks with applications”. Information Sciences, 370, pp.120-122.
- de Paula Neto, F.M., de Oliveira, W.R., da Silva, A.J. and Ludermir, T.B., 2016. Chaos in quantum weightless neuron node dynamics. Neurocomputing, 183, pp.23-38.
- da Silva, A.J., de Oliveira, W.R. and Ludermir, T.B., 2015. Comments on “quantum MP neural network”. International Journal of Theoretical Physics, 54(6), pp.1878-1881.
- de Lima, T.P., da Silva, A.J., Ludermir, T.B. and de Oliveira, W.R., 2014. An automatic methodology for construction of multi-classifier systems based on the combination of selection and fusion. Progress in Artificial Intelligence, 2(4), pp.205-215.
- da Silva, A.J., De Oliveira, W.R. and Ludermir, T.B., 2012. Classical and superposed learning for quantum weightless neural networks. Neurocomputing, 75(1), pp.52-60.