2

Neural Networks for Modelling and
Controll

2.1 INTRODUCTION

In recent times there has been a tremendous resurgence of interest in using bio-
logically based models and learning algorithms for adaptive modelling and control.
Intelligent Control (IC) applications requires algorithms which are capable of:

e operating in an ill-defined, time-varying environment;

e adapting to changes in the plant’s dynamics as well as the environmental
effects;

e learning significant information in a stable manner; and

e placing few restrictions on the plant’s dynamics

in order to operate autonomously in hazardous environments with the minimum
amount of intervention. Human learning appears to embody elements of all of
these properties, and currently researchers are trying to endow machines with such
qualities.

The search for an algorithm which provides a universal panacea for all the
different IC problems is a tempting but unrealistic pursuit. The algorithms that
are described in this chapter and in the remainder of this book are at best initial
approzimations to a human’s information processing systems (if indeed human rea-
soning and learning can ever be described using an algorithm) and the biological
implications are not considered. The Artificial Neural Networks (ANNs) described
in this book are useful because their modelling and learning abilities can be anal-
ysed, and this is in direct contrast to human behaviour. Lau and Widrow [1990]
hypothesised that “it may take another 50 years before we have a solid, complete
microscopic, intermediate, and macroscopic view of how the brain works. Engi-
neers can’t wait that long”. Similarly, Hecht-Nielson [1990] speculates that “the
current level of understanding of brain and mind function is so primitive that it
would be fair to say that not even one area of the brain or one type of mind function j
is yet understood at anything approaching a first-order level . ..neurocomputing
systems based upon these ideas probably have no close relationship whatsoever to 4

1 An earlier version of this chapter appeared as Chapter 2 in Harris [1994].

Neural Networks 31

the operation of the human brain”. It is necessary to preface this introductory
neural network chapter with such comments in order to emphasise that current
neural network theories are far from providing a complete explanation of the op-
eration of the human mind, and so current research can be divided into two (not
necessarily distinct) categories:

e devise new theories about the brain’s functionality;
e application to real-world problems.

There is constant cross-stimulation between these two research fields, but the sec-
ond area should only use neural theories if they have something more to offer
than a conventional, non-neural solution. In the past, neural algorithms have been
applied to modelling and control problems without any consideration of their suit-
ability and whether any other algorithm may be more appropriate (exactly the
same comments can be made about fuzzy systems as well).

Learning algorithms have much to offer the control engineer. It is hoped that
increased adaptation will result in improved system performance; increasing the
quality of the solution and reducing the design and operational cost, although the
current reality is far removed from this ideal. Generally the adaptive algorithms
are based around linear plant and controller models, and a number of parameters
must be chosen which determines the flexibility of the adaptation schemes. Neu-
ral networks provide one method with which these algorithms can be applied to
nonlinear systems, although it is not the only approach and some of the “neural”
learning algorithms seem primitive in comparison with the techniques developed in
the adaptive control/signal processing fields. For instance, the majority of super-
vised learning algorithms are gradient based and it is only recently that adaptive
strategies based on stability concepts have appeared [Sanner and Slotine, 1992,
Tzirkel-Hancock and Fallside, 1991}, mimicking the adaptive control field in the
sixties, [Astrém and Wittenmark, 1989, Narendra and Annaswamy, 1989].

The approach taken in this book is to evaluate the ANNs from an engineer-
ing viewpoint; the modelling capabilities are analysed separately from the learning
algorithms. It is often claimed that the majority of ANNs are model-free estima-
tors, but it is the authors’ view that these comments are generally misinformed, as
many of the neural models currently used have a fized network structure and use
(nonlinear) gradient descent rules to adapt the parameters. The network’s struc-
ture may be very flexible due to the nonlinear adaptation, but it is model based,
and these networks are termed soft or weak modelling schemes to distinguish them
from conventional linear adaptive algorithms. Therefore it is important to exam-
ine the modelling capabilities of different ANNs, to determine what functional,
representational and generalisation properties abilities they possess.

The supervised and unsupervised learning algorithms are then examined and
it is shown that many of these adaptive rules can be applied to a wide range
of different neural (and fuzzy, see Chapter 10) systems. The development of new
learning algorithms can generally proceed independently of the model to which it 1s
applied, after which the suitability of a learning algorithm for training a particular

32 Neurofuzzy Adaptive Modelling and Control

model should be assessed. For instance, in Section 4.5 it is argued that although
nonlinear, gradient descent rules can be used to train a Multi-Layered Perceptron
(MLP), the basic optimisation problem is badly conditioned and it may be more
suitable to use optimisation strategies which incorporate second-order information
about the performance surface [Gill et al., 1981].

The final section of this chapter reviews several algorithms for assessing the
trained ANN. This is a neglected topic in the neural literature, although it forms
a critical part of any design methodology if these networks are to be applied in
areas where safety, correctness and certification are prime concerns. The infor-
mation provided by measuring the network’s performance using the training set is
described within the framework of the bias/variance dilemma, which states that
the network’s structure should be constrained such that it is unable to model any
noise. Various forms of network testing are also proposed, based on constructing
test sets, correlation-based modelling algorithms, chi-squared tests and network
interrogation. The first three algorithms can be applied to nonlinear systems, and
were first proposed for assessing nonlinear Volterra models, although they have
been applied to ANNs as well [Billings and Chen, 1992, Billings and Voon, 1986).
The last point investigates the network’s transparency: How easy is it to under-
stand the knowledge stored in an ANN? Training sets rarely contain a complete
description of the desired input/output relationship and once learning has ceased,
it may be necessary to modify the stored information. This can only be performed
if the knowledge is stored in a transparent fashion.

The class of ANNs studied in this book are Associative Memory Networks
(AMNs) which are feedforward, supervised ANNs. These networks are universal
approximation algorithms which can incorporate a priori knowledge in their struc-
ture, are suitable to be trained using instantaneous gradient descent algorithms
and have a natural fuzzy interpretation, which makes the knowledge stored in the
network transparent to the designer. This class of network is studied in detail from
Chapter 3 onwards, although it is introduced in this chapter by considering the
learning properties of an adaptive look-up table. The advantages in using these
networks are that they allow conventional linear learning theory to be applied to
a wide range of nonlinear modelling and control problems, and enable a prior:
functional knowledge to be incorporated into the network’s structure.

2.2 NEUROMODELLING AND CONTROL ARCHITECTURES

Before the neuromodelling and control algorithms are described, it is useful to have
an understanding of how the basic learning modules may be applied. These mod-
elling and control architectures are generally network independent; most learning
algorithms can be used, although some may be more suitable than others. The
degree with which a particular learning algorithm satisfies these properties de-
termines its suitability for on-line learning modelling control. It does not solely

Neural Networks

depend on the network’s modelling capabilities or on the learning algorithm, bu
a combination of these two factors.

2.2.1 Representational Issues

Many neuromodelling and control algorithms are expressed in the continuous time
domain, using measured variables which assess the state of the plant, the control
signal and the desired plant’s response, in order to predict the change in the plant’s
state (model) or to calculate the required change in control signal necessary to
make the plant behave as required (controller). However the vast majority of
neuromodelling and control applications are implemented as sampled systems, and
the two sets of state equations for these two single input, single output, nonlinear
systems are:

x(t) = f(x(¢),u(?))
y(¢) = g(x(t))

where x(t) is the vector of plant states at time ¢, u(t) is the current control signal
and y(t) is the observable plant output. The corresponding discrete time state
equations are:

x(t+1) = f(x(t),u(t))
y(t) = g(x(t))

The majority of plant models assume that the output signal is sufficiently rich
to contain information about all of the plant’s states, so the above discrete time,
state equation may be reformulated as:

y(¢) = h(y(t — 1), u(?)) (2.1)

where y(t — 1) is a vector of length n, formed from the past outputs y(¢t —
1),...,y(t —ny) and u(?) is a vector of length n, formed from the past and current
control actions u(t),...,u(t — n,).

Once a discrete or a continuous representation has been decided, the order
of the plant (the delays n, and n,) must be determined. Over-estimating their
values results in poor convergence rates and generalisation as the model is over-
parameterised, although choosing too small a value means that unmodelled dynam-

ics exist that may affect the stability of any learning control system. It has been
claimed the adaptive neurofuzzy systems can be used when the order of the plant
1s underestimated, and although this can occur for certain controllers, neurofuzzy
mappings are simply nonlinear functions and if the information which guarantees
stability is not available in the input vector, the control loop can become unstable.
A large body of theory has been developed for choosing these quantities when these
are linear mappings, and in Section 8.5, several iterative construction algorithms
which automatically determine which variables are important are presented.

34 Neurofuzzy Adaptive Modelling and Control

NARMAX Representation

During the eighties, Billings and his collegues [1986, 1989, 1992] developed a gen-
eral nonlinear modelling structure called Nonlinear AutoRegressive Moving Aver-
age models with eXogenous inputs (NARMAX), and a range of correlation and
statistical tests that can assess the adequacy of the network. A NARMAX model
is described by:

y(#) =h(y(t—1),...,y(t —ny),u(t —1),...,u(t —ny,)) + e(t) (2.2)

where y, u and e are system output, input and additive disturbance vectors re-
spectively. This is a very general relationship and many ANNs can be interpreted
in this form. Volterra models and polynomials were first used for modelling non-
linear dynamic processes [Billings and Voon, 1986, Billings et al., 1989], although
more recently multi-layer perceptrons [Billings et al., 1992} and radial basis func-
tion [Chen et al., 1990] neural networks have been developed within the same mod-
elling framework. The network performance measures can determine deficiencies
in the input data as well as in the representation formed by the network (see
Section 2.5.3), so that this type of theoretical framework is extremely useful for
developing neuromodelling and control algorithms.

2.2.2 Modelling Strategies

There are four principal architectures which can exploit a learning modules mod-
elling ability: as a basic plant model, an inverse plant model, a specialised in-
verse plant model and an operator model [Hunt et al., 1992, Tolle and Ersii, 1992,
Widrow and Stearns, 1985], as shown in Figure 2.1. For three of these four cases,
the desired value of the network’s output is directly available and any supervised
learning rule can be used to train the weight set. The error in the specialised in-
verse plant modelling algorithm is formed at the output of the plant, whereas the
network’s output forms the input to the plant. Therefore some method is required
for feeding back the plant output error, in order to train the inverse model and
this is discussed later in this chapter and in Chapter 11. The success of all these
schemes depends on the input signal being sufficiently exciting, in order to provide
training data across the whole of the network’s input space, the approximation
capabilities of the network and the ability of the training rule to filter out the
measurement and modelling error/noise.

Plant Modelling

A plant model may be required for a variety of reasons: to use within a larger
feedback control loop which requires an estimate of the plant output, for predicting
the performance of the plant when the true output is unavailable (due to time

36 Neurofuzzy Adaptive Modelling and Control

Direct Inverse Plant Modelling

The objective with inverse plant modelling is to formulate a controller, such that
the overall controller/plant architecture has a unity transfer function. Inevitably,
modelling errors perturb the transfer function away from unity, although the use of
such an inverse model as a feedforward precompensator in addition to a standard,
linear feedback controller generally provides good performance for a wide range of
nonlinear plants.

For the inverse model to be well defined, the training examples must be unique.
This is satisfied when the plant is invertible or if the training data for a non-
invertible plant are contained in a restricted area of the input space, so that the
plant is locally invertible. However, care must be taken when using this approach
for plants whose Jacobian varies significantly and when the modelling error does
not tend to zero. This is because the network minimises the MSE in the control
space rather than the plant output space, through using the cost function:

Ju = E (1)) (2.5)

where €,(t) = @(t) — u(t), u(t) is the control output of the network, and u(t) is the
measured control signal. To a first approximation, the error in the control signal
(for a single-input, single-output plant) is related to an error in the plant output
by:

(t) m deult)

d

where % is the plant’s derivative, or its Jacobian. Thus the two cost functions
given in Expressions 2.4 and 2.5 are approximately related by:

J,~E ((Z—Z%) ez(t)) (2.6)

When the plant is nonlinear, the value of the Jacobian varies and different weight-
ings are applied to the control errors. The cost functions are not equivalent, in
the sense that one is simply a linearly scaled version of the other, and the designer
should be aware that minimising one performance measure does not necessarily
mean that the other is also minimised. If the output errors are uncorrelated with
the plant Jacobian though, this expression simplifies to:

J,~E ((%)2) . (2.7)

and the effect of the Jacobian can be incorporated into the learning rate.

Neural Networks : 37

Specialised Inverse Plant Modelling

This approach again aims to provide an inverse model/plant structure which has a
unity transfer function, although the method proposed is very different. A forward
plant model is first constructed, and the difference between the plant’s response
and the desired output is used to provide an error signal, which is passed back
through the forward plant model in order to adjust the inverse model’s parame-
ters [Jordan and Rumelhart, 1991, Psaltis et al,, 1988]. The main advantage which
this approach has over the previous algorithm is that it is goal driven. For on-line
applications, the plant output error causes the inverse model to move into previ-
ously unexplored regions of the input space, whereas the direct inverse modelling
approach can only learn if the control signal is sufficiently exciting.

The learning algorithm attempts to minimise the plant output MSE, whereas
the previous inverse modelling approach minimised the MSE control effort. These
two quantities are approximately related by the Expressions 2.6 and 2.7, and as
previously discussed if the plant is nonlinear and there exists a mismatch between
the true inverse plant and the adaptive model, the direct and specialised inverse
modelling approaches are not compatible as the optimal parameter values are gen-
erally different. As noted by Psaltis et al. [1987], “though there may be some
benefit to performing generalised (direct) training prior to specialised training,
these simulations show no clear advantage to doing so”. An example is given in
Brown and Harris [1993] which shows the different optimal weights, and the sub-
stantially different rates of convergence of these two modelling algorithms when
the plant’s gains are not close to unity and there exists modelling mismatch.

Although the inverse modelling architectures can be used to synthesise con-
trollers, they may not be as robust as alternative learning controllers, due to the
lack of feedback information [Hunt et al., 1992]. This can be partially overcome
by introducing on-line, inverse model adaptation, although the comments made in
the previous paragraph should be taken into account.

Operator Modelling

Synthesising a controller by learning from an expert has many potential applica-
tions within the IC field [Kraiss and Kiittelwesch, 1990, Shepanski and Macy, 1987,
Widrow, 1987]. The learning algorithm is run in parallel with a skilled plant op-
erator and their response forms the desired network output which is then used to
train the network. This training signal typically contains a large amount of noise,
due to the operator using different actions for similar inputs, and so this signal
may have to be filtered [Guez and Selinsky, 1988] before the conventional network
learning algorithms can be applied.

As with all modelling strategies, care must be taken to ensure that the training
set contains sufficiently rich examples from the relevant operational domain, and
that the network input vector contains all the information which is available to the

38 Neurofuzzy Adaptive Modelling and Control

operator. In Section 9.2, this approach is used to construct a set of fuzzy-type rules
which can reverse a vehicle into a slot, and both of these points are illustrated.
The supplied training data are very noisy and are distributed only in a small part
of the input domain, therefore new rules had to be initialised to cope with different
initial conditions. Also a new input variable had to be introduced in order to
distinguish between similar situations which require very different actions. The
human operator implicitly used this information when parking the vehicle, but it
needs to be explicitly set for the network.

2.2.3 Supervised Control Architectures

Low-level learning algorithms need to be posed within specific modelling control
and architectures, and some of the most popular are described in this section. One
of the problems in formulating an on-line learning controller is that the desired
control signal is rarely available, and generally only the desired plant output can
be used to train the controller.

There are two distinct approaches which have been formulated in the adap-
tive control field: direct and indirect schemes [Astrém and Wittenmark, 1989]. A
direct adaptive control scheme builds an explicit model of the desired controller,
whereas an indirect scheme produces a model of the plant and synthesises the con-
trol law, using a predefined optimisation/inversion calculation. For instance, the
majority of self-organising fuzzy controllers have been direct, as a fuzzy rule base
is used as a controller and there exists a performance index which relates errors in
the plant’s output to errors in the control signal in order to update the rule base.
In contrast, most of the adaptive neurocontrol schemes have been indirect, as an
explicit plant model is generally constructed, to be used in a predictive control
algorithm for example.

Fized Stabilising Controllers

One of the simplest direct learning control schemes is shown in Figure 2.2, where
a fixed, stabilising, linear, feedback controller is used to train a learning network
[Kraft and Campagna, 1990, Miller, 1987, Miyamoto et al., 1988]. The linear con-
troller is designed so that the closed-loop system is stable in every operating re-
gion and the control signal provides a training signal for the learning module. The
performance of the closed-loop system depends on the current operating point,
although the iterative training of the network gradually improves its performance
(and the performance of the control signal) on-line. As the operating point changes,
the learning controller builds up a nonlinear model of the desired control surface,
such that when the plant returns to the original operating point, the learnt response
has not been forgotten and it can be improved upon. This requires a learning mod-
ule which is temporally stable; learning about one area in the input space affects

Neural Networks 39

learning
inverse model
feed
= forward
learning control
signal
stabilising +
feedback %ﬁ plant —
set g controller + plant
point output
feedback loop

Figure 2.2 A direct learning controller; the fixed linear feedback controller is used to stabilise
the system and to provide a training signal for the learning controller.

the knowledge stored in a different region minimally.

Despite the algorithm’s simplicity, this approach has one main drawback; the
design of the fixed linear controller. It has been claimed that the algorithm is robust
with respect to the design of this controller, although the rate of convergence of the
learning module depends on the quality of the training signal. A learning module
is slow to adapt when the linear controller is performing poorly.

Predictive Learning Control Schemes

Indirect predictive learning control schemes attempt to formulate a control strat-
egy by assessing the effect of their actions for many time-steps into the future
and selecting the current “optimal” control action, which is then applied to the
plant [Montague et al., 1991, Saint-Donat et al., 1994, Tolle and Ersii, 1992]. The
architecture requires the development of a plant model, a performance function
to evaluate the effect of a control action and an optimisation technique which can
determine the best control action. This is illustrated in Figure 2.3, where a learn-
ing control element has also been included, so that after sufficient training, the
full optimisation calculation does not need to be calculated and the computing
resources can be allocated to other tasks. If the plant is time-varying, the model
is generally adaptive, although the initial optimisation calculations may give very
poor closed loop control if the process model is poor.

When the plant model is good and the performance function and the search
strategy are appropriately chosen, this control scheme can provide excellent closed-
loop control. However, the multi-step ahead optimisation calculation is generally
very expensive and is only applied to systems which are not time-critical. Many
simplifications of the above architecture can be performed which makes this tech-

nique more suitable for real-time control tasks, some of which are described in Tolle
and Ersi [1992].

40 Neurofuzzy Adaptive Modelling and Control

optimisation loop

assessment/
——>{ optimisation
learning .
signal learning
signal
learning . plant -
desired controller | .
output] control signal plant
i output

feedback loop

Figure 2.3 A learning predictive control architecture.

Model Reference Adaptive Control

The model reference learning control architecture has been widely used in the linear
adaptive control field [Astrém and Wittenmark, 1989], and is shown in Figure 2.4.
The control objective is to adjust the control signal in a stable manner so that the

plant
———=» reference
model

learning

l signal

desired plant l>
output plant
output

feedback loop

Figure 2.4 A model reference control architecture.

plant’s output, yP(¢), asymptotically tracks the reference model’s output, y"(t),
l.e.:

Lim ||ly"(¢) — 9" ($)|| < €

where ¢ is a small positive constant [Narendra and Parthasarathy, 1990]. The per-
formance of this algorithm depends on the choice of a suitable reference model and
the derivation of an appropriate learning mechanism. Researchers in the sixties
found that simple gradient-based learning rules were sometimes insufficient and

Neural Networks . 41

there is no reason why this should not also be the case for more general nonlinear
plant models and controllers.

Internal Model Control

Internal model control [Hunt and Sbarbaro-Hofer, 1991, Hunt et al., 1992] uses a
similar structure to the predictive learning control scheme, as shown in Figure 2.5.
A (learning) module is used to model the process directly, receiving the applied
control signal, rather than the reference signal which is used in the model reference
adaptive control scheme. The error between the model and the measured plant
output is used as a feedback signal and this is passed to the controller. The
internal model controller is generally designed to be an inverse plant model (when
it exists), and either of the inverse modelling schemes described in the previous
section can be used to synthesise an appropriate controller.

feedback loop

learning
controller

— plant =

reference +
signal

plant
output

Figure 2.5 An internal model contro! architecture.

Many theoretical stability results about internal model control loops are avail-
able, [Hunt and Sbarbaro-Hofer, 1992, Sbarbaro-Hofer et al., 1993], although they
generally make assumptions the open-loop stability of the system, exact modelling
and/or inverse modelling. Despite these assumptions, it is claimed that this ap-
proach extends readily to nonlinear systems and yields to robustness and stability
analysis.

2.2.4 Reinforcement Learning Systems

Reinforcement learning schemes and ANNs have been very closely linked since the
seminal paper by Barto et al. [1983]. Reinforcement control schemes are mini-
mally supervised learning algorithms; the only information that is made available
is whether or not a particular set of control actions has been successful. The
original application attempted to balance an inverted pendulum, subject to the

42 Neurofuzzy Adaptive Modelling and Control

constraints that the platform should not move more that a certain distance from
its starting point and that the inverted pendulum remained approximately upright.
If either of these constraints were violated, a failure signal was sent to the learning
algorithms.

From this definition it is clear that once the controller has managed to balance
the inverted pendulum fairly well, very little training takes place as failures occur
infrequently. The solution proposed by Barto et al. [1983] was to construct a control
scheme which is composed of two adaptive elements; an Associative Search Element
(ASE) and an Adaptive Critic Element (ACE). The ASE attempts to reproduce
the optimal control signal which satisfies the given performance objectives, while
the ACE attempts to monitor the performance of the controller internally and
to provide an internal reinforcement signal which is used to train the ASE, as
illustrated in Figure 2.6. The ACE is trained using the external failure/success
signal. This continuous internal training of the control element has been shown to
improve vastly the performance of the overall system.

external i reinforcement

— adaptive

critic
> element
internal

. L. lant
> associative p
£ search output
reference lant S
signal —. element P

feedback loop

Figure 2.6 An ASE/ACE reinforcement system’s architecture.

Over the past ten years, there has been a greater theoretical understanding
of the overall system [Barto et al., 1993, Sutton et al., 1992], as well as a growing
number of simulations and applications that use modified versions of this technique
[Berenji and Khedkar, 1992, Millington and Baker, 1990, Porcino and Collins, 1990,
Shelton and Peterson, 1992].

2.2.5 Parameterising Linear Controllers

Many different neuromodelling and control architectures have been proposed in
recent years, and the previous sections have described several which are related to
conventional control schemes. The novel parameter initialising neurocontrol archi-
tectures which are now described have all been developed as a result of the recent

Neural Networks 43

resurgence of interest in ANNSs, as they attempt to exploit the ability of these adap-
tive systems to learn an arbitrary functional relationship. There are many reasons
for utilising an intelligent gain-scheduling type approach: widespread industrial ac-
ceptance of linear feedback controllers, many theoretical and practical results are
available about robustness and closed-loop stability and their low implementation
cost. The neurocontrol schemes in this section attempt to exploit these properties
and to produce algorithms which can calculate the parameters for both off-line and
on-line control. Successful systems would result in reduced commissioning costs
and possess the ability to adapt to time-varying process dynamics.

All of these approaches assume some previous knowledge about the plant’s
structure, as this simplifies the problem. In Kumar and Guez [1991], an indirect
control design architecture is adopted. The plant is assumed to be a slowly varying
second-order linear system and a set of features which describe the closed-loop re-
sponse of the plant are extracted. These features could include the delay time, rise
time, peak overshoot, settling time, etc., and are passed to an Adaptive Resonance
Theory (ART) based classifier which predicts the parameters of the plant. This
output, together with a set of desired closed-loop response characteristics, is used
to produce a set of linear control gains using conventional pole placement design
techniques.

desired label

response
associative +
memory
mapping -
Ak step response
label generation | |
Y PID — plant T S
reference - controller control signal plant
signal output
feedback loop

Figure 2.7 An architecture for predicting the required change in a PID controller directly
based on a set of labels that describe the system’s closed-loop response.

The idea of extracting the feature labels which describe the closed-loop system’s
response has also been independently proposed in Lawrence and Harris [1992].
The desired closed-loop response is expressed as a set of feature labels, which are
then compared with the labels describing the system’s closed-loop step response.
This error label vector is passed to the ANN which predicts a change in the PID
parameters so that the system’s response will be closer to the desired one, as shown
in Figure 2.7. A similar approach has also been proposed in Ruano et al. [1992],

44 Neurofuzzy Adaptive Modelling and Control

although this algorithm can use the step responses of both open- and closed-loop
systems, and the ANN outputs the PID parameters which are optimal with respect
to the Integral of Time multiplied by the Absolute Error (ITAE).

The ability to synthesise a set of PID parameters on-line, using only input/output
data, has been investigated for many years [Astrém and Hagglund, 1988]. The po-
tential payback from such a system which can increase the robustness of PID
controllers is large, and this research area is still in its infancy.

2.3 NEURAL NETWORK STRUCTURE

In the introduction, it was emphasised that the majority of ANNs are model based,
and the structure of several such models are now described, compared with each
other and contrasted with some truly model-free estimators. The learning capabil-
ities of the networks are discussed in Section 2.4, as this is an important topic but
is separate from the model description. Too often in the past Multi-Layer Percep-
trons (MLPs) have been criticised for being slow to converge, when what is really
meant is that MLPs trained using gradient descent algorithms learn slowly. The
model structure influences the selection of the training rule, although the learning
algorithm does not generally affect the flexibility of the underlying model. To be-
gin this section, the adaptive linear combiner which forms part of most ANNs is
described and its properties are discussed.

2.3.1 Linear Combiners

The Adaptive Linear Combiner (ALC) formed part of the two earliest ANNs: the
ADALINE [Widrow and Lehr, 1990] and the Perceptron [Rosenblatt, 1961], and it
is still used in the many of the present neural networks. The ALC simply forms
a weighted sum of the inputs, and this quantity can be thresholded to produce
a binary output if the network is used for pattern classification tasks. Let the
p-dimensional network input vector be denoted by x and the weight vector by w,
the continuous ALC’s output y is given by:

» ,
Yy = Z a;w; = aTw (28)
i=1
where a = x, and the ALC is shown in Figure 2.8. Generally an augmented term
ao 1s set equal to 1 and is known as the bias. The thresholded network output is:
{1 ifaTw>0
Y= 0 otherwise

(2.9)

The Perceptron also has an additional layer where the network’s input is prepro-
cessed (x — a), and a weighted combination of these modified inputs is taken.

Neural Networks 45

aj

a

ap

Figure 2.8 A basic adaptive linear combiner.

There are many ways in which this initial nonlinear transformation can be chosen
and some of these are discussed in Chapter 3.

The weight vector, w, is adjusted using an error correction learning rule and
training ceases when the network’s overall behaviour is acceptable. The network
only achieves the correct result when the set of (modified) training input examples
{a(t)}{, is linearly separable, and in this case the learning algorithm terminates
in a finite number of iterations. A set of training examples is linearly separable
if there exists a (p — 1)-dimensional hyperplane which can separate the training
inputs in the p-dimensional input space. This hyperplane is formed from the set
of weights which satisfy:

0=a’w
as this determines the classification boundary for the ALC. Figure 2.9 shows a
linearly separable training set and illustrates the fact that, if there exists a single

weight vector which can linearly separate the training inputs, there exists an infinite
number of such hyperplanes.

ap
Figure 2.9 A linearly separable training set for a two example classification problem.

Most of the two-dimensional logical functions, AND, OR, NOT can be im-
plemented in the above ALC framework. However, it was shown in Minsky and

46 Neurofuzzy Adaptive Modelling and Control

Papert’s book Perceptrons [1969], that the basic two-dimensional XOR logical
function cannot be implemented within the standard Perceptron architecture. The
result of this publication was effectively to halt much of the research into ANNs
during the seventies.

2.3.2 Muilti-Layer Perceptrons

Despite the limitations of the ALC, it was well known in the sixties that multi-
layered networks could implement exactly the XOR and higher order logical func-
tions, although there appeared to be no natural generalisation of the Perceptron’s
training algorithm and these results were of theoretical interest only.

A multi-layer ANN is a feedforward network where the input signal is prop-
agated forwards through several processing layers before the network output is
calculated. Each layer is composed of a number of nodes, and each node is (gen-
erally) composed of a simple ALC, with an appropriate transfer function which
calculates the node’s output from the weighted input signal. Each node has input
connections with the nodes in the previous layer only, and the node’s output is
transmitted to the nodes in the next layer, as shown in Figure 2.10. Every node
has an associated weight vector which linearly transforms its input vector.

hidden
layer

utput
layer

network : network

input output

(1) : (1)

>

Figure 2.10 A multi-layer feedforward network.

During the recent ANN revival, a number of researchers independently derived
a gradient descent algorithm suitable for training these Multi-Layer Perceptron
(MLP) networks, [Le Cun, 1985, Parker, 1985, Rumelhart and McClelland, 1986,
Werbos, 1974|. The transfer function in each node of these networks is a bounded,
continuously increasing nonlinearity, rather than a binary threshold. Thus the net-

Neural Networks 47

work output is a continuous (continuously differentiable) function of every weight
in the network, enabling it to be trained using gradient descent rules. The avail-
ability of such learning algorithms popularised the MLP, and at the time of writing
it is probably the most widely used ANN. The model structure does not depend
on the learning rule, although the rate of convergence of the learning algorithm
depends on the model structure, and the quality of the final model also depends on
the learning rule. For the remainder of this section, the MLP structure is discussed
without reference to a particular the learning algorithm.

XOR solved by Multi-Layer Networks

The two-input XOR problem can be solved exactly by a three-layer MLP (one
input, one hidden and one output layer) as shown in Figure 2.11. The hidden layer
nonlinearly transforms the inputs into an alternative space in which the training

X2 d ,
7 Ve
e 7
v
7
7 Ve
7 Ve
Ve e
7
Ve
7
0] 7
@ — L
0 // x1 1
B True
* @ rase

Figure 2.11 A solution for the two-input XOR logical problem using a three-layer MLP with
two nodes in the hidden layer.

samples are linearly separable and a correct classification can be achieved. For the
network shown, the outputs of the hidden nodes correspond to the logical functions:

z; AND (NOT =z,)

and if either of these expressions is true (logical OR in the output layer), the
MLP output is also true. This construction holds for any finite dimensional log-

48 Neurofuzzy Adaptive Modelling and Control

ical expression, as it is possible to reduce any Boolean function to its equivalent
disjunctive normal form. Thus any Boolean function can be represented by a three-
layer network, where the output layer represents a multi-dimensional OR and the

hidden layer nodes form multi-dimensional logical ANDs of the (possibly negated)
inputs.

Functional Approzimation

Using a continuous transfer function in each node means that the output is con-
tinuously dependent on the network’s inputs, and there has been a lot of interest
in using the MLP for functional approximation rather than classification tasks. It
has been established that any continuous nonlinear function can be approximated
to within an arbitrary accuracy by a three-layer MLP with sufficient nodes in the
hidden layer [Hornik et al., 1989|. Therefore the basic structure of the MLP is very
flexible and can be employed in a wide variety of modelling and control tasks.

Figure 2.12 The sigmoid’s output on a one- and two-dimensional input space.

It is instructive to investigate the nonlinear transformation that occurs in the
hidden layer nodes, as this gives an indication of the type of problem for which the

Neural Networks 49

MLP might be used successfully. Consider the commonly used sigmoidal transfer
function:

fw) = — exlp 5 €D (2.10)

T

where v = x"w. This function is bounded and monotonically increasing, tending
to 0 as xTw — —o0, and approaches 1 as the linearly combined input tends to
co. The output of this function for a one- and two-dimensional input is shown in

Figure 2.12, and is constant along the lines (three-dimensional weight space) for
which:

Wo + Wiy + waxy; =

for some constant ¢, and this generalises to n-dimensional input spaces. The out-
put of a sigmoid in the hidden layer is constant along the (n — 1)-dimensional
hyperplanes given by:

wo+xTw:c

Thus the nodes which are composed of an ALC and a sigmoidal-type transfer func-
tion are termed ridge functions [Mason and Parks, 1992], as the output is constant
along hyperplanes in their input space. If the desired function can be concisely
decomposed into similar ridge functions, MLPs may be suitable models.

Sometimes in modelling and control applications the input data are redundant
and MLPs can model this relationship by constructing hyperplanes parallel to the
redundant inputs and setting the appropriate weights to zero. Thus the network
model can deal efficiently with redundant data, and if a suitable network has been
constructed and the input space is expanded by introducing a new, redundant
input variable, no new nodes in the hidden layer need be introduced. Only a small
number of weights are necessary to increase the model’s size and these would be all
set to zero. Thus the model’s structure can incorporate redundant data efficiently,
although it might not easily learn to recognise this redundant information.

MLPs are generally unsuitable for modelling functions which have significant
local variations. The output of all of these hidden layer nodes is generally non-zero,
and the resulting optimisation problem can be very complex. The theoretical mod-
elling results guarantee that an MLP can approximate such functions arbitrarily
closely, although they provide no indication about the suitability of using ridge
functions as opposed to other nonlinearities in the hidden layer. Recently there
has been a lot of theoretical interest in using the Vapnik-Chervonenkis dimension
(VCdim) to investigate the complexity of MLPs [Hush and Horne, 1993], and once
this number is known, it can be used to determine the amount of training data
necessary for good generalisation. A realistic rule of thumb that came about from
this work is that the amount of training data should be approximately ten times
the VCdim, or equivalently, the number of weights in an MLP.

In conclusion, MLPs can be successfully applied to high-dimensional functional
modelling and classification problems if the training data have redundant inputs

50 Neurofuzzy Adaptive Modelling and Control

and the desired mapping can be approximated by a low number of ridge functions
[Wright, 1991].

2.3.3 Functional Link Networks

A functional link ANN [Pao, 1989, Pao et al., 1994] has a similar structure to the
three-layer MLP, except that instead of employing ridge functions in the hidden
layer, polynomial or trigonometric terms are used and linear nodes are used in the
input and output layers. The use of such hidden layer transfer functions has a long
history in the nonlinear modelling community where a small number of low-order
polynomial terms or the dominant terms in a Fourier series have been used to
introduce nonlinearities into conventional linear algorithms. The ALC no longer
forms part of the nodes in the hidden layer, as shown in Figure 2.13, but is used in
the output layer. The use of such nonlinearities produces a very flexible network
[Mathews, 1991], although its usefulness for a particular application depends on
how well these nodes represent the nonlinear components of the desired function.

trigonometric
functions

network network
input output

x(1)

Figure 2.13 A functional link network which has trigonometric terms in the hidden layer.

These networks are universal approximation algorithms; they can approximate
a continuous nonlinear function to within an arbitrary accuracy, given a sufficient
number of nodes in the hidden layer [Cotter, 1990]. Like the ridge functions, poly-
nomial and sigmoidal terms have a non-zero output over the whole input space,
and these are termed globally generalising basis functions. A successful application
of these networks requires a set of basis functions which can represent the desired
function adequately over the input domain, but not over-parameterising the net-
work. Modifying a weight or introducing (or deleting) a new term in the hidden
layer affects the network’s output globally and so it is not at all clear how the

Neural Networks 51

structure should be chosen, or what type of relationship is stored in the network.
There have been many off-line algorithms generated for polynomial and trigono-
metric term selection [Chen and Billings, 1994, Holden, 1994, Ivakhnenko, 1971},
and the success of the network depends critically on the representations held in
these hidden layer nodes.

2.3.4 Radial Basis Functions

Radial Basis Function (RBF) neural networks can be also be implemented within
the standard three-layer network architecture, where the output nodes are sim-
ply ALCs, and the hidden layer nodes have a specific structure. RBF networks
were first used for high-dimensional interpolation by the functional approximation
community and their excellent numerical properties have been extensively investi-
gated by Buhmann and Powell [1990] and Powell [1987]. They were first proposed
within an ANN framework by Broomhead and Lowe [1988], and were used for data
modelling and least-squares functional approximation. Since this paper was pub-
lished, the technique has been widely adopted for off-line and on-line modelling
and control tasks [Chen and Billings, 1994, Hunt and Sbarbaro-Hofer, 1992].

The (scalar) output y of an RBF network can be expressed as:

y =Y _wifi(llei — x][;)

=1

where w; and c; are the weight and centre, respectively, of the :t* hidden layer
node, and ||.||, is the standard Euclidean norm. There are many different ways in
which the univariate nonlinear functions, fi(.), can be selected and some of these
are discussed in Section 3.3.4, but one important choice is the localised Gaussian
function given by:

filles = 1) = exp (— Zin (=)) - [Lowr (-572)

k4

If the training data are contained in a small region of the input space, the nodes in
the hidden layer can be distributed within this region and only sparsely populate
the remaining area. However, only a local model is formed and if the testing
or operational data lie outside this small region, the performance of the network
will be poor. Distributing the basis function centres evenly throughout the input
space (all the theoretical results and some of the practical applications use this
strategy) results in a more complex model, where the number of hidden layer
nodes is exponentially dependent on the size of the input space, a property known
as the curse of dimensionality. Irrelevant inputs cause the number of nodes in the
hidden layer to increase dramatically with no corresponding increase in the model’s
flexibility.

52 Neurofuzzy Adaptive Modelling and Control

An alternative RBF-type network that can reject irrelevant inputs was proposed
by Hartman and Keeler [1991], where instead of the hidden layer nodes taking the
product of the univariate Gaussian functions, the algebraic sum is used:

P n g)2
Y= E Z'Uh'j exp (“"‘-—(c1J -::J))

i=1 j=1 203;
The output of the Gaussian bar network is linearly dependent on the nonlinear
univariate Gaussian functions, and the network ignores irrelevant inputs by set-
ting to zero the corresponding weights, w;;. Typical two-dimensional Gaussian
and Gaussian bar functions are shown in Figure 2.14. Comparing the outputs
of the Gaussian and the Gaussian bar nodes shows that taking the product of
the univariate Gaussian functions is similar to forming a multi-dimensional con-
junction (AND) whereas summing the individual responses is reminiscent of the
logical disjunction (OR). This is also very similar to Kavli’s ASMOD algorithm
(see Section 8.5) where a B-spline network is composed of the sum of several lower
dimensional submodels. The Gaussian bar networks form additive models which
cannot model any cross-product terms, although this restriction is why they are
sometimes more successful than the standard algorithm and several “fuzzy” algo-
rithms have been developed that try to produce parsimonious RBF networks with
the smallest number of inputs [Tresp et al., 1993].

2.3.5 Lattice Associative Memory Networks

Lattice-based Associative Memory Networks (AMNs) are the main focus of this
book and the networks which are members of this class are described and compared
in greater detail in Chapter 3. These networks can be mapped onto a three-layer
structure with an ALC in the output node. The nodes in the hidden layer have a
localised response and their output is non-zero in only a small part of the input
space. In addition, the input space is normalised by an n-dimensional lattice and
the basis functions are defined on this grid. Similar network inputs activate over-
lapping regions inside the network, and so these networks store information locally.
The nodes in the hidden layer are termed basis functions and are represented by
the p-dimensional vector a. Therefore the output of the network is given by:

P

y = ai(x)w

=1

as shown in Figure 2.15.

The modelling capabilities of the network depend on the size, distribution and
shape of the basis functions, and the above representation is very general. The
simplest lattice AMN is probably an n-dimensional look-up table. Associated with
each cell in the lattice is a weight and a binary basis function, where the output of
the basis function is 1 if the input lies inside the cell and 0 otherwise. Thus within

Neural Networks 53

15
0.84
20.64

3
80.4
0.24
0:l

Gaussian bar
-y
i

At
Sl

M
o N
i N
,;{(‘(é‘f\l((«‘&%,;},\\ %\\
",l%\“““\}}‘\ , I{\\ AN

S QU
s
2o NS G

Figure 2.14 Two-dimensional Gaussian (top) and Gaussian bar (bottom) hidden layer nodes.

each lattice cell the network output is simply the corresponding weight and across
the whole input domain the network’s output is piecewise constant. Information
about the stored functional relationship is not distributed to neighbouring weights
and the memory requirements, p, depend exponentially on the input space dimen-
sion, but only a small fraction of the weights is involved in the network’s response
calculation.

Lattice AMNs partition the input space using hard splits (the support of each
basis function is well defined), whereas Gaussian RBFs and the hierarchical net-
works proposed by Jacobs and Jordan [1993] provide a soft division of the input
space. Gaussian basis functions are greater than some positive number only in a
small region of the input space, hence they almost have a compact support, and
the hierarchical sigmoidal decision nodes used in Jacob’s tree structure (combined
with a soft maximum operator) also possess this property. Truly local basis func-
tions have the advantage that only a small region of the network contributes to
the output, whereas soft split networks can potentially adapt every parameter at
each time instant while still retaining a localised representation. This book con-
centrates on lattice AMNSs, but it should be noted that these soft split networks

54 Neurofuzzy Adaptive Modelling and Control

a
a:
a 3 wI
w.
a 2
4 W3
Wy
y(t)
Wp.2 network
Wy output
Q. Wp
a,,
weight
ap
vector
normalised input . .
space basis functions

Figure 2.15 The basic architecture of a lattice associative memory network. A lattice is used
to partition the input space and a set of basis functions is defined on this structure. The
network’s output is then formed from a linear combination of the basis functions’ outputs.

provide an alternative approach which retains many of the properties of the truly
local networks.

Two lattice AMNs which generalise are the Cerebellar Model Articulation Con-
troller (CMAC) (see Chapter 6) and the B-spline network (see Chapter 8). Both
networks have basis functions which are defined over more than one cell on the
lattice, although in their simplest form both networks also reduce to a look-up
table. The B-spline network provides piecewise polynomial interpolation and the
local definition of the basis functions means that the basis functions can be in-
terpreted as a set of fuzzy linguistic variables. The CMAC algorithm provides a
coarse coding of the input lattice where the number active of basis functions does
not depend on the dimension of the input space. Both networks suffer from the
curse of dimensionality (this can be partially overcome using memory hashing tech-
niques, Section 6.2.5, or by decomposing the network into submodels, Section 8.5),
although very complex functional relationships can be stored, due to the local
representations used in the hidden layer.

2.3.6 Model-Free Estimators

As an alternative to the model-based ANNs which have been described, a num-
ber of algorithms have been proposed which do not rely on any specific network
structure and adapt their internal organisation in response to the training data
[Atkeson, 1991, Specht, 1991]. These approaches generally store the training data
(or a manageable subset) in a large memory, and use these examples to construct
local models about the point of interest. These local models could simply be a low-
order polynomial, or the data could be weighted using a (normalised) probability

Neural Networks 55

estimate.

These approaches are similar to some k-nearest neighbour algorithms, and they
share the same advantages and disadvantages of this technique. For sparsely dis-
tributed data, the techniques generally produce a smooth, global response surface
which closely approximates the training samples and when the data are dense, the
algorithms are capable of filtering measurement noise and producing a best esti-
mate of the true output. However, any algorithm which is based on remembering
data has a high computational burden, because each training sample contributes
to the network output. All of these operations can be performed in parallel, but
for most practical applications the amount of training data far exceeds the number
of available processors. Similarly, these algorithms learn by simply remembering
training samples; there are no data-forgetting algorithms which could be used to
model (or control) a time-varying plant.

2.3.7 Network Generalisation

All the feedforward model-based ANNs considered in this section can be repre-
sented using a three-layer network structure which has an ALC node in the output
layer. The type of model and the associated generalisation characteristics are there-
fore strongly dependent on the type of nonlinearity incorporated in the hidden layer
nodes. Many different sorts of nonlinearities have been described: bounded ridge
functions (MLPs), trigonometric and polynomial functions (FLN), Gaussian and
Gaussian bar functions (RBF) and piecewise polynomial functions (AMN). It is
not possible to say that one type of model is always better than another; all that
can be achieved is to list their desirable (and undesirable) properties.

The MLP has proved very useful for learning high-dimensional, redundant map-
pings, as the ridge functions partition the input space using hyperplanes. Using
more than one hidden layer allows a more complex partitioning strategy to be
developed, but the associated learning problem is generally much harder. The
support of the hidden layer nodes (area of the input space for which the node has
a non-zero output) is global, so adjusting any weight will affect the output of the
network for every input. The training set should therefore contain a relatively
complete coverage of the input space [Barnard and Wessels, 1992], otherwise the
learnt network structure will not be of the correct form. In order to make the
MLPs more transparent and understand the knowledge encoded in the weights,
the approximation of these networks using finite polynomial and Volterra series
models has been proposed. Any finite model of this form loses some information
encoded in the network, where generally the higher order knowledge is lost, al-
though it is precisely these terms which appear to give the MLP its advantages
over polynomial/Volterra models. Hence the usefulness of such tests is debatable.

The success of polynomial and trigonometric functional modelling depends on
the successful identification of the relevant nonlinear nodes. If any important
terms are omitted, the global support of the nodes results in the model producing

56 Neurofuzzy Adaptive Modelling and Control

a globally biased solution, whereas if too many terms are included, the network
tends to overfit the data, and the network output can be extremely oscillatory.
However, these types of nodes have a strong theoretical background and many
techniques have been developed for choosing a near optimal set of terms.

RBF networks have proved very useful for modelling highly nonlinear data, al-
though their performance depends on the type of nonlinearity used in the hidden
layer nodes as well as the distribution of their centres. It has been found that
the approximation capabilities of functions with a global support appear to be
slightly better than functions with a local support, although more advanced learn-
ing algorithms generally have to be used. The Gaussian bar networks, which are
not strictly RBF networks, appear to be very useful when dealing with redundant
data. Their support is not truly local (but more local than a sigmoid) and not truly
global (but more flexible than a standard Gaussian function). The basis functions
are generated by using the addition rather than the product operator to combine
the univariate Gaussian functions, but only additive models are formed.

Lattice AMNs have truly local basis functions (hidden layer nodes) which pro-
vide an alternative to many of the ANN architectures currently being considered.
The local support of the basis functions forces the network to generalise in a pre-
specified manner, and therefore a prior: knowledge about the desired function can
be incorporated into the network’s structure, although if the structure is inappro-
priate, the model will be biased (see Section 2.5.1). The networks are analogous
to the piecewise polynomial data-fitting algorithms, in that the piecewise nature
of the network prevents unwanted oscillatory behaviour and overfitting. However,
the distribution of the basis functions on a lattice means that these networks suffer
from the curse of dimensionality, which sometimes results in the networks being
too flexible (large variance), especially in high-dimensional spaces.

Model-Based verses Model-Free Networks

Model-free algorithms provide an alternative to ANNs, and their modelling (and
generalisation) performance demands that further research be performed into the
relative merits of these techniques. They generate smooth, global models when
the data are sparsely distributed, compared with the lattice AMNs which would
produce only local approximations. Also when the training data are dense, very
complex models can be produced.

Whether to use a model-based or a model-free algorithm depends on the prob-
lem and the available resources. Choosing model-based algorithms allows learning
laws to be formulated for the unknown parameters and the network’s response
calculations do not depend on the number of training samples. However, the gen-
eralisation depends on the type of nonlinear hidden layer nodes and sometimes this
relationship is not explicit, the exception being the lattice AMNs. The response
time of a model-free algorithm generally grows linearly with the number of training
samples, although no a prior: knowledge is assumed about the form of the model

Neural Networks 57

and it appears to generalise sensibly.

2.4 TRAINING ALGORITHMS

The ability to learn complex mappings from a data set is the cornerstone of the-
recent revival of interest in ANNs. The inability of the Perceptron learning al-

gorithm to be extended to multi-layer networks [Minsky and Papert, 1969] meant

that a network could not learn to reproduce the basic XOR logical function, and

so these algorithms were not considered suitable for application to more complex

real-world problems. However, in the mid-eighties, when a gradient descent al-

gorithm called Back Propagation (BP) was reinvented which enabled MLPs to

learn arbitrary functional mappings, it stimulated considerable interest in learning

systems.

BP is a supervised learning rule; the desired network output is given to the
learning algorithm and the difference between this value and the actual output
is used to guide the adaptive mechanisms. Many other learning algorithms have
also been developed, such as unsupervised and reinforcement rules, and there are
many different algorithms within these broad classifications. This section does not
aim to give a complete survey of this field, but it provides a broad overview while
concentrating on the rules which are applicable in the neuromodelling and control

field.

2.4.1 Unsupervised Learning

Widrow termed unsupervised learning as open-loop adaptation, because it does
not use any performance feedback information to update the network’s parameters.
This type of learning can be used in a variety of ways:

e group the input data into clusters, which can then be labelled in a supervised
mode; .

e guantise the continuous input space in an “optimal” manner;

e represent the input data in a lower dimensional space; and

e extract a set of features which represents the input signal.

This classification reflects the usage of unsupervised learning laws, as many of
the above tasks are very similar. For instance, vector quantisation could be con-
sidered a subclass of feature extraction, although the latter is generally used for
pattern classification, whereas the former can be used to prepare the input data
for modelling algorithms.

Unsupervised learning algorithms can be used in a wide variety of networks:
training the centres of an RBF network [Chen et al., 1992], providing an “optimal”
lattice for the AMNSs, although many learning rules are closely tied to particular

58 Neurofuzzy Adaptive Modelling and Control =

system architectures [Grossberg, 1988]. They have also been used for many dif-
ferent applications: speech recognition [Kohonen 1988, 1990], robotics modelling
[Ritter et al., 1989], image compression [Nasrabadi and Feng, 1988], etc. The basic
unsupervised learning algorithm and the two most important unsupervised network
architectures: Kohonen’s Self-Organising Map and Grossberg’s ART networks are
described in this section.

Competitive Learning

Competitive ANNs distribute their nodes across the input space, so that they learn
to represent the statistics of the input data which is presented to the network, as
illustrated in Figure 2.16. The recall phase of such a network simply involves

input
(weight)
space

X2

Xy

Figure 2.16 An unsupervised learning network showing how the nodes become sensitised to
different parts of the input space. The input is assumed to have a uniform probability density
function (shown by the shaded area) and the weight vectors (dotted lines) are distributed
evenly in the relevant parts of the input space.

finding the node which best matches a particular input pattern and exporting
either the index of this node or the associated classification label.

A network which is trained using the unsupervised competitive learning algo-
rithm is composed of a group of nodes {a;}!_,, and associated with each node is a
normalised weight vector w; (each element should also be normalised so that it as-
sumes equal importance). A normalised input, X, is presented to the network and
a match is then calculated between the input and the weight vector corresponding
to each node, whose activation value is given by:

n

a; = Zwi_.,-:z:j = XTW.; (211)

=1

Neural Networks 59

The network then determines the node ai such that a; < ax Vi # k and the output
is either this index or the classification label stored at the k** node. Selecting the
node with the maximal output (closest match) can also be implemented as a neural
network, as described by Lippmann [1987].

The weight vector associated with the best match node is updated according
to the rule:

wi(t — 1) + 6 (x(t) — wi(t — 1))
lIwi(t — 1) + & (x(¢) — wi(t = 1))

and every other weight vector retains its current value.

If the input data are not normalised, the match is implemented using the Eu-
clidean distance measure and the k** node is selected such that ||[x —wi||, <
|lx — w;||, Vi # k. The learning rule is then modified to:

Wk(t) =

(2.12)

Wk(t) = Wk(t — 1) + 6(X(t) — Wk(t — 1))

These learning rules (k = 1,2,...,p) can easily be shown to form a set of p MSE
gradient descent training laws, and the weight vectors converge in the limit to their
optimal values with respect to the network input MSE.

The networks and the learning rules can be used as simple classification systems,
where a label is associated with each node, or for vector quantisation where a
value (weight) is stored at each node and the network output is simply this weight.
Generalised competitive networks allow more than one node to be active at any
one time (similar to k-nearest neighbour networks) and interpolate locally the
information stored at each node. Initial learning is also generally faster for these
networks, as more than one weight vector is updated for each input.

The Self-Organising Map

Kohonen'’s Self-Organising Map (KSOM) [Kohonen, 1990] is a competitive network
in which the nodes are ordered, and its aim is to produce a low-dimensional, topol-
ogy conserving representation of the input space. The nodes are regularly placed
in an m-dimensional space, (generally m < n) and the learning algorithm attempts
to formulate a mapping such that, if two inputs x(1) and x(2) are close in the input
space, the two activated nodes a; and ay are also close in the m-dimensional user-
defined space. Generally the nodes are placed on an m-dimensional lattice and an
appropriate kernel function is associated with each node which tends to zero as
the input moves away from the activated node. At time ¢, the weight vectors are
updated according to the following rule:

wi(t) = wi(t — 1) + 8(t)h(s, k) (x(£) — wi(t — 1)) (2.13)

where the k** unit is activated at time ¢, and h(z, k) is the kernel function and
8(t) is the time-varying learning rate. If h(z,k) = 1 when ¢ = k and 0, otherwise

60 Neurofuzzy Adaptive Modelling and Control

the standard competitive learning algorithm is obtained. However if h(z,k) =1
when i = k and it tends to 0 in the locality of k, the nodes surrounding ay receive
similar training information and the weight vectors become sensitised to similar
input regions. The mapping then retains the topological features of the original
input space. Many different kernel functions can be used in the above algorithm:
Mexican hat functions, Gaussian functions, etc., and the algorithm appears to be
reasonably robust with respect to different selections.

For modelling and control applications, this algorithm has the potential to map
a high-dimensional input space to a low-dimensional representation which preserves
the topological ordering of the original inputs. In high-dimensional space, most of
the relevant input data are contained in a much smaller subspace, and the KSOM
has the ability to extract this information automatically in a computationally effi-
cient manner [Walter and Schulten, 1993).

Adaptive Resonance Theory

Since the late sixties, Grossberg and his research group have been investigating and
developing (amongst others) biologically plausible neural pattern classification ar-
chitectures and the associated learning rules. The basic design question which
this research addresses is development of systems that can be “designed to remain
plastic, or adaptive, in response to significant events and yet remain stable in re-
sponse to irrelevant events” [Carpenter and Grossberg, 1988]. This was termed the
stability-plasticity dilemma and is a fundamental problem for any on-line adaptive
algorithm. Grossberg proposed an Adaptive Resonance Theory (ART) for neural
networks, which is designed to overcome this problem and also possesses three
important properties: the input activity is normalised (similar to the competi-
tive networks), contrast enhancement of input patterns and distinction between
Short-Term Memory (STM) and Long-Term Memory (LTM) [Grossberg, 1988].
The three ART architectures proposed to date can deal with binary input signals
(ART1), real-valued input signals (ART2) [Carpenter et al., 1991a] and ART3 in-
corporates a hierarchical structure [Carpenter and Grossberg, 1990]. Other pro-
posed systems have included a fuzzy ART [Carpenter et al., 1991b], and vector
associative maps for unsupervised learning and control of movement trajectories
[Grossberg et al., 1993].

The basic ART1 architecture is shown in Figure 2.17 with the bottom-up and
top-down weight arrays (Wb and W, respectively) playing a major part in prevent-
ing learned memories from being overwritten by new information. A bottom-up
weight vector encodes the competitive element of the ART architectures, and the
node with the best match is selected. The top-down weight vector associated with
this node is then compared with the input pattern and if it is a good match, this
categorisation is accepted, if not the node is disabled and a new best match is
calculated. Once the input has been either categorised or a new node has been
allocated to store this input, the LTM weights are changed.

Neural Networks 61

category representation field

gain 2 |

— gain 1 |

re representation field

input

Figure 2.17 The basic ART1 architecture.

The ideas encoded in the ART architectures are directly relevant to on-line
learning modelling and control algorithms, and any proposed system should have
the ability to store new information without affecting unrelated stored data. Many
learning systems do not possess this property, although the lattice AMNs consid-
ered in this book have this feature, as new information is stored locally.

2.4.2 Supervised Learning

Supervised learning rules differ from unsupervised training algorithms because the
network’s desired response (output) needs to be presented to the network for each
input. Denoting the desired network output at time ¢ by 7(t), the instantaneous
performance of the network can be inferred from:

ey () = () —y(¢) : (2.14)
and these output errors are used to update the network’s weights.

Parameter convergence is the aim of this optimisation strategy, as the network
is only able to generalise correctly if the parameters are close to their optimal
values. Generalisation is essential if the network is trained off-line from a finite
training set, and this illustrates the problem of determining when to stop training.
If this decision is based on the size of the output error only, a low value does
not always imply that the weights are correctly initialised, and this problem is
discussed further in Sections 4.6 and 8.3.2.

Supervised learning is probably the most widely used training mechanism and
gradient descent adaptation is probably the best known supervised learning rule.
This is due to a variety of reasons:

e Widrow’s original LMS learning rules are instantaneous gradient descent
training algorithms.

62 Neurofuzzy Adaptive Modelling and Control

e A large number of theoretical results have been derived, which can estab-
lish parameter convergence and estimate the rate of convergence for certain
network structures.

o The resulting learning algorithms have low memory requirements and a low
computational cost.

Therefore this section concentrates on gradient descent learning algorithms (batch
and instantaneous), although other training rules are discussed.

Batch Learning

Supervised learning algorithms can be divided into two distinct approaches: batch
and instantaneous training rules. Instantaneous training rules use only the infor-
mation provided by a single training example {x(t), y(t)}, when the weight vector
is updated, whereas batch learning laws generally use all the training data to
adapt the weights. Under certain conditions, the instantaneous training rules are
approximations of their batch counterparts, and so the latter are described first.
For a training set given by {x(t),§(¢)},, a cost function which measures the
current performance of the network needs to be specified. In most applications

this is the MSE defined by:
1 L
J =E (&(¢)) = - () (2.15)
t=1
Other cost functions may improve the network’s performance, although using the
MSE produces computationally efficient learning algorithms and good final models.
Gradient descent learning algorithms adapt the weight vector in the direction
of the negative gradient of the performance function:

Aw =297 (2.16)

20w
where § is the learning rate which determines the stability and the rate of conver- »
gence of the learning algorithm and Aw is the weight vector update. Applying the
chain rule to the MSE cost function gives:

Aw= 33T _p (6y(t) ey(t)) (2.17)

ow

Therefore the gradient update contains information about the network Jacobian
(0y/0w), and the performance of the network 8J /0y. For the MSE cost function,
the latter quantity is simply the output error, and the efficiency of this algorithm
will depend on the structure of the network (information held in the J acobian). If
the network is linearly dependent on the weight vector (y(t) = aT(t) w), the above
expression simplifies to:

Neural Networks 63

Aw = §E (e,(t)a(t))

and the computational simplicity of this rule is obvious.

For linear networks, it is shown in Chapter 4 that the weights trained using this
learning algorithm converge to their optimal values, and the rate of convergence
can be estimated. The gradient descent learning rules can also be extended for
nonlinear optimisation (to train MLPs for instance, see Section 4.5), although
the theoretical convergence results do not generally apply. This is illustrated in
Figure 2.18, where it is shown how gradient descent rules can become trapped by
local minima and plateau areas. Even the rate of convergence of linear networks
depends on the condition of the model and slow convergence occurs when the model
is poorly conditioned.

MSE

plateau
areas

minimum

global
minimum

weight

Figure 2.18 The nonlinear relationship between a weight and the mean square output error.
Gradient descent training algorithms can become trapped by local minima and plateau areas.

This discussion has considered first-order gradient descent rules which use only
the first-derivative information. Second and higher-order training algorithms can
be derived which make use of second (and higher) -order derivatives [Widrow and
Stearns, 1985]. Probably the best known of these is Newton’s method which uses
second-order curvature information and this can be expressed as:

aJ

Aw = —-D_—

w ow
where D is (an approximation to) the inverted second-derivative matrix (the Hes-
sian) [Gill et al., 1981, Mills, 1992]. Equation 2.16 is therefore an approximation
to this more complex learning rule, and they are equivalent when the cost function

has constant second derivatives and there is no cross-coupling with respect to each
weight, i.e. D = diag{é,é,...,6}.

Instantaneous Learning
Instantaneous learning rules generally use only a single piece of training information

when the weights are updated. This is closer to human learning processes, which
do not use all the available information. However, this fact should not be used to

64 Neurofuzzy Adaptive Modelling and Control

justify the use of these adaptation rules in learning control applications, but should
inspire their development and their performance should be rigorously assessed.
Batch learning rules have the disadvantage that all the training information is
required before the weights are updated and, although recursive algorithms are
available, the large and complex structure of the networks limits the feasibility of
these techniques.

Instantaneous learning algorithms generally attempt to minimise an instanta-
neous measure of the network’s performance, and for the MSE cost function this
is given by:

J(t) = €5(t) (2.18)
Using a gradient descent rule, the weight update is:

. 88J(t) By(t)
Aw = —2 2 = Se,(8) 5 (2.19)

which is simply an (unbiased) estimate of the derivative of the true cost function.
When the network is linear this reduces to:

Aw = §e,(t)a(t)

This rule can be interpreted as updating the weights in proportion to the amount
that they contributed to the output. If the vector a is sparse (many zero elements)
and the non-zero elements are approximately of the same magnitude, the learning
algorithm works well, as is shown in the following example and in Chapter 5.

In Section 5.3.1, it is shown that if no mismatch (modelling error or measure-
ment noise) exists, then a weight vector trained using the above rule converges to a
value that can exactly reproduce the training data. However, when modelling error
exists, the noise associated with the gradient estimate means that the weight vec-
tor no longer converges to an optimal value, but lies in a domain which surrounds
this quantity. The size and shape of this minimal capture zone (see Section 5.4.3)
depends on the network’s structure and the distribution of the training data, and
this can be regarded as part of the cost of using an instantaneous estimate rather
than the true gradient. If the learning rate is allowed to decay to zero rather than
remaining constant, the gradient noise is filtered out and the weights converge to
their optimal values [Luo, 1991].

These learning rules can also be used for networks which depend nonlinearly on
their weights, and the original BP algorithm for training MLPs was an instanta-
neous learning rule [Rumelhart and McClelland, 1986]. Also higher-order learning
rules, which use the past L training samples, can be derived and these generally
reduce the size of the minimal capture zones and increase the rate of convergence,
at a cost of increasing the computational complexity.

Neural Networks 65
Ezample: Look-Up Table

A look-up table has an extremely simple structure, although it can provide con-
siderable insight into the suitability of training a network, using an instantaneous
learning law. It has an n-dimensional lattice defined on the input space and the
output of the network is simply the i** weight, if the input lies in the :** lattice
cell. The transformed vector a has (p — 1) zero elements and the i** element is
unity, so it is extremely sparse.

The weight vector is updated using an instantaneous stochastic learning rule:
Aw;(t — 1) = §;(t) ey(t) a;(t)

where §;(t) is the learning rate associated with the j** node at time ¢. Only the it*
weight is updated at time ¢, so the learning algorithm is computationally efficient,
and the time-varying learning rate is given by:

1
6:;(t) = ==
= a®
therefore the a posterior: weight value at time t is:

1 ~
wi(t) = wi(t—1)+ m(y(t) — wi(t — 1))a;(?)

g(t) + wi(t — 1) Si5 ai(k)
ch:l a;(k)
k=1 J(k)ai(k)
Zi:l ai(k)

This last quantity is the optimal estimate of the weight (at time t), and so the
instantaneous and batch learning laws are equivalent for a look-up table.

The instantaneous learning algorithm works well because the transformed input
vector a is sparse and all the non-zero elements are equal in value. If a network
is to be successfully trained using instantaneous learning rules, it should partially
satisfy these two conditions, which is true for the lattice AMNs analyséd: in this
book.

Alternative Strategies

This section has concentrated mainly on gradient descent learning rules because of
their popularity and the theoretical results which can be derived. However, they
are not suitable for every optimisation problem and for every network structure.
Two other supervised learning algorithms which have been used for training ANNs
are stochastic and genetic learning rules.

Stochastic training algorithms introduce a random element into the search for
the optimal weight vector. They can be used when the network’s output is not

66 Neurofuzzy Adaptive Modelling and Control

a continuously differentiable function with respect to weight vector. In the most
general form, a random search can be performed in weight space and the weight
vector which generates the lowest cost is selected, or else a stochastic element can be -
introduced into other learning rules (such as gradient descent) in order to reduce the
chance of becoming stuck in local minima. This technique should only be used if the
cost function is highly complex as they use little or no information about its shape,
and gradient descent rules generally perform better [Monzingo and Miller, 1980].
Genetic algorithms have gained in popularity over the past few years, although
the seminal text on the subject was written nearly twenty years ago [Holland, 1975].
The weights are represented using binary strings and the strings are concatenated
to form one large string. A population is then created from several large, different
strings and these are combined using various genetically inspired techniques such as
cross-over (cutting strings and swapping the respective components) and mutation
(randomly changing bits in the string). The fitness of the each new string is
evaluated and a new population is created which consists of some of the new
and some of the old strings, and the fittest strings have a highest probability
of being members of the new population. The technique combines elements of
directed (using cross-over) and random (mutation) search algorithms and has been
shown to perform well in a wide variety of off-line tasks [McGregor et al., 1992,
Renders and Hanus, 1992], which involve highly complex optimisation calculations.

2.4.3 Reinforcement Learning

- Reinforcement learning algorithms use a reduced form of performance feedback in-
formation in their updating rules. This performance information is generally binary
and denotes whether the sequence of control actions has been successful. The sem-
inal paper on this subject was written by Barto et al. [1983] where an inverted pen-
dulum was trained using a reinforcement learning algorithm. The learning ANNs
which implement the ASE and ACE blocks, described in Section 2.2.4, are generally
similar to look-up tables, although recently more complex input space quantisation
strategies have been proposed [Zhang and Grant, 1992], and more flexible networks
have been applied [Anderson, 1989]. The reduced performance feedback informa-
tion means that the networks which initially learn quickly perform well and this was
confirmed when the CMAC and fuzzy networks were applied to the pole-balancing
reinforcement learning task [Berenji and Khedkar, 1992, Lin and Kim, 1991].
These reinforcement learning rules were motivated by the adaptive automata al-
gorithms [Barto and Anandan, 1985, Narendra and Thathachar, 1974], where they
are used to update the probability vectors associated with each possible input
state. A good description of the weight update equations is provided by Barto et
al. [1983] and Millington and Baker [1990]. The ACE reinforcement weights are
updated in proportion to the weighted sum of the local reinforcement signals and
the ASE weights are updated in proportion to the internal reinforcement signal
at time ¢, multiplied by a term which measures the eligibility of that particular

Neural Networks 67

state. The continuous reward/punish signal from the ACE means that the ASE
is able to learn, even when the system does not fail, and the performance of this
algorithm over a system which only uses the external reinforcement signal has been
demonstrated many times.

2.5 VALIDATION OF A NEURAL MODEL

The most important part of any learning systems design procedure is the verifi-
cation and validation phase. During these tests, the designer should be able to
assess how well the network has learnt the training data and how successfully
it is able to generalise (interpolate and extrapolate) to unforeseen cases. Most
learning algorithms can successfully learn a set of training examples given a suffi-
ciently flexible model structure or an appropriate learning algorithm, although the
question of whether they possess the ability to generalise correctly (or sufficiently
accurately) is still unresolved [Barnard and Wessels, 1992]. In Lau and Widrow
[1990], it is said that “it is necessary to develop quantitative techniques to evalu-
ate neural network’s performance with real-world data ... Rigorous mathematical
foundations must be developed to determine the characteristics of the training set
and the network’s ability to generalise from the training data”. For safety and
certification reasons the performance of the trained network must be completely
understood; it cannot be simply regarded as a black box about which nothing can
be proven. It has been argued that most of the ANNs are model-based algorithms
and so tests are required to determine if the structure is sufficiently flexible and to
establish if the network’s input representation contains enough information. From
a learning viewpoint, it is desirable to have the smallest acceptable network and
input vector, as this forces the network to generalise sensibly.

There are many different ways in which the performance of a trained net-
work can be assessed, the simplest (and probably the most biased and abused
[Weiss and Kulikowski, 1991]) method is by simply assessing the network’s perfor-
mance in reproducing the training data. A better approach is to split the available
data into a training and a test set, and to use the testing data to evaluate the final
model. There are many different ways in which the available data can be divided,
and some of these are reviewed in Section 2.5.2. This test only provides very gen-
eral performance information; if the model is poor, it does not give any reasons
about why this occurs. During the eighties, a number of correlation and statistical
based tests were devised for validating the NARMAX models developed by Billings
and his collegues [1983, 1986, 1989, 1992]. These tests are equally applicable to
neurofuzzy modelling and control algorithms, and the model validation tests are
reviewed in Section 2.5.3. The topic of network transparency is then examined, as
this is one of the most desirable features of the networks discussed in this book.
Network transparency refers to the manner in which information is stored, and
a network is said to be transparent to the designer if the relationship between a

68 Neurofuzzy Adaptive Modelling and Control

weight and the network surface is easily understood, otherwise the network is said
to be opaque. Networks with this property are described in Section 2.5.4, and the
validity of assessing opaque networks by mapping them onto a transparent model
is discussed.

All of these evaluation methods provide information about the generalisation
ability of the trained model, and it is anticipated that additional performance tests
will evolve in the future.

2.5.1 Bias Variance Dilemma

Artificial neural networks have been called model-free estimators, as they are flexi-
ble enough to approximate any smooth nonlinear function to a prespecified degree
of accuracy, given sufficient resources. This is a necessary theoretical result, which
shows that there may be a large number of modelling problems which neural algo-
rithms could be applied to, although it does not guarantee success. Irrespective of
the learning algorithm used to train the parameters, the model’s structure should
be appropriate. The model should be flexible enough to learn the desired map-
ping described by the training data, but it should not be over-parameterised, as this
causes the model to fit the noise which is inherent in most data sets. The problem of
estimating how flexible a model should be (how many nodes in each layer, number
of layers, order of the splines, etc.) is well developed in the statistical modelling
community where it is termed the bias/variance dilemma [Geman et al., 1992).
The MSE performance measure for a particular input can be decomposed into two
components which reflect the bias of the network error (where the average is taken
over all possible training sets), and the wariance of the estimates of the trained
networks. Following the notation developed by Geman et al. [1992), let D denote
a training set, y(x, D) be the output of a network trained using the data contained
in D and Ep(.) denote the expectation operator taken over all possible training
sets, then the output error is given by:

ey(x) = §(x) — y(x, D)

The suitability or effectiveness of this network as a predictor of §(x) can be mea-
sured by calculating the MSE for all possible training sets D, giving:

Ep (€(x)) = Ep (@) -y(x D))
= (§(x) — Ep (y(x, D)))* + Ep ((#(x) — y(x, D))*) (2.20)

The first term on the right-hand side is called the bias, as it measures the av-
erage modelling error, whereas the second estimates the variance of the network
approximations. Even if an “average” network is able to interpolate the data and
make the bias zero, a high variance still causes poor performance. A large variance
occurs when the performance of the network is very sensitive to the training data
(if the network is too flexible) which results in a paor MSE performance.

Neural Networks 69

In general, a network should be flexible enough to ensure that the modelling
error (bias) is small, although the model should not be over-parameterised, as
this causes its performance to strongly depend on a particular training set (high
variance).

2.5.2 Output Error Tests

Many of the network training rules are based on minimising an MSE cost function
and therefore it is natural that the same test should be applied first when the
performance of the network is evaluated. The Root Mean Square (RMS) output
error is generally a negative test; it only gives information about the training being
inadequate (a high RMS), and little can be deduced from a low RMS value. This
can be easily illustrated by considering a nearest neighbour data storage algorithm
which simply remembers the training data. After one training cycle, the network’s
recall is perfect and the RMS is zero, but this testing procedure gives no information
about its ability to generalise. Alternatively, the reduction in the RMS after one
learning cycle for an MLP trained using a gradient descent algorithm is small and
the only information provided is that the learning procedure should not be stopped.
It is important to obtain a good estimate of the true performance of the ANN, as
this could be used to determine if the structure is flexible enough for a particular
data set. If the modelling capabilities of the network were increased and this
resulted in a lower estimate of the true RMS value, it would indicate that the
original network structure was insufficient. Similarly, if the true RMS value was
higher for a more complex model, this would indicate that the ANN was starting to
model the disturbances present in the data and a simpler network structure would
be preferred, as this forces the network to generalise. The RMS test provides no
estimate of the variance of the network, and this is illustrated in Figure 2.19.

measured

complexity

Figure 2.19 An illustration of the trade-off between network complexity and the true (dashed
line) and measured (solid line) RMS.

Despite the fact that this performance measure can easily be abused, several
statistical and information theory-based validation tests, see Section 8.5.4, have
been developed which attempt to reproduce the true RMS, by combining the mea-
sured RMS with terms that estimate the network’s complexity. These measures

70 Neurofuzzy Adaptive Modelling and Control

weigh the RMS against the number of parameters in the network and the amount

of training data, producing parsimonious networks that are able to model the data
adequately.

Test Set Construction

Any data set presented to a learning algorithm must be split into a part which
is used to train the network, and another used for evaluating its performance by
testing its ability to generalise correctly. For off-line design, where a fixed training
set is presented to the network, there is generally a problem due to lack of data
and so an obvious problem is to determine how much should be used for training
and how much should be used for testing. One heuristic which works well in
practice is to use two-thirds for training and one-third for testing. This approach
is reasonable because it is not possible for a learning algorithm to perform well
if there are insufficient training data, but the performance cannot be assessed
accurately if the test set is too small. Random subsampling can be used to obtain
a better estimate of the true RMS, and this proceeds by randomly generating
different test and training sets, training a network on each of these different test
sets and averaging the RMS values after each training session. These measures
produce estimates for both the network’s bias and its variance which can be then
used to assess the model’s true performance. A special case of this technique is
the leave-one-out strategy where only one piece of data is used for testing and the
remainder is used for training. The learning and testing procedures are carried
out enough times so that each data pair is used as the test case just once, and the

RMS value (total variance) can be calculated by averaging over each RMS estimate
[Weiss and Kulikowski, 1991].

2.5.3 Correlation and Statistical Tests

The validation of a trained ANN using a test set is the first of many testing pro-
cedures which should be applied to the network, and for the nonlinear NARMAX
models (see Section 2.2.1) many other evaluation algorithms have been developed.
These tests can highlight deficiencies occurring in the input data and in the net-
work’s structure, so they can be used to assess the order of the nonlinear models,
measurement errors that may have occurred when the data were collected and to
produce parsimonious models which generally perform well.

Correlation Tests

Correlation-based evaluation tests for NARMAX models were developed after it be-
came apparent that the linear covariance tests [Ljung and Soderstrom, 1983] were

Neural Networks 71

not sufficient when they are applied to nonlinear systems [Billings and Voon, 1986].
A further set of correlation-based tests was developed and any well-trained ANN
model should satisfy the following five conditions:

pee(7) = E(e(t —7)e(t)) = 6(7)

bue(r) = E(u(t—T1)e(t))=0 Vr
$ue(r) = E((w¥(t—7)— E(u(®))) e(t)) =0 Vr (2.21)
pua(t) = E((v2(t—7)— E(u®))’)€(t) =0 Vr (2.22)
been)(t) = E(e(t)e(t—1—Tu(t—1-7))=0 7>0 (2.23)

where €(t) = €,(t) is the current network output error. To generate meaningful
results, normalised correlation functions are generally calculated and these are

defined by:
Se Yi(t)da(t + 1)
0.5
(S, 93(8) Th, $3(1))

The normalised correlation functions lie in the interval [—1,1], and a 95% confi-
dence band (= £+1.96/ VL) indicates if the calculated correlations are significant.

It is not known whether or not these tests are sufficient, but they form a pow-
erful set of evaluation methods for process modelling, and have proved very useful
for a wide variety of different ANNs. They provide information about the structure
of the network, as well as determining if the input vector is sufficiently rich.

$¢1¢2 (T) =

(2.24)

Chi-Squared Tests

Another evaluation algorithm which has been used for nonlinear model validation
is the chi-squared statistical test [Bohlin, 1978, Leontaritis and, Billings, 1987],
which indicates whether or not a model is biased. This performance measure
is calculated by defining an 7-dimensional vector §(t) as:

Q(t) = [w(t)’w(t - 1)’ T ’w(t -n+ 1)]T ‘

where w(t) is a function of the previous system inputs, outputs and prediction
errors. The chi-squared statistic is then given by:

¢ = L™ (T7T) " 4 (2.25)

where

O,

L1 3 205 ()

rr = L“ZL:Q(t)QT(t)

72 Neurofuzzy Adaptive Modelling and Control

where o2 is the variance of €,(t). The model is generally regarded as adequate if
for several different vectors Q(t), the corresponding values of (lie within a 95%
acceptance region:

¢ < ka(s)

where ko(s) is the critical value of the chi-square distribution with s degrees of
freedom and a level of significance o = 0.05.

2.5.4 Network Transparency

In validating a trained ANN, it would be desirable to have an understanding of the
influence of each weight on the network output. This enables the designer to search
for regions where the network has been insufficiently trained and aid the evaluation
process as the magnitude of the parameters would be directly related to the size
of the network output. However, many ANNs are opaque; the knowledge which is
stored in the network is distributed across many parameters in a complex manner
which cannot easily be understood by the designer. Some attempts have been
made to interpret MLPs (for example) using a truncated Taylor series or finite
Volterra model [Soloway and Bialasiewicz, 1992], although neglecting the higher
order terms of a sigmoid expansion loses the fine detail, and it is conjectured
that these higher order terms provide the representational advantage of globally
generalising nodes for smooth functional approximation tasks.

One notable exception to this problem is the B-spline lattice AMN, and to a
lesser extent the higher order CMAC networks. Their internal structure can be
interpreted as a set of fuzzy production rules (see Section 9.2.1 and Chapter 10)
such as:

IF (z, 1s positive small AND z, is almost zero)
THEN (y is negative small)

This provides the AMNs with some degree of transparency, although it is generally
only true for small-dimensional spaces, as the number of rules is exponentially de-
pendent on the number of inputs. More complex input space quantisation strategies
and network architectures [Kavli, 1994, Zhang and Grant, 1992] can make these
techniques applicable to higher dimensional modelling problems although, unless
the redundancy is explicitly represented, the fuzzy rule base may be overly com-

plex.

2.6 DISCUSSION

The majority of the currently used ANNs are model based. The structure of the
network remains fixed during training, and only the weight vector is adapted. In

Iy A T

Neural Neq

this contexf
determine §
model baﬂ
basic model
ease with ¥
has reflectd
of the algos
understood
these algor
analysed,
Many of i
adaptive d
= Kaczma
Chapter 5)
The same:
research, ©
The bis
liberately
research sk
the work |
years befo
control en
properties
The m
desired ot
generalisa
approximi
data, the:
otherwise
The adap
a good m
ditioned,
the predi
tioned ne
the learn
ately.
Onec
were cap:
Narendrs
tions ha
linear ag
adaptati
namic e
on gradi

ng and Control

as adequate if
 within a 95%

h s degrees of

tanding of the
igner to search
the evaluation
ed to the size
ledge which is
mplex manner
pts have been
eries or finite
ng the higher
is conjectured
ge of globally

MN, and to a
ucture can be
1 Chapter 10)

it is generally
onentially de-
Lion strategies
n make these
hough, unless
e overly com-

ructure of the
s adapted. In

Neural Networks 73

this context, these algorithms should be subject to a rigorous analysis in order to
determine their advantages and disadvantages when compared with other learning
model based algorithms. A learning algorithm can be classified according to its
basic modelling flexibility, its learning capabilities and the model transparency (the
ease with which the final model can be understood by the designer). This chapter
has reflected that philosophy. Human learning provided the inspiration for many
of the algorithms described in this section, but these techniques must be properly
understood if they are to be applied successfully. The argument that, because
these algorithms are based on human thinking and human thinking cannot be
analysed, therefore results cannot be proved about these techniques is incorrect.
Many of the so-called neural learning algorithms have their counterparts in the
adaptive control and signal processing literature: LMS = MIT rule, and NLMS
= Kaczmarz’s algorithm (Astrém and Wittenmark (1989], Kaczmarz [1937] and
Chapter 5), and many theoretical results are now known about their performance.
The same amount of rigour should be applied to the neuromodelling and control
research, otherwise results will be strictly problem dependent.

The biological motivations and implications of these algorithms have been de-
liberately understated in this chapter and in the remainder of the book. Biological
research should stimulate and motivate this research, but it does not have to guide
the work blindly. In the introduction it was stated that it may be another fifty
years before a first-order understanding of the brain’s functionality is achieved, yet
control engineers want these results today, with provable convergence and stability
properties.

The modelling capabilities of an ANN should be flexible enough to achieve the
desired objectives, but if a model is too flexible, it can overfit the data and the
generalisation is poor. Learning from a data set can be posed as a functional
approximation task, as it is not enough to simply learn to reproduce the training
data, the underlying structure of the function must also be learnt from the samples,
otherwise the network is not able to generalise correctly to neighbouring inputs.
The adaptive ANN should also be well conditioned, as generalisation requires both
a good model structure and parameter convergence. If the network is badly con-
ditioned, the designer may be fooled into thinking that it is performing well when
the prediction errors are small. However, parameter convergence in a badly condi-
tioned network (of the correct structure) occurs slowly, and prematurely stopping
the learning procedure means that the network is unable to generalise appropri-
ately.

One of the original objectives in the ANN field was to develop algorithms which
were capable of learning information on-line [Narendra and Mukhopadhyay, 1992,
Narendra and Parthasarathy, 1990]. Many neuromodelling and control applica-
tions have tended to ignore this and the ANNs are used solely for their non-
linear approximation ability. To exploit the full potential of this area, on-line
adaptation is essential in order to cope with time-varying plants operating in dy-
namic environments. Many of the learning rules currently developed are based
on gradient descent, as originally occurred in the adaptive control field. How-

74 Neurofuzzy Adaptive Modelling and Control

ever, it was found that under certain conditions (for instance, if the learning rates
were set too high), the resulting closed-loop systems could become unstable. This
led to stability-based learning laws being developed during the sixties and it is
only recently that similar adaptive rules have been proposed for neural networks
[Sanner and Slotine, 1992, Tzirkel-Hancock and Fallside, 1991]. The present sta-
bility theories are directly applicable to some ANNG, although it would be hoped
that new results and algorithms could be developed which exploit network specific
properties.

Future research must be aimed at understanding the modelling properties of
the various ANNSs, and proposing new architectures to improve their suitability for
modelling and control applications. The inspiration for such improvements could be
biologically based or come from the related fields of adaptive control and signal pro-
cessing. Possibly, a more important topic is to understand and derive new learning
laws which are applicable to various ANNs. The ability to prove convergence and
stability is crucial if these learning algorithms are to be applied for on-line adaptive
control, and for certain classes of networks which are linear in their weight vector
(RBFs, lattice AMNs), the theories developed for adaptive linear systems can be
modified and applied to these networks [Narendra and Annaswamy, 1989]. These
algorithms should be compared with other nonlinear adaptive control strategies
and the advantages in using these networks must be clearly quantified. This can
only be achieved when theoretical results are available to compare the functional
approximation and learning convergence of the different algorithms. Finally, the
problems associated with applying these techniques to real-world tasks should not
be underestimated. Algorithms need to be developed and improved for identifying
the relevant network inputs, monitoring the adaptive networks and verifying and
validating the knowledge stored in the network. For most practical applications
these are non-trivial problems, but are essential for a successful implementation.

