
Evolutionary Computing

Chapter 1



/ 20

Chapter 1: Problems to be solved

Problems can be classified in different ways:

• Black box model

• Search problems

• Optimisation vs constraint satisfaction

• NP problems

2Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model

• “Black box” model consists of 3 components
• When one component is unknown: new problem type 

3Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Optimisation

• Model and desired output is known, task is to find inputs

4

• Examples:

• Time tables for university, call center, or hospital
• Design specifications
• Traveling salesman problem (TSP)
• Eight-queens problem, etc.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Optimisation example 1: university timetabling

• Enormously big search space
• Timetables must be good
• “Good” is defined by a number 

of competing criteria
• Timetables must be feasible
• Vast majority of search space 

is infeasible

5Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 6



/ 20

“Black box” model:
Optimisation example 2: satellite structure

• Optimised satellite designs for 
NASA to maximize vibration 
isolation

• Evolving: design structures

• Fitness: vibration resistance

• Evolutionary “creativity”

7Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Optimisation example 3: 8 queens problem

8

• Given an 8-by-8 
chessboard and 8 queens

• Place the 8 queens on the 
chessboard without any 
conflict

• Two queens conflict if they 
share same row, column or 
diagonal

• Can be extended to an n 
queens problem (n>8)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Modelling

• We have corresponding sets of inputs & outputs and 
seek model that delivers correct output for every known 
input

• Note: modelling problems can be transformed into 
optimisation problems

9

• Evolutionary machine learning
• Predicting stock exchange
• Voice control system for smart homes

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Modelling example: load applicant creditibility

• British bank evolved 
creditability model to 
predict loan paying 
behavior of new applicants 

• Evolving: prediction 
models

• Fitness: model accuracy 
on historical data

10Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Simulation

• We have a given model and wish to know the outputs 
that arise under different input conditions

• Often used to answer “what-if” questions in evolving 
dynamic environments 

– Evolutionary economics, Artificial Life
– Weather forecast system
– Impact analysis new tax systems

11Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Simulation example: evolving artificial societies

Simulating trade, economic 
competition, etc. to calibrate 
models

Use models to optimise
strategies and policies

Evolutionary economy

Survival of the fittest is 
universal (big/small fish)

11Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

“Black box” model:
Simulation example 2: biological interpretations

Incest prevention keeps 
evolution from rapid 
degeneration 
(we knew this)

Multi-parent reproduction, 
makes evolution more 
efficient 
(this does not exist on Earth 
in carbon)

2nd sample of Life

13Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

Search problems

• Simulation is different from optimisation/modelling
• Optimisation/modelling problems search through huge 

space of possibilities
• Search space: collection of all objects of interest 

including the desired solution
• Question: how large is the search space for different 

tours through n cities?

Benefit of classifying these problems: distinction between
- search problems, which define search spaces, and
- problem-solvers, which tell how to move through search 
spaces.

14Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

Optimisation vs. constraint satisfaction (1/2)

• Objective function: a way of assigning a value to a 
possible solution that reflects its quality on scale
– Number of un-checked queens (maximize)
– Length of a tour visiting given set of cities (minimize)

• Constraint: binary evaluation telling whether a given 
requirement holds or not
– Find a configuration of eight queens on a chessboard such that no two 

queens check each other
– Find a tour with minimal length where city X is visited after city Y

15Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

Optimisation vs. constraint satisfaction (2/2)

• When combining the two:

• Where do the examples fit?
• Note: constraint problems can be transformed into 

optimisation problems
• Question: how can we formulate the 8-queens problem in to a 

FOP/CSP/COP?

16

Objective function

Constraints Yes No

Yes Constrained
optimisation

problem

Constraint 
satisfaction 

problem

No Free 
optimisation

problem

No problem

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

NP problems

• We only looked at classifying the problem, not discussed 
problem solvers

• This classification scheme needs the properties of the 
problem solver

• Benefit of this scheme: possible to tell how difficult the 
problem is

• Explain the basics of this classifier for combinatorial 
optimisation problems (booleans or integers search 
space)

17Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

NP problems:
Key notions

• Problem size: dimensionality of the problem at hand and 
number of different values for the problem variables

• Running-time: number of operations the algorithm takes 
to terminate
– Worst-case as a function of problem size
– Polynomial, super-polynomial, exponential

• Problem reduction: transforming current problem into 
another via mapping

18Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

NP problems:
Class

• The difficultness of a problem can now be classified:
– Class P: algorithm can solve the problem in polynomial time 

(worst-case running-time for problem size n is less than F(n) for 
some polynomial formula F)

– Class NP: problem can be solved and any solution can be 
verified within polynomial time by some other algorithm (P 
subset of NP)

– Class NP-complete: problem belongs to class NP and any other 
problem in NP can be reduced to this problem by al algorithm 
running in polynomial time

– Class NP-hard: problem is at least as hard as any other problem 
in NP-complete but solution cannot necessarily be verified within 
polynomial time

19Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014



/ 20

NP problems:
Difference between classes

• P is different from NP-hard
• Not known whether P is different from NP

P ≠ NP P = NP

• For now: use of approximation algorithms and 
metaheuristics

20Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014


