Evolutionary Computing

Chapter 1

Chapter 1: Problems to be solved

Problems can be classified in different ways:

Black box model

Search problems

Optimisation vs constraint satisfaction

NP problems

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 2 /20

“Black box” model

VioQel

> P
Input Output

o “Black box” model consists of 3 components
 When one component is unknown: new problem type

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 3/20

“Black box” model:
Optimisation

 Model and desired output is known, task is to find inputs

Model

? — Known » specified
Input Qutput

. Examples:

Time tables for university, call center, or hospital
Design specifications

Traveling salesman problem (TSP)
Eight-queens problem, etc.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 4 /20

“Black box” model:
Optimisation example 1: university timetabling

Enormously big search space
« Timetables must be good

e “Good” is defined by a number
of competing criteria

 Timetables must be feasible

« Vast majority of search space
IS infeasible

- Ny W
-

3B

F I'E“;'i.n
y ~ G

L
.

g
L

fv @y

T ®

—
——

=
W

nll
—
3

R
3
= 5
05

sl
L]

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 5 /20

- Tatties ITI Beta 1.4 - Full Copy - H:'\ kattiesIIIZ.1beta' dept.tat

File Ewolution Ewaluation Algorithm Display Adwanced

=|o] x|

2 2 /ey 50| 4| (b D554 &Batties I

Evaluations: ¥17 Last change at: 431 Ewvaluations per minute: 14952 Displaying: Best
Run No: 0 ¥ Placing Events is a Special Priority
. Targets Weights
22 Unplaced Events: 1 J 100
0| : I 0
) Changes: 0),
1 | Five O'Clock Classes: 13] 100
b — J | LM EHOGUNIN Classes: 13 J 24
60 J | Gaps in Student Day: 7046 J 82
0 J | Lone Classes: 17708 J 100
0 - J | Long Intensive: 0 J 100
0| | : : I 27
), dt:d Lecturers: 2b),
0 J Mo Teaching Free Dayfiys J 46
0 J Instant Site Changes: 0 J 30
0 | . . | 43
J Site Changes: 0)
210 - J | Location Changes: 49738 — J i
100 -~ J | Room Changes: 11869 J 13

Progress: bhi

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014

“Black box” model:
Optimisation example 2: satellite structure

Optimised satellite designs for
NASA to maximize vibration
Isolation

Evolving: design structures

Fithess: vibration resistance

Evolutionary “creativity”

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 7 /20

“Black box” model:
Optimisation example 3: 8 queens problem

e Given an 8-by-8
chessboard and 8 queens
* Place the 8 gueens on the

chessboard without any !

conflict 5 ..%....g:
« Two gueens conflict if they m B N -

share same row, column or 3

diagonal H N

e Can be extended to an n
gueens problem (n>8)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 8 /20

“Black box” model:
Modelling

 We have corresponding sets of inputs & outputs and
seek model that delivers correct output for every known
Input
Model

known ——» ?, - » known

Input Output

* Note: modelling problems can be transformed into

optimisation problems

 Evolutionary machine learning
 Predicting stock exchange
* Voice control system for smart homes

“Black box” model:
Modelling example: load applicant creditibility

 British bank evolved
creditability model to
predict loan paying
behavior of new applicants

« Evolving: prediction
models

* Fitness: model accuracy
on historical data

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 10 /20

“Black box” model:
Simulation

 We have a given model and wish to know the outputs
that arise under different input conditions

Model

known—>» known ——> 7

Input Ooulput

- Often used to answer “what-if” questions in evolving
dynamic environments
- Evolutionary economics, Artificial Life
- Weather forecast system
- Impact analysis new tax systems

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 11 /20

“Black box” model:
Simulation example: evolving artificial societies

Simulating trade, economic
competition, etc. to calibrate
models

Use models to optimise
strategies and policies

Evolutionary economy

Survival of the fittest is
universal (big/small fish)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 11 /20

“Black box” model:
Simulation example 2: biological interpretations

Incest prevention keeps
evolution from rapid
degeneration

(we knew this)

Multi-parent reproduction,
makes evolution more
efficient

(this does not exist on Earth
In carbon)

2"d sample of Life

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 13 /20

Search problems

e Simulation is different from optimisation/modelling

« Optimisation/modelling problems search through huge
space of possibilities

« Search space: collection of all objects of interest
Including the desired solution

« Question: how large is the search space for different
tours through n cities?

Benefit of classifying these problems: distinction between
- search problems, which define search spaces, and

- problem-solvers, which tell how to move through search
spaces.

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 14 /20

Optimisation vs. constraint satisfaction (1/2)

* Objective function: a way of assigning a value to a
possible solution that reflects its quality on scale
— Number of un-checked queens (maximize)

— Length of a tour visiting given set of cities (minimize)
e Constraint: binary evaluation telling whether a given

requirement holds or not

— Find a configuration of eight queens on a chessboard such that no two
gueens check each other

— Find a tour with minimal length where city X is visited after city Y

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 15 /20

Optimisation vs. constraint satisfaction (2/2)

 When combining the two:

Objective function
Constraints Yes No
Yes Constrained Constraint
optimisation satisfaction
problem problem
No Free No problem
optimisation
problem

 Where do the examples fit?

* Note: constraint problems can be transformed into
optimisation problems

e Question: how can we formulate the 8-queens problem in to a
FOP/CSP/COP?

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 16 /20

NP problems

 We only looked at classifying the problem, not discussed
problem solvers

* This classification scheme needs the properties of the
problem solver

» Benefit of this scheme: possible to tell how difficult the
problem is

e Explain the basics of this classifier for combinatorial
optimisation problems (booleans or integers search
space)

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 17 /20

NP problems:
Key notions

* Problem size: dimensionality of the problem at hand and
number of different values for the problem variables

* Running-time: number of operations the algorithm takes
to terminate
— Worst-case as a function of problem size
— Polynomial, super-polynomial, exponential
« Problem reduction: transforming current problem into
another via mapping

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 18 /20

NP problems:
Class

e The difficultness of a problem can now be classified:

Class P: algorithm can solve the problem in polynomial time
(worst-case running-time for problem size n is less than F(n) for
some polynomial formula F)

Class NP: problem can be solved and any solution can be
verified within polynomial time by some other algorithm (P
subset of NP)

Class NP-complete: problem belongs to class NP and any other
problem in NP can be reduced to this problem by al algorithm
running in polynomial time

Class NP-hard: problem is at least as hard as any other problem

in NP-complete but solution cannot necessarily be verified within
polynomial time

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 19 /20

NP problems:
Difference between classes

e P is different from NP-hard
 Not known whether P is different from NP

P #NP P=NP

NP-complete

NP-complete
P =NP

* For now: use of approximation algorithms and
metaheuristics

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 20 /20

