Evolutionary Computing

Chapter 1: Problems to be solved

Problems can be classified in different ways:

- Black box model
- Search problems
- Optimisation vs constraint satisfaction
- NP problems

"Black box" model: Optimisation

• Model and desired output is known, task is to find inputs

- Examples:
 - Time tables for university, call center, or hospital
 - Design specifications
 - Traveling salesman problem (TSP)
 - Eight-queens problem, etc.

"Black box" model: Optimisation example 1: university timetabling

- Enormously big search space
- Timetables must be good
- "Good" is defined by a number of competing criteria
- Timetables must be feasible
- Vast majority of search space is infeasible

Tatties III Beta 1.4 - Full Copy - H:	<u>_ 🗆 ×</u>		
Eile Evolution Evaluation Algorithm D	isplay <u>A</u> dvanced		
? ┣₂ ฿┣ ∛ ● <	🕨 🔿 🔚 📐 SH SA	🚺 atties 🎹	
Evaluations: 717 La	st change at: 431 Evaluations per min	ute: 14952 Displaying: Best	
Run No: 0		Placing Events is a Special Priority	
22 I argets	Upplaced Events: 1	Weights 100	
	Onpraced Events. 1	, , , , , , , , , , , , , , , , , , , ,	
0	Changes: 0	J 0	
1 - [Five O'Clock Classes: 13	100	
6	Wed Afternoon Classes: 13 -	24	
60	Gaps in Student Day: 7046	82	
0	Lone Classes: 17708	100	
30 -	Long Intensive: 0 -	100	
0	Overloaded Lecturers: 26 -	27	
0 J	No Teaching Free Day <mark>: 52</mark> —	46	
0]	Instant Site Changes: 0 -	30	
0]	Site Changes: 0	43	
210 –	Location Changes: 49738	-] 8	
100 -]	Room Changes: 11869 –	13	
Progress: 55 <mark>%</mark>			
Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 6			

"Black box" model: Optimisation example 2: satellite structure

- Optimised satellite designs for NASA to maximize vibration isolation
- Evolving: design structures
- Fitness: vibration resistance
- Evolutionary "creativity"

"Black box" model: Optimisation example 3: 8 queens problem

- Given an 8-by-8 chessboard and 8 queens
- Place the 8 queens on the chessboard without any conflict
- Two queens conflict if they share same row, column or diagonal
- Can be extended to an n queens problem (n>8)

"Black box" model: Modelling

 We have corresponding sets of inputs & outputs and seek model that delivers correct output for every known input

- Note: modelling problems can be transformed into optimisation problems
 - Evolutionary machine learning
 - Predicting stock exchange
 - Voice control system for smart homes

"Black box" model: Modelling example: load applicant creditibility

- British bank evolved creditability model to predict loan paying behavior of new applicants
- Evolving: prediction models
- Fitness: model accuracy on historical data

Impact analysis new tax systems

"Black box" model: Simulation example: evolving artificial societies

Simulating trade, economic competition, etc. to calibrate models

Use models to optimise strategies and policies

Evolutionary economy

Survival of the fittest is universal (big/small fish)

"Black box" model: Simulation example 2: biological interpretations

Incest prevention keeps evolution from rapid degeneration (we knew this)

Multi-parent reproduction, makes evolution more efficient (this does not exist on Earth in carbon)

2nd sample of Life

Search problems

- Simulation is different from optimisation/modelling
- Optimisation/modelling problems search through huge space of possibilities
- Search space: collection of all objects of interest including the desired solution
- Question: how large is the search space for different tours through n cities?

Benefit of classifying these problems: distinction between

- search problems, which define search spaces, and
- problem-solvers, which tell how to move through search spaces.

Optimisation vs. constraint satisfaction (1/2)

- Objective function: a way of assigning a value to a possible solution that reflects its quality on scale
 - Number of un-checked queens (maximize)
 - Length of a tour visiting given set of cities (minimize)
- Constraint: binary evaluation telling whether a given requirement holds or not
 - Find a configuration of eight queens on a chessboard such that no two queens check each other
 - Find a tour with minimal length where city X is visited after city Y

Optimisation vs. constraint satisfaction (2/2)

• When combining the two:

	Objective function	
Constraints	Yes	No
Yes	Constrained optimisation problem	Constraint satisfaction problem
No	Free optimisation problem	No problem

- Where do the examples fit?
- Note: constraint problems can be transformed into optimisation problems
- Question: how can we formulate the 8-queens problem in to a FOP/CSP/COP?

NP problems

- We only looked at classifying the problem, not discussed problem solvers
- This classification scheme needs the properties of the problem solver
- Benefit of this scheme: possible to tell how difficult the problem is
- Explain the basics of this classifier for combinatorial optimisation problems (booleans or integers search space)

NP problems: Key notions

- Problem size: dimensionality of the problem at hand and number of different values for the problem variables
- Running-time: number of operations the algorithm takes to terminate
 - Worst-case as a function of problem size
 - Polynomial, super-polynomial, exponential
- Problem reduction: transforming current problem into another via mapping

NP problems: Class

- The difficultness of a problem can now be classified:
 - Class P: algorithm can solve the problem in polynomial time (worst-case running-time for problem size n is less than F(n) for some polynomial formula F)
 - Class NP: problem can be solved and any solution can be verified within polynomial time by some other algorithm (P subset of NP)
 - Class NP-complete: problem belongs to class NP and any other problem in NP can be reduced to this problem by al algorithm running in polynomial time
 - Class NP-hard: problem is at least as hard as any other problem in NP-complete but solution cannot necessarily be verified within polynomial time

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014