Evolutionary Computing

Chapter 1



Chapter 1: Problems to be solved

Problems can be classified in different ways:

Black box model

Search problems

Optimisation vs constraint satisfaction

NP problems
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“Black box” model

VioQel

> P
Input Output

o “Black box” model consists of 3 components
 When one component is unknown: new problem type
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“Black box” model:
Optimisation

 Model and desired output is known, task is to find inputs

Model

? — Known »  specified
Input Qutput

. Examples:

Time tables for university, call center, or hospital
Design specifications

Traveling salesman problem (TSP)
Eight-queens problem, etc.
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“Black box” model:
Optimisation example 1: university timetabling

Enormously big search space
« Timetables must be good

e “Good” is defined by a number
of competing criteria

 Timetables must be feasible

« Vast majority of search space
IS infeasible
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“Black box” model:
Optimisation example 2: satellite structure

Optimised satellite designs for
NASA to maximize vibration
Isolation

Evolving: design structures

Fithess: vibration resistance

Evolutionary “creativity”
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“Black box” model:
Optimisation example 3: 8 queens problem

e Given an 8-by-8
chessboard and 8 queens
* Place the 8 gueens on the

chessboard without any !

conflict 5 ..%....g:
« Two gueens conflict if they m B N -

share same row, column or 3

diagonal H N

e Can be extended to an n
gueens problem (n>8)
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“Black box” model:
Modelling

 We have corresponding sets of inputs & outputs and
seek model that delivers correct output for every known
Input
Model

known ——» ?, - »  known

Input Output

* Note: modelling problems can be transformed into

optimisation problems

 Evolutionary machine learning
 Predicting stock exchange
* Voice control system for smart homes



“Black box” model:
Modelling example: load applicant creditibility

 British bank evolved
creditability model to
predict loan paying
behavior of new applicants

« Evolving: prediction
models

* Fitness: model accuracy
on historical data
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“Black box” model:
Simulation

 We have a given model and wish to know the outputs
that arise under different input conditions

Model

known—>»  known ——> 7

Input Ooulput

- Often used to answer “what-if” questions in evolving
dynamic environments
- Evolutionary economics, Artificial Life
- Weather forecast system
- Impact analysis new tax systems
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“Black box” model:
Simulation example: evolving artificial societies

Simulating trade, economic
competition, etc. to calibrate
models

Use models to optimise
strategies and policies

Evolutionary economy

Survival of the fittest is
universal (big/small fish)
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“Black box” model:
Simulation example 2: biological interpretations

Incest prevention keeps
evolution from rapid
degeneration

(we knew this)

Multi-parent reproduction,
makes evolution more
efficient

(this does not exist on Earth
In carbon)

2"d sample of Life
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Search problems

e Simulation is different from optimisation/modelling

« Optimisation/modelling problems search through huge
space of possibilities

« Search space: collection of all objects of interest
Including the desired solution

« Question: how large is the search space for different
tours through n cities?

Benefit of classifying these problems: distinction between
- search problems, which define search spaces, and

- problem-solvers, which tell how to move through search
spaces.
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Optimisation vs. constraint satisfaction (1/2)

* Objective function: a way of assigning a value to a
possible solution that reflects its quality on scale
— Number of un-checked queens (maximize)

— Length of a tour visiting given set of cities (minimize)
e Constraint: binary evaluation telling whether a given

requirement holds or not

— Find a configuration of eight queens on a chessboard such that no two
gueens check each other

— Find a tour with minimal length where city X is visited after city Y
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Optimisation vs. constraint satisfaction (2/2)

 When combining the two:

Objective function
Constraints Yes No
Yes Constrained Constraint
optimisation satisfaction
problem problem
No Free No problem
optimisation
problem

 Where do the examples fit?

* Note: constraint problems can be transformed into
optimisation problems

e Question: how can we formulate the 8-queens problem in to a
FOP/CSP/COP?

Adapted from A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing 2014 16 /20



NP problems

 We only looked at classifying the problem, not discussed
problem solvers

* This classification scheme needs the properties of the
problem solver

» Benefit of this scheme: possible to tell how difficult the
problem is

e Explain the basics of this classifier for combinatorial
optimisation problems (booleans or integers search
space)
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NP problems:
Key notions

* Problem size: dimensionality of the problem at hand and
number of different values for the problem variables

* Running-time: number of operations the algorithm takes
to terminate
— Worst-case as a function of problem size
— Polynomial, super-polynomial, exponential
« Problem reduction: transforming current problem into
another via mapping
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NP problems:
Class

e The difficultness of a problem can now be classified:

Class P: algorithm can solve the problem in polynomial time
(worst-case running-time for problem size n is less than F(n) for
some polynomial formula F)

Class NP: problem can be solved and any solution can be
verified within polynomial time by some other algorithm (P
subset of NP)

Class NP-complete: problem belongs to class NP and any other
problem in NP can be reduced to this problem by al algorithm
running in polynomial time

Class NP-hard: problem is at least as hard as any other problem

in NP-complete but solution cannot necessarily be verified within
polynomial time
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NP problems:
Difference between classes

e P is different from NP-hard
 Not known whether P is different from NP

P #NP P=NP

NP-complete

NP-complete
P =NP

* For now: use of approximation algorithms and
metaheuristics
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