
Evolutionary Computing

Chapter 2: Evolutionary Computing: the Origins

- Historical perspective
- Biological inspiration:
 - Darwinian evolution theory (simplified!)
 - Genetics (simplified!)
- Motivation for EC

Historical perspective (1/3)

- 1948, Turing: proposes "genetical or evolutionary search"
- 1962, Bremermann: optimization through evolution and recombination
- 1964, Rechenberg: introduces evolution strategies
- 1965, L. Fogel, Owens and Walsh: introduce evolutionary programming
- 1975, Holland: introduces genetic algorithms
- 1992, Koza: introduces genetic programming

Historical perspective (2/3)

- 1985: first international conference (ICGA)
- 1990: first international conference in Europe (PPSN)
- 1993: first scientific EC journal (MIT Press)
- 1997: launch of European EC Research Network EvoNet

Historical perspective (3/3)

EC in the early 21st Century:

- 3 major EC conferences, about 10 small related ones
- 4 scientific core EC journals
- 1000+ EC-related papers published last year(estimate)
- uncountable (meaning: many) applications
- uncountable (meaning: ?) consultancy and R&D firms
- part of many university curricula

Darwinian Evolution (1/3): Survival of the fittest

- All environments have finite resources
 (i.e., can only support a limited number of individuals)
- Life forms have basic instinct/ lifecycles geared towards reproduction
- Therefore some kind of selection is inevitable
- Those individuals that compete for the resources most effectively have increased chance of reproduction
- Note: fitness in natural evolution is a derived, secondary measure, i.e., we (humans) assign a high fitness to individuals with many offspring

Darwinian Evolution (2/3): Diversity drives change

- Phenotypic traits:
 - Behaviour / physical differences that affect response to environment
 - Partly determined by inheritance, partly by factors during development
 - Unique to each individual, partly as a result of random changes
- If phenotypic traits:
 - Lead to higher chances of reproduction
 - Can be inherited

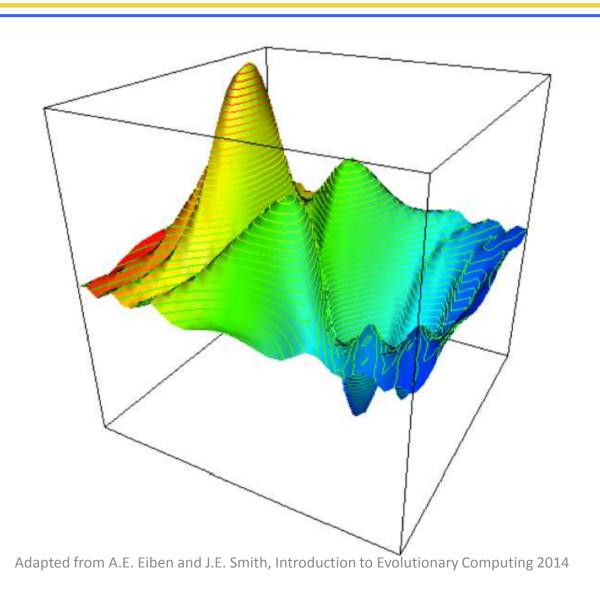
then they will tend to increase in subsequent generations, leading to new combinations of traits ...

Darwinian Evolution (3/3): Summary

- Population consists of diverse set of individuals
- Combinations of traits that are better adapted tend to increase representation in population

Individuals are "units of selection"

 Variations occur through random changes yielding constant source of diversity, coupled with selection means that:


Population is the "unit of evolution"

Note the absence of "guiding force"

Adaptive landscape metaphor (Wright, 1932)

- Can envisage population with n traits as existing in a n+1-dimensional space (landscape) with height corresponding to fitness
- Each different individual (phenotype) represents a single point on the landscape
- Population is therefore a "cloud" of points, moving on the landscape over time as it evolves – adaptation

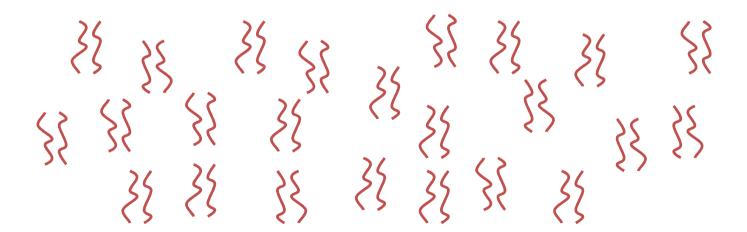
Adaptive landscape metaphor (Wright, 1932)

Adaptive landscape metaphor (cont'd)

- Selection "pushes" population up the landscape
- Genetic drift:
 - random variations in feature distribution
 - (+ or -) arising from sampling error
 - can cause the population "melt down" hills, thus crossing valleys and leaving local optima

Genetics: Natural

- The information required to build a living organism is coded in the DNA of that organism
- Genotype (DNA inside) determines phenotype
- Genes → phenotypic traits is a complex mapping
 - One gene may affect many traits (pleiotropy)
 - Many genes may affect one trait (polygeny)
- Small changes in the genotype lead to small changes in the organism (e.g., height, hair colour)

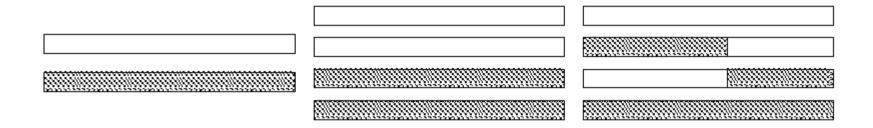

Genetics: Genes and the Genome

- Genes are encoded in strands of DNA called chromosomes
- In most cells, there are two copies of each chromosome (diploidy)
- The complete genetic material in an individual's genotype is called the Genome
- Within a species, most of the genetic material is the same

Genetics:

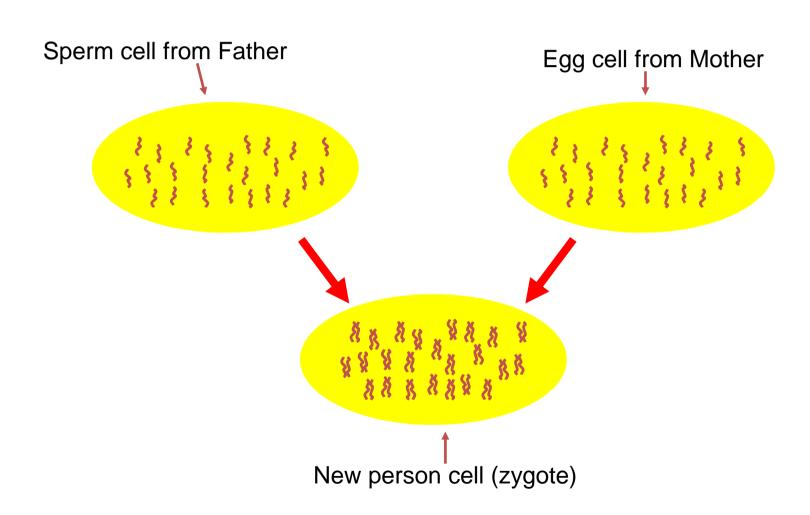
Example: Homo Sapiens

- Human DNA is organised into chromosomes
- Human body cells contains 23 pairs of chromosomes which together define the physical attributes of the individual:



Genetics: Reproductive Cells

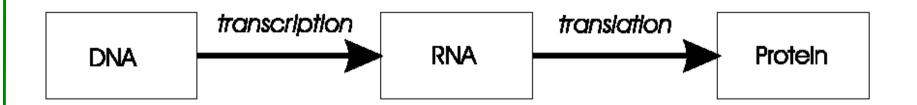
- Gametes (sperm and egg cells) contain 23 individual chromosomes rather than 23 pairs
- Cells with only one copy of each chromosome are called haploid
- Gametes are formed by a special form of cell splitting called meiosis
- During meiosis the pairs of chromosome undergo an operation called crossing-over


Genetics: Crossing-over during meiosis

- Chromosome pairs align and duplicate
- Inner pairs link at a centromere and swap parts of themselves

- Outcome is one copy of maternal/paternal chromosome plus two entirely new combinations
- After crossing-over one of each pair goes into each gamete

Genetics: Fertilisation


Genetics: After fertilisation

- New zygote rapidly divides etc creating many cells all with the same genetic contents
- Although all cells contain the same genes, depending on, for example where they are in the organism, they will behave differently
- This process of differential behaviour during development is called ontogenesis
- All of this uses, and is controlled by, the same mechanism for decoding the genes in DNA

Genetics: Genetic code

- All proteins in life on earth are composed of sequences built from 20 different amino acids
- DNA is built from four nucleotides in a double helix spiral: purines A,G; pyrimidines T,C
- Triplets of these from codons, each of which codes for a specific amino acid
- Much redundancy:
 - purines complement pyrimidines
 - the DNA contains much rubbish
 - 4³=64 codons code for 20 amino acids
 - genetic code = the mapping from codons to amino acids
- For all natural life on earth, the genetic code is the same!

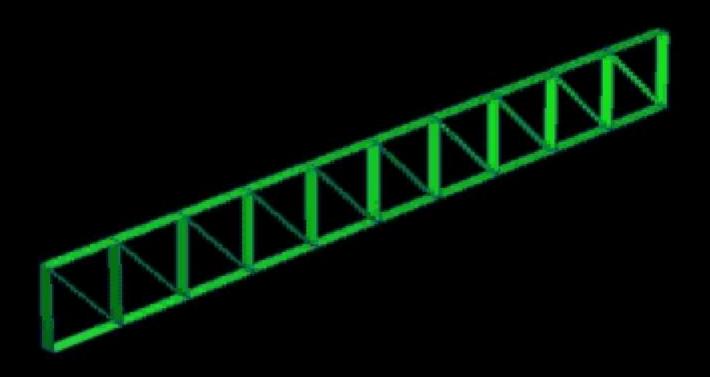
Genetics: Transcription, translation

A central claim in molecular genetics: only one way flow

Genotype — Phenotype Phenotype

Lamarckism (saying that acquired features can be inherited) is thus wrong!

Genetics: Mutation


- Occasionally some of the genetic material changes very slightly during this process (replication error)
- This means that the child might have genetic material information not inherited from either parent
- This can be
 - catastrophic: offspring in not viable (most likely)
 - neutral: new feature not influences fitness
 - advantageous: strong new feature occurs
- Redundancy in the genetic code forms a good way of error checking

Motivation for evolutionary computing (1/2)

- Nature has always served as a source of inspiration for engineers and scientists
- The best problem solver known in nature is:
 - the (human) brain that created "the wheel, New York, wars and so on" (after Douglas Adams' Hitch-Hikers Guide)
 - the evolution mechanism that created the human brain (after Darwin's Origin of Species)
- Answer 1 → neurocomputing
- Answer 2 → evolutionary computing

Motivation for evolutionary computing (2/2)

- Developing, analyzing, applying problem solving methods a.k.a. algorithms is a central theme in mathematics and computer science
- Time for thorough problem analysis decreases
- Complexity of problems to be solved increases
- Consequence: ROBUST PROBLEM SOLVING technology needed

